Electron. J. Differential Equations, Vol. 2017 (2017), No. 276, pp. 1-17.

Nonexistence of global solutions for fractional temporal Schrodinger equations and systems

Ibtehal Azman, Mohamed Jleli, Mokhtar Kirane, Bessem Samet

Abstract:
We, first, consider the nonlinear Schrodinger equation
$$
i^\alpha {}_0^C D_t^\alpha u+\Delta u= \lambda |u|^p+\mu a(x)\cdot\nabla |u|^q,
\quad t>0,\; x\in \mathbb{R}^N,
$$
where $0<\alpha<1$, $i^\alpha$ is the principal value of $i^\alpha$, ${}_0^C D_t^\alpha $ is the Caputo fractional derivative of order $\alpha$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $u(t,x)$ is a complex-valued function, and $a: \mathbb{R}^N\to \mathbb{R}^N$ is a given vector function. We provide sufficient conditions for the nonexistence of global weak solution under suitable initial data. Next, we extend our study to the system of nonlinear coupled equations
$$\displaylines{
i^\alpha {}_0^C D_t^\alpha u+\Delta u
= \lambda |v|^p+\mu a(x)\cdot\nabla |v|^q,
\quad t>0,\;x\in \mathbb{R}^N,\cr
i^\beta {}_0^C D_t^\beta v+\Delta v
= \lambda |u|^\kappa+\mu b(x)\cdot\nabla |u|^\sigma,
\quad t>0,\; x\in \mathbb{R}^N,
}$$
where $0<\beta\leq \alpha<1$, $\lambda\in \mathbb{C}\backslash\{0\}$, $\mu\in \mathbb{C}$, $p>q>1$, $\kappa>\sigma>1$, and $a,b: \mathbb{R}^N\to \mathbb{R}^N$ are two given vector functions. Our approach is based on the test function method.

Submitted October 14, 2017. Published November 8, 2017.
Math Subject Classifications: 4735, 26A33.
Key Words: Fractional temporal Schrodinger equation; nonexistence; global weak solution.

Show me the PDF file (286 KB), TEX file for this article.

  Ibtehal Azman
Department of Mathematics
King Saud University, P.O. Box 2455
Riyadh, 11451, Saudi Arabia
email: ibtehalazman@yahoo.com
Mohamed Jleli
Department of Mathematics
King Saud University, P.O. Box 2455,
Riyadh, 11451, Saudi Arabia
email: jleli@ksu.edu.sa
Mokhtar Kirane
LaSIE, Faculté des Sciences
Pole Sciences et Technologies, Université de La Rochelle
Avenue M. Crepeau, 17042 La Rochelle Cedex, France
email: mkirane@univ-lr.fr
Bessem Samet
Department of Mathematics
King Saud University, P.O. Box 2455,
Riyadh, 11451, Saudi Arabia
email: bsamet@ksu.edu.sa

Return to the EJDE web page