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Abstract. In this article, we study the long-time behavior of the non-autonomous

Berger equation with nonlinear damping. We prove the existence of a compact
uniform attractor for the Berger equation with nonlinear damping in the space

(H2(Ω) ∩H1
0 (Ω))× L2(Ω).

1. Introduction

In this article, we consider the non-autonomous Berger equation with nonlinear
damping,

utt + γg(ut) + ∆2u+ (Γ−
∫

Ω

|∇u|2dx)∆u = p(x, t), x ∈ Ω,

u|∂Ω = ∆u|∂Ω = 0,

u(x, τ) = u0
τ (x), ut(x, τ) = u1

τ (x).

(1.1)

Here Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary; γ > 0, and
Γ are constants. The damping function g ∈ C1(R) satisfies

g(0) = 0, g is strictly increasing, lim inf
|s|→∞

g′(s) > 0, (1.2)

|g(s)| ≤ C(1 + |s|q), (1.3)

with 1 ≤ q < ∞ if n ≤ 4, and 1 ≤ q < n+4
n−4 if n > 4. The external force p(x, t)

satisfies

p(x, t) ∈ L∞(R;L2(Ω)), (1.4)

∂tp ∈ Lrb(R;Lr(Ω)) with r >
2n
n+ 4

. (1.5)

Equation (1.1) describes the nonlinear oscillation of a plate. The function u(x, t)
measures the deflection of the plate at the point x and the moment of time t. The
boundary condition implies that the edges of the plate are hinged. The function
p(x, t) describes the transverse load on the plate. The parameter Γ is proportional
to the value of compressive force acting in the plane of the plate. The value γ
describes the environment resistance.
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In this paper, we consider the non-autonomous system (1.1) via the uniform
attractor of the corresponding family of processes {Uσ(t, τ)}, σ ∈ Σ. For the
Berger equation, the feature of the model (1.1) is that: (i) the equation does not
account for rotational inertia, (i.e., ∆utt), (ii) the damping is nonlinear, and (iii)
the external forcing p(x, t) is not translation compact in L2

loc(R;L2(Ω)).
For the autonomous case, if n = 1, equation (1.1) becomes a well-known beam

equation which was treated by many authors, see, for example, [2, 3, 20] for the
linear damping and [5] for the nonlinear damping. In [13], Marzocchi obtained
the global attractor of beam equation with linear strong damping (i.e. uxxxxt).
Sell and You [18] showed the existence of the global attractor for (1.1) with linear
damping in the one-dimensional case. In [14], Naboka considered the existence of
the global attractor of two coupling berger plate equations with linear damping.
Later, Lasiecka and Chueshov [6] gave a detailed discussion about the existence
of the global attractor for the equation (1.1) in the space (H2(Ω) ∩ H1

0 (Ω)) ×
L2(Ω). Ma and Narciso [11] established the global attractor for the nonlinear
beam equation with nonlinear damping and source terms. The existence of the
exponential attractor for the plate equation was proved in [12].

In the case of non-autonomous system, for the wave equation, Sun et al [19] dis-
cussed the dynamical behavior of the non-autonomous wave equation. The random
wave equation has been studied in [22]. The asymptotic behavior of the solution
for the non-autonomous viscoelastic equation was considered in [15, 16].

The non-autonomous wave equation has attracted much attention in recent years.
However, the non-autonomous plate equation with nonlinear damping is less dis-
cussed, especially for the Berger equation. This paper is devoted to the dynamical
behavior of the solution of the equation (1.1).

In this article, inspired by the ideas in [6, 10, 19], we prove the existence of a
compact uniform attractor for problem (1.1) in the apace (H2(Ω)∩H1

0 (Ω))×L2(Ω).
The main emphasis is placed on the external force and the nonlinear dissipation.

This article is organized as follows: In Section 2, we recall some results about
function space and uniform attractor we will use in this paper; In Section 3, we give
the existence of uniformly absorbing set in (H2(Ω) ∩H1

0 (Ω)) × L2(Ω); In the last
Section, we derive uniform asymptotic compactness of the corresponding family of
processes {Uσ(t, τ)}, σ ∈ Σ generated by the problem (1.1).

2. Preliminaries

In this section, we recall some fundamental concepts about the non-autonomous
dynamical system, see more details in [4].

Let X be a Banach space, and Σ be a parameter set. The operator {Uσ(t, τ)}, σ ∈
Σ is said to be a family of processes in X with symbol space Σ if for any σ ∈ Σ,

Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R, (2.1)

Uσ(τ, τ) = Id, ∀τ ∈ R, (2.2)

where Id is the identity. Let {T (s)}s≥0 be the translation semigroup on Σ, we say
that a family of processes {Uσ(t, τ)}, σ ∈ Σ satisfies the translation identity if

Uσ(t+ s, τ + s) = UT (s)σ(t, τ), ∀σ ∈ Σ, t ≥ τ, τ ∈ R, s ≥ 0, (2.3)

T (s)Σ = Σ, ∀s ≥ 0. (2.4)

By B(X) we denote the collection of all bounded sets of X, and Rτ = {t ∈ R, t ≥ τ}.
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Definition 2.1 ([4]). A bounded set B0 ∈ B(X) is said to be a bounded uniformly
(w.r.t. σ ∈ Σ) absorbing set for {Uσ(t, τ)}, σ ∈ Σ if for any τ ∈ R and B ∈ B(X)
there exists T0 = T0(B, τ) such that ∪σ∈ΣUσ(t; τ)B ⊂ B0 for all t ≥ T0.

Definition 2.2 ([4]). A set A ⊂ X is said to be uniformly (w.r.t σ ∈ Σ) attracting
for the family of processes {Uσ(t, τ)}, σ ∈ Σ if for any fixed τ ∈ R and any B ∈ B(X)

lim
t→+∞

(
sup
σ∈Σ

dist(Uσ(t; τ)B;A)
)

= 0,

dist(·, ·) is the usual Hausdorff semidistance in X between two sets.

Definition 2.3 ([4]). A closed set AΣ ⊂ X is said to be the uniform (w.r.t σ ∈ Σ)
attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ if it is uniformly (w.r.t σ ∈ Σ)
attracting (attracting property) and contained in any closed uniformly (w.r.t σ ∈ Σ)
attracting set A′ of the family of processes {Uσ(t, τ)}, σ ∈ Σ: AΣ ⊆ A′ (minimality
property).

Definition 2.4 ([4]). A function ϕ is said to be translation bounded in Lrloc(R;X),
if

‖ϕ‖rb = sup
t∈R

∫ t+1

t

‖ϕ‖rXds < +∞.

Denote by Lrb(R;X) the set of all translation bounded functions in Lrloc(R;X).

Next we recall some properties of the nonlinear damping function g.

Lemma 2.5 ([8, 10]). Let g(·) satisfy condition (1.3). Then for any δ > 0 there
exists Cδ > 0, such that

|u− v|2 ≤ δ + Cδ(g(u)− g(v))(u− v) for u, v ∈ R.

Hereafter, the norm in L2(Ω) is denoted by ‖ · ‖. Hs(Ω) stands for the usual
Sovolev space when s ≥ 0 with the form ‖u‖s. C, Ci denote a general positive
constant, i = 1, . . . , which will be different in different estimates.

3. Existence of uniformly absorbing set

3.1. Setting of the problem. Similar to the autonomous case (e.g., see [6]), we
can obtain the following existence and uniqueness results and the time-dependent
terms make no essential complications.

Theorem 3.1. Let Ω be a bounded domain of Rn with smooth boundary, g sat-
isfies (1.2)-(1.3), p(x, t) ∈ L∞(R;L2(Ω)). Then for any initial data (u0

τ , u
1
τ ) ∈

(H2(Ω)∩H1
0 (Ω))×L2(Ω), the problem (1.1) has an unique solution u(t) which satis-

fies (u(t), ut(t)) ∈ C(Rτ ; (H2(Ω)∩H1
0 (Ω))×L2(Ω)) and ∂ttu(t) ∈ L2

loc(Rτ ;H−2(Ω)).

Let y(t) = (u(t), ut(t)), yτ = (u0
τ , u

1
τ ), E0 = (H2(Ω)∩H1

0 (Ω))×L2(Ω) with finite
energy norm

‖y‖E0 = ‖∆u‖2 + ‖ut‖2.
Then system (1.1) is equivalent to:

∂tut = −∆2u− γg(ut)− (Γ−
∫

Ω

|∇u|2dx)∆u+ p(x, t), for t ≥ τ,

u|∂Ω =
∂

∂ν
u|∂Ω = 0, u(x, τ) = u0

τ (x), ut(x, τ) = u1
τ (x).

(3.1)
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We can also rewrite (3.1) in the operator form:

∂ty = Aσ(t)(y), y|t=τ = yτ , (3.2)

where σ(t) = p(t) is symbol of equation (3.2). We now define the symbol space for
(3.2), take a fixed symbol σ0(s) = p0(s), p0 ∈ L∞(R;L2(Ω)) ∩W 1,r

b (R;Lr(Ω)) for
some r > 2n

n+4 , and set

Σ0 = {p0(x, t+ h) h ∈ R}, (3.3)

Σis the ∗ -weakly closure of Σ0 in L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)). (3.4)

Then we have the following properties.

Proposition 3.2. Σ is bounded in L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)), and for any

σ ∈ Σ, the following estimate holds

‖σ‖L∞(R;L2(Ω))∩W 1,r
b (R;Lr(Ω)) ≤ ‖p0‖L∞(R;L2(Ω))∩W 1,r

b (R;Lr(Ω)).

Thus, from Theorem 3.1, we know that (1.1) is well posed for all σ(s) ∈ Σ and
generates a family of processes {Uσ(t, τ)}, σ ∈ Σ given by the formula Uσ(t, τ)yτ =
y(t). The y(t) is the solution of (1.1)-(1.5) and {Uσ(t, τ)}, σ ∈ Σ satisfies (2.1)-
(2.2). At the same time, due to the unique solvability, we know {Uσ(t, τ)}, σ ∈ Σ
satisfies the translation identity (2.3)-(2.4).

In what follows, we denote by {Uσ(t, τ)}, σ ∈ Σ the family of processes which is
generated by (3.2)-(3.4). Next we recall some criterion developed in [19].

Definition 3.3 ([19]). Let X be a Banach space, B a bounded subset of X and Σ a
symbol (or parameter) space. We call a function φ(·, ·; ·, ·), defined on (X×X)×(Σ×
Σ), to be a contractive function on B×B if for any sequence {xn}∞n=1 ⊂ B and any
{σn} ⊂ Σ, there is a subsequence {xnk

}∞k=1 ⊂ {xn}∞n=1 and {σnk
}∞k=1 ⊂ {σn}∞n=1

such that
lim
k→∞

lim
l→∞

φ(xnk
, xnl

;σnk
, σnl

) = 0.

We denote the set of all contractive functions on B ×B by contr(B,Σ).

Theorem 3.4 ([19]). Let {Uσ(t, τ)}, σ ∈ Σ be a family of processes which satisfies
the translation identity (2.3)-(2.4) on Banach space X and has a bounded uniformly
(w.r.t. σ ∈ Σ) absorbing set B0 ⊂ X. Moreover, assume that for any ε > 0 there
exist T = T (B0, ε) and φT ∈ contr(B0,Σ) such that

‖Uσ1(T, 0)x− Uσ2(T, 0)y‖ ≤ ε+ φT (x, y;σ1, σ2), ∀x, y ∈ B0, ∀σ1, σ2 ∈ Σ.

Then {Uσ(t, τ)}, σ ∈ Σ is uniformly (w.r.t. σ ∈ Σ) asymptotically compact in X.

Applying [17, Proposition 7.1], we obtain the following results.

Proposition 3.5. Let p ∈ L∞(R;L2(Ω))∩W 1,r
b (R;Lr(Ω)) (r > 2n

n+4 ). Then there
is an M > 0 such that

sup
t∈R
‖p(x, t+ s)‖L2(Ω) ≤M for all s ∈ R.

Proposition 3.6. Let si ∈ R (i = 1, 2, . . . ), p ∈ L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω))

(r > 2n
n+4 ), {un(t) : t ≥ 0, n = 1, 2, . . . } be bounded in H2(Ω) ∩H1

0 (Ω), and for any
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T1 > 0, {unt
(t)
∣∣ n = 1, 2, . . . } bounded in L∞(0, T1;L2(Ω)). Then for any T > 0,

there exist subsequences {unk
}∞k=1 of {un}∞n=1 and {snk

}∞k=1 of {sn}∞n=1 such that

lim
k→∞

lim
l→∞

∫ T

0

∫ T

s

∫
Ω

(p(x, τ + snk
)− p(x, τ + snl

))(unk
− unl

)t(τ) dx dτ ds = 0.

3.2. Uniformly absorbing set in (H2(Ω)∩H1
0 (Ω))×L2(Ω). In this subsection,

we start with the following result on the existence of uniformly (w.r.t. σ ∈ Σ)
absorbing set in (H2(Ω)∩H1

0 (Ω))×L2(Ω). The proof is similar to the autonomous
case [6], so we omit it here.

Theorem 3.7. Assume that g satisfies (1.2)-(1.3). If

p0 ∈ L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)) for some r >

2n
n+ 4

and Σ is defined by (3.4), then the family of processes {Uσ(t, τ)}, σ ∈ Σ corre-
sponding to problem (1.1) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set in
(H2(Ω) ∩H1

0 (Ω))× L2(Ω).

4. Uniform (w.r.t. σ ∈ Σ) asymptotic compactness in
(H2(Ω) ∩H1

0 (Ω))× L2(Ω)

In this section, we first prove some a priori estimates about the energy inequalities
based on the idea presented in [6, 10, 19]. Then, we establish the uniform (w.r.t.
σ ∈ Σ) asymptotic compactness in E0.

For convenience, we denote by B0 the bounded uniformly (w.r.t. σ ∈ Σ) absorb-
ing set obtained in Theorem 3.7, and without loss of generality, we assume that
γ ≡ 1 from now on. Hereafter, we use the notation

Ew(t) =
1
2

∫
Ω

|wt(t)|2 +
1
2

∫
Ω

|4w(t)|2.

4.1. A priori estimates. The main purpose of this part is to establish (4.14)-
(4.16), which will be used to obtain the uniform (w.r.t. σ ∈ Σ) asymptotic com-
pactness. Based on the technique in [6, 10, 19], we have the following subsequent
procedure.

For any (ui0, v
i
0) ∈ B0, let (ui(t), uit(t)) be the corresponding solution to σi with

respect to initial data (ui0, v
i
0), i = 1, 2, that is, (ui(t), uit(t)) is the solution of the

following equation

utt + g(ut) + ∆2u+ (Γ−
∫

Ω

|∇u|2dx)∆u = σi(x, t),

u|∂Ω =
∂

∂ν
u|∂Ω = 0

(u(0), ut(0)) = (ui0, v
i
0).

(4.1)

Lemma 4.1. Assume that g satisfies (1.2)–(1.3). Then for any fixed T > 0, there
exist a constant CM,T and a function φT = φT ((u1

0, υ
1
0), (u2

0, υ
2
0);σ1, σ2) such that

‖u1(T )− u2(T )‖E0 ≤ CM,T + φT ((u1
0, υ

1
0), (u2

0, υ
2
0);σ1, σ2),

where CM,T and φT depend on T .
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Proof. For convenience, we denote

pi(t) = σi(x, t), t ≥ 0, i = 1, 2,

w(t) = u1(t)− u2(t).

Then w(t) satisfies

wtt + g(u1t)− g(u2t) + ∆2w −
(∫

Ω

|∇u1|2dx∆u1 −
∫

Ω

|∇u2|2dx∆u2

)
+ Γ∆w = p1(t)− p2(t),

w|∂Ω =
∂

∂ν
w|∂Ω = 0,

(w(0), wt(0)) = (u1
0, v

1
0)− (u2

0, v
2
0).

(4.2)

Multiplying (4.2) by wt and integrating over [s, T ]× Ω, we obtain

Ew(T )− Ew(s) +
∫ T

s

∫
Ω

(g(u1t
(τ))− g(u2t

(τ)))wt(τ) dx dτ

=
∫ T

s

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ

+
1
2

Γ
∫

Ω

|∇w(T )|2dx− 1
2

Γ
∫

Ω

|∇w(s)|2dx+
∫ T

s

∫
Ω

(p1 − p2)wt dx dτ,

(4.3)

where 0 ≤ s ≤ T . Then we have∫ T

0

∫
Ω

(g(u1t
(τ))− g(u2t

(τ)))wt(τ) dx dτ

≤ Ew(0) +
1
2

Γ
∫

Ω

|∇w(T )|2dx− 1
2

Γ
∫

Ω

|∇w(0)|2dx

+
∫ T

0

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ

+
∫ T

0

∫
Ω

(p1 − p2)wt dx dτ.

(4.4)

Combining this with Lemma 2.5, we obtain that for any δ > 0,∫ T

0

∫
Ω

|wt(τ)|2 dx dτ

≤ δT meas(Ω) + CδEw(0) +
1
2
CδΓ

∫
Ω

|∇w(T )|2dx

− 1
2
CδΓ

∫
Ω

|∇w(0)|2dx+ Cδ

∫ T

0

∫
Ω

(
‖∇u1(τ)‖2∆u1(τ)

− ‖∇u2(τ)‖2∆u2(τ)
)
wt(τ) dx dτ + Cδ

∫ T

0

∫
Ω

(p1 − p2)wt dx dτ.

(4.5)
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Secondly, multiplying (4.2) by w and integrating over [0, T ]× Ω, we obtain

∫ T

0

∫
Ω

|4w(s)|2 dx ds+
∫

Ω

wt(T )w(T )dx− Γ
∫ T

0

∫
Ω

|∇w(s)|2 dx ds

=
∫ T

0

∫
Ω

|wt(s)|2 dx ds−
∫ T

0

∫
Ω

(g(u1t
(s))− g(u2t

(s)))w(s) dx ds

+
∫

Ω

wt(0)w(0)dx+
∫ T

0

∫
Ω

(
‖∇u1(s)‖2∆u1(s)

− ‖∇u2(s)‖2∆u2(s)
)
w(s) dx ds+

∫ T

0

∫
Ω

(p1 − p2)w dxds.

(4.6)

So from (4.5)-(4.6), we have

∫ T

0

Ew(s)ds

≤ δT meas(Ω) + CδEw(0) +
1
2
CδΓ

∫
Ω

|∇w(T )|2dx− 1
2
CδΓ

∫
Ω

|∇w(0)|2dx

+ Cδ

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))wt(s) dx ds

− 1
2

∫
Ω

wt(T )w(T )dx+
1
2

Γ
∫ T

0

∫
Ω

|∇w(s)|2 dx ds

− 1
2

∫ T

0

∫
Ω

(g(u1t
(s))− g(u2t

(s)))w(s) dx ds+
1
2

∫
Ω

wt(0)w(0)dx

+
1
2

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))w(s) dx ds

+ Cδ

∫ T

0

∫
Ω

(p1 − p2)wt dx ds+
1
2

∫ T

0

∫
Ω

(p1 − p2)w dxds.

(4.7)

Integrating (4.3) over [0,T] with respect to s, we obtain

TEw(T )

≤
∫ T

0

∫ T

s

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ ds

+
∫ T

0

Ew(s)ds+
1
2
TΓ
∫

Ω

|∇w(T )|2dx

− 1
2

Γ
∫ T

0

∫
Ω

|∇w(s)|2 dx ds+
∫ T

0

∫ T

s

∫
Ω

(p1 − p2)wt dx dτ ds.

(4.8)
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Therefore, from (4.7) and (4.8), we have

TEw(T )

≤ δT meas(Ω) + CδEw(0) +
1
2
CδΓ

∫
Ω

|∇w(T )|2dx− 1
2
CδΓ

∫
Ω

|∇w(0)|2dx

+ Cδ

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))wt(s) dx ds

+
1
2
TΓ
∫

Ω

|∇w(T )|2dx− 1
2

∫
Ω

wt(T )w(T )dx+
1
2

∫ T

0

∫
Ω

(p1 − p2)w dxds

− 1
2

∫ T

0

∫
Ω

(g(u1t
(s))− g(u2t

(s)))w(s) dx ds+
1
2

∫
Ω

wt(0)w(0)dx

+
1
2

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))w(s) dx ds

+
∫ T

0

∫ T

s

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ ds

+
∫ T

0

∫ T

s

∫
Ω

(p1 − p2)wt dx dτ ds+ Cδ

∫ T

0

∫
Ω

(p1 − p2)wt dx ds.

(4.9)

Next, we need to study
∫ T

0

∫
Ω

(g(u1t
) − g(u2t

))w dxds. The following estimate
can be derived by using similar arguments as in [6, Chap. 5]. However, for the sake
of completeness we give the proof. From condition (1.3), we have

|g(s)|
q+1

q = |g(s)|1/q · |g(s)| ≤ C(1 + |s|)|g(s)|,

combining this with (1.2), we obtain

|g(s)|
q+1

q ≤

{
C, |s| ≤ 1,
2Cg(s)s, |s| ≥ 1,

(4.10)

where C is a constant which is independent of s. Multiplying (4.1) by uit(t), we
obtain

1
2
d

dt

∫
Ω

(
|uit |2 + |∆ui|2

)
+
∫

Ω

g(uit)uit +
∫

Ω

(Γ− ‖∇ui‖2)∆uiuit =
∫

Ω

piuit ,

which, combined with the existence of bounded uniformly absorbing set, implies

∫ T

0

∫
Ω

g(uit)uit ≤ Cρ,T , (4.11)
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where Cρ,T is a constant which depends on the size of B0 in (H2(Ω)∩H1
0 (Ω))×L2(Ω)

and T . Therefore, from (4.10) and (4.11), we have∣∣ ∫ T

0

∫
Ω

g(uit)w
∣∣

≤
∫ T

0

∫
Ω(|uit |≤1)

|g(uit)w|+
∫ T

0

∫
Ω(|uit |≥1)

|g(uit)w|

≤ C
∫ T

0

∫
Ω(|uit |≤1)

|w|+
∫ T

0

∫
Ω(|uit |≥1)

|g(uit)||w|

≤ C
∫ T

0

∫
Ω(|uit |≤1)

|w|+
(∫ T

0

∫
Ω(|uit |≥1)

|g(uit)|
q+1

q

) q
q+1

×
(∫ T

0

∫
Ω(|uit |≥1)

|w|q+1
) 1

q+1

≤ C
∫ T

0

∫
Ω(|uit |≤1)

|w|+ 2C
(∫ T

0

∫
Ω(|uit |≥1)

g(uit)uit
) q

q+1

×
(∫ T

0

∫
Ω(|uit |≥1)

|w|q+1
) 1

q+1

≤ C
∫ T

0

∫
Ω(|uit |≤1)

|w|+ Cρ,T

(∫ T

0

∫
Ω(|uit |≥1)

|w|q+1
) 1

q+1
.

(4.12)

Combining (4.9) and (4.12), we obtain

TEw(T )

≤ δT meas(Ω) + CδEw(0) +
1
2
CδΓ

∫
Ω

|∇w(T )|2dx− 1
2
CδΓ

∫
Ω

|∇w(0)|2dx

+ Cδ

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))wt(s) dx ds

+
1
2
TΓ
∫

Ω

|∇w(T )|2dx− 1
2

∫
Ω

wt(T )w(T )dx+
1
2

∫ T

0

∫
Ω

(p1 − p2)w dxds

+ C

∫ T

0

∫
Ω

|w| dx ds+ Cρ,T

(∫ T

0

∫
Ω

|w|q+1 dx ds
) 1

q+1
+

1
2

∫
Ω

wt(0)w(0)dx

+
1
2

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))w(s) dx ds

+
∫ T

0

∫ T

s

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ ds

+
∫ T

0

∫ T

s

∫
Ω

(p1 − p2)wt dx dτ ds+ Cδ

∫ T

0

∫
Ω

(p1 − p2)wt dx ds.

(4.13)
Set

CM,T = δT meas(Ω) + CδEw(0) +
1
2
CδΓ

∫
Ω

|∇w(T )|2dx

− 1
2
CδΓ

∫
Ω

|∇w(0)|2dx− 1
2

∫
Ω

wt(T )w(T )dx+
1
2

∫
Ω

wt(0)w(0)dx,
(4.14)
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φδ,T ((u1
0, υ

1
0), (u2

0, υ
2
0);σ1, σ2)

= Cδ

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))wt(s) dx ds

+
1
2

∫ T

0

∫
Ω

(‖∇u1(s)‖2∆u1(s)− ‖∇u2(s)‖2∆u2(s))w(s) dx ds

+
∫ T

0

∫ T

s

∫
Ω

(‖∇u1(τ)‖2∆u1(τ)− ‖∇u2(τ)‖2∆u2(τ))wt(τ) dx dτ ds

+ C

∫ T

0

∫
Ω

|w| dx ds+ Cρ,T

(∫ T

0

∫
Ω

|w|q+1 dx ds
) 1

q+1
+

1
2
TΓ
∫

Ω

|∇w(T )|2dx

+
∫ T

0

∫ T

s

∫
Ω

(p1 − p2)wt dx dτ ds+ Cδ

∫ T

0

∫
Ω

(p1 − p2)wt dx ds

+
1
2

∫ T

0

∫
Ω

(p1 − p2)w dxds.

(4.15)

Then we have

Ew(T ) ≤ CM,T

T
+

1
T
φδ,T ((u1

0, υ
1
0), (u2

0, υ
2
0);σ1, σ2). (4.16)

�

4.2. Uniform asymptotic compactness. In this subsection, we prove the uni-
form (w.r.t. σ ∈ Σ) asymptotic compactness in (H2(Ω) ∩H1

0 (Ω)) × L2(Ω), which
is given in the following theorem.

Theorem 4.2. Assume that g satisfies (1.2)-(1.3). If

p0 ∈ L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)) for some r >

2n
n+ 4

and Σ is defined by (3.4), then the family of processes {Uσ(t, τ)}, σ ∈ Σ corre-
sponding to problem (1.1), is uniformly (w.r.t. σ ∈ Σ) asymptotically compact in
(H2(Ω) ∩H1

0 (Ω))× L2(Ω).

Proof. Since the family of processes {Uσ(t, τ)} σ ∈ Σ has a bounded uniformly
absorbing set and from the Lemma 4.1, for any fixed ε > 0, we can choose first
δ ≤ ε

2 meas(Ω) , and let T so large that

CM,T

T
≤ ε.

Hence, thanks to Theorem 3.4, it is sufficient to prove that φδ,T (·, ·; ·, ·) defined in
(4.15) belongs to contr(B0,Σ) for each fixed T .

From Theorem 3.7, we can deduce that for any fixed T ,

∪σ∈Σ ∪t∈[0,T ] Uσ(t, 0)B0 is bounded in E0, (4.17)

and the bound depends on T .
Let (un, unt

) be the solutions corresponding to initial data (un0 , v
n
0 ) ∈ B0 with

respect to symbol σn ∈ Σ, n = 1, 2, . . . . From (4.17), without loss of generality (at
most by passing subsequence), we assume that

un → u weakly star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), (4.18)
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unt
→ ut weakly star in L∞(0, T ;L2(Ω)), (4.19)

un → u in L2(0, T ;L2(Ω)), (4.20)

un → u in Lq+1(0, T ;Lq+1(Ω)), (4.21)

un(T )→ u(T ) strongly in H1
0 (Ω), (4.22)

for q < n+4
n−4 , where we use the compact embeddings H2 ↪→ H1

0 and H2 ↪→ Lq+1.
Now we deal with each term corresponding to that in (4.15). First, from Propo-

sition 3.5 and (4.21), we can obtain

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(pn(x, s)− pm(x, s))(un(s)− um(s)) dx ds = 0, (4.23)

and from Proposition 3.6 we can get

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(pn(x, s)− pm(x, s))(unt(s)− umt(s)) dx ds = 0, (4.24)

lim
n→∞

lim
m→∞

∫ T

0

∫ T

s

∫
Ω

(pn(x, τ)− pm(x, τ))(unt(τ)− umt(τ)) dx dτ ds = 0. (4.25)

Secondly, from (4.18) and (4.21), we can get that

lim
n→∞

lim
m→∞

‖∇un(T )−∇um(T )‖2 = 0, (4.26)

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

|un(s)− um(s)| dx ds = 0, (4.27)

lim
n→∞

lim
m→∞

(∫ T

0

∫
Ω

|un(s)− um(s)|q+1 dx ds
) 1

q+1
= 0. (4.28)

Since {(un, unt)}∞n=1 is bounded in C(0, T ; (H2(Ω)∩H1
0 (Ω))×L2(Ω)) and the em-

bedding H2 ↪→ C(Ω̄) is compact, by the Arzela theorem {un}∞n=1 is compact in
C(0, T ;C(Ω̄)).

On the other hand, {un}∞n=1 converges weakly star in L∞(0, T ; (H2(Ω)∩H1
0 (Ω))).

Thus {un}∞n=1 strongly converges in C(0, T ;C(Ω̄)) and then we find that∣∣ ∫ T

0

∫
Ω

(‖∇un‖2∆un − ‖∇um‖2∆um)(un − um) dx ds
∣∣

≤ CR,T ‖un − um‖C(0,T ;C(Ω̄)).

(4.29)

From (4.29), we obtain

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(‖∇un‖2∆un − ‖∇um‖2∆um)(un − um) dx ds = 0. (4.30)

Finally, Since (for smooth solutions) we have∫
Ω

‖∇u‖2∆uut dx = −1
4
∂

∂t
‖∇u‖4,

from the above equality, we obtain∫ T

0

∫
Ω

(‖∇un(s)‖2∆un(s)− ‖∇um(s)‖2∆um(s))(unt(s)− umt(s)) dx ds

=
∫ T

0

∫
Ω

‖∇un(s)‖2∆un(s)unt
(s) dx ds+

∫ T

0

∫
Ω

‖∇um(s)‖2∆um(s)umt
(s) dx ds
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−
∫ T

0

∫
Ω

‖∇un(s)‖2∆un(s)umt(s) dx ds

−
∫ T

0

∫
Ω

‖∇um(s)‖2∆um(s)unt(s) dx ds

=
1
4
[
‖∇un(0)‖4 − ‖∇un(T )‖4 + ‖∇um(0)‖4 − ‖∇um(T )‖4

]
−
∫ T

0

∫
Ω

‖∇un(s)‖2∆un(s)umt
(s) dx ds

−
∫ T

0

∫
Ω

‖∇um(s)‖2∆um(s)unt
(s) dx ds,

using (4.18), (4.19) and (4.22), taking first m→∞, then n→∞, we obtain

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(
‖∇un(s)‖2∆un(s)

− ‖∇um(s)‖2∆um(s)
)

(unt
(s)− umt

(s)) dx ds

=
1
2

[‖∇u(0)‖4 − ‖∇u(T )‖4]− 2
∫ T

0

∫
Ω

‖∇u(s)‖2∆u(s)ut(s) dx ds = 0.

(4.31)

Similarly, we have∫ T

s

∫
Ω

(‖∇un(τ)‖2∆un(τ)− ‖∇um(τ)‖2∆um(τ))(unt
(τ)− umt

(τ)) dx dτ

=
1
4
[
‖∇un(s)‖4 − ‖∇un(T )‖4 + ‖∇um(s)‖4 − ‖∇um(T )‖4

]
−
∫ T

s

∫
Ω

‖∇un(τ)‖2∆un(τ)umt
(τ) dx dτ

−
∫ T

s

∫
Ω

‖∇um(τ)‖2∆um(τ)unt
(τ) dx dτ.

At the same time, |
∫ T
s

∫
Ω

(‖∇un(τ)‖2∆un(τ) − ‖∇um(τ)‖2∆um(τ))(unt(τ) −
umt

(τ)) dx dτ | is bounded for each fixed T , by the Lebesgue dominated convergence
theorem we have

lim
n→∞

lim
m→∞

∫ T

0

∫ T

s

∫
Ω

(
‖∇un(τ)‖2∆un(τ)

− ‖∇um(τ)‖2∆um(τ)
)

(unt − umt) dx dτ ds

=
∫ T

0

(
lim
n→∞

lim
m→∞

∫ T

s

∫
Ω

(
‖∇un(τ)‖2∆un(τ)

− ‖∇um(τ)‖2∆um(τ)
)

(unt − umt) dx dτ
)
ds

=
∫ T

0

0ds = 0.

(4.32)

Hence, combining (4.23)-(4.32), we obtain that φδ,T (·, ·; ·, ·) ∈ contr(B0,Σ) imme-
diately. �
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4.3. Existence of a compact uniform attractor.

Theorem 4.3. Assume that g satisfies (1.2)-(1.3). If

p0 ∈ L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)) for some r >

2n
n+ 4

and Σ is defined by (3.4), then the family of processes {Uσ(t, τ)}, σ ∈ Σ corre-
sponding to problem (1.1) has a compact uniform (w.r.t. σ ∈ Σ) attractor AΣ in
(H2(Ω) ∩H1

0 (Ω))× L2(Ω).

Proof. Theorem 3.7 and Theorem 4.2 imply the existence of a compact uniform
attractor immediately. �

Remark 4.4. For the autonomous case of (1.1), that is p(x, t) = p(x), the growth
order of nonlinear damping g is equal to n+4

n−4 if n > 4. As for the non-autonomous
system, the constant Cρ,T in (4.11) depends on T , which is different from the
autonomous case, and to some extent, (4.11) requires that the growth order of g is
strictly less than n+4

n−4 with n > 4.

Remark 4.5. The technique (scheme) used in this paper is also applicable to an-
other non-autonomous plate models, e.g., the model of non-autonomous extensible
beam with nonlinear damping and source terms.
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