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Abstract. We prove that the non-simple thermoelastic model, with Catta-
neo’s or Gurtin-Pipkin’s law, is indifferent to the presence of the inertial term.

That is, considering or not the irrotational term, there is a lack of exponential

stability. Additionally, we show that the semigroup is polynomially stable and
that the rate of decay of the solution (both optimal) are the same with or

without the rotational term.

1. Introduction

The Euler Bernoulli thermoelastic model is

ρutt − γuxxtt + αuxxxx − βθxx = 0, in ]0, `[×R+ , (1.1)

cθt + qx + βuxxt = 0, in ]0, `[×R+ . (1.2)

In Graselli’s article [7] is proved that the thermoelastic plate (γ = 0) with heat
flux given by the theory of Gurtin and Pipkin, q = −

∫∞
0
g(s)θx(t − s)ds, is not

exponential stable, but when the irrotational term (γ > 0) is inserted, the model
becomes exponentially stable. Another case of the same phenomenon occurs when
the flux is defined by Cattaneo’s law: τqt + q +Kθx = 0. System (1.1)–(1.2) with
γ = 0, does not have exponential stability, but when γ is positive, the resulting
model is exponentially stable, see [8].

Here we consider the same problem to non-simple thermoelastic model, which
mathematically is analogous to model (1.1)–(1.2). The difference is due to the
coupling. Whereas in model (1.1)–(1.2) the coupling terms are of second order, in
non-simple thermoelastic model, they are of first order. The non-simple thermoe-
lasticity with second sound is

ρutt = Tx − Sxx, T = µux + βθ, S = αuxx. (1.3)

The balance of the energy is give by

ρT0Θt = qx, ρΘ = −βux + cθ, (1.4)

where q is the heat flux. Therefore the system of field equations are

ρutt − γuxxtt − µuxx + αuxxxx − βθx = 0, in ]0, `[×R+ , (1.5)
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cθt + qx − βuxt = 0, in ]0, `[×R+ . (1.6)

Here we consider both, the second sound constitutive equation

τqt + q + κθx = 0, in ]0, `[×R+ (1.7)

and the Gurtin-Pipkin’s law [10]

q =
∫ ∞

0

g(s)θx(t− s) ds. (1.8)

The memory kernel g : R+ → R is assumed to be positive, such that |g(s)| ≤ Ce−γs.
For both models we consider the following boundary and initial conditions

u(0, t) = uxx(0, t) = u(`, t) = uxx(`, t) = 0, θx(0) = θx(`) = 0, (1.9)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x) . (1.10)

When τ = 0 in (1.7) (Fourier law) it was proved in [9], that the system is expo-
nentially stable. The main result of this paper is that the non-simple thermoelastic
model (1.5)–(1.6) with Cattaneo’s law (1.7) or Gurtin and Pipkin’s law (1.8) are
not exponentially stable for γ ≥ 0. Still, we prove that the inertial term does not
improve uniform stability at all. That is, the decay rate is equal to t−1/2 for γ ≥ 0.

2. Semigroup approach

The semigroup approach to Gurtin and Pipkin’s law follows the same ideas as
in [10]. We introduce the summed past history of θ (cf. [2]), defined as

η(s, t) =
∫ s

0

θ(t− σ) dσ, (t, s) ∈ [0,∞[×R+

Therefore integrating by parts, q can be rewritten as

q =
∫ ∞

0

κ(s)ηx(t− s) ds, κ(s) = −g′(s) (2.1)

with η satisfying the following conditions

ηt + ηs = θ, in ]0, `[, (t, s) ∈ [0,∞[×R+ ,

η(0) = 0, η(s, 0) = η0(s).

Therefore the corresponding resolvent model for γ ≥ 0 is

iλu− v = f1 , (2.2)

iλρv − iλγvxx − µuxx + αuxxxx − βθx = ρf2 + γf2,xx , (2.3)

iλcθ + qx − βvx = f3 . (2.4)

In the case of Cattaneo’s law, we additionally have

iλτq + q + κθx = f4 . (2.5)

For Gurtin and Pipkin law (2.1) we have

iλη + ηs − θ = f4 . (2.6)

For γ > 0, f2 ∈ H1
0 , where H1

0 = H1
0 (0, `), L2 = L2(0, `) and so on. The space

for η is M1 = L∞κ (R+;H1
∗ ), where

H1
∗ = H1 ∩ L2

∗, L2
∗ =

{
f ∈ L2(0, `) :

∫ `

0

f(s) ds = 0
}
.

The main tool to show the asymptotic properties is the next theorem.
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Theorem 2.1. Let eAt be contraction semigroup. Then the exponential [5] and
polynomial characterization [1] are

‖eAt‖ ≤ Ce−γt ⇔ iR ⊂ %(A) and ‖(iλI −A)−1‖ ≤ C, ∀λ ∈ R , (2.7)

‖eAtA−1‖ ≤ C

t1/α
⇔ iR ⊂ %(A) and ‖(iλI −A)−1‖ ≤ C|λ|α, ∀λ ∈ R . (2.8)

Let H1
0, H2

0 be the phase space to Cattaneo and Gurtin-Pipkin law respectively
for γ = 0, where

Hi0 = H2 ∩H1
0 × L2 × L2

∗ × Vi, i = 1, 2, V1 = L2(0, `), V2 =M1.

The corresponding domain of the infinitesimal generator A for γ = 0 is

D(A0,i) = H4 ∩H1
0 ×H2 ∩H1

0 ×H1
∗ ×Wi ,

where

W1 = H1
0 , W2 =

{
η ∈M1 : ηs ∈M1, η(0) = 0,

∫ ∞
0

κ(s)ηx ds ∈ H1
0

}
Instead when γ > 0, the phase space is of the form

Hiγ = H2 ∩H1
0 (0, `)×H1

0 (0, `)× L2
∗(0, `)× Vi

The domain of the infinitesimal generator A for γ > 0 is given by

D(Aγ,i) = H3 ∩H1
0 ×H2 ∩H1

0 ×H1
∗ ×Wi

and the corresponding norm we use to get a contraction semigroup is

‖Φ‖2H1
γ

=
∫ `

0

ρ|v|2 + γ|vxx|2 + µ|ux|2 + α|uxx|2 + c|θ|2 +
τ

κ
|q|2 dx ,

‖Φ‖2H2
γ

=
∫ `

0

ρ|v|2 + γ|vxx|2 + µ|ux|2 + α|uxx|2 + c|θ|2 +
∫ ∞

0

κ|ηx|2 ds dx

for any Φt = (u, v, θ, q) ∈ H1
γ and Φt = (u, v, θ, η) ∈ H2

γ . It is not difficult to see
that

Re(Aγ,1Φ,Φ)H = − 1
κ

∫ `

0

|q|2 dx, Re(Aγ,2Φ,Φ)H = −
∫ `

0

∫ ∞
0

κ′(s)|ηx|2 ds dx.

Therefore the above inequalities imply∫ `

0

|q|2 dx = κ(Φ, F )H1
γ
,

∫ `

0

∫ ∞
0

κ′(s)|ηx|2 ds dx = κ(Φ, F )H2
γ
. (2.9)

3. Asymptotic behaviour

In this section we prove the lack of exponential stability and the polynomial
decay to zero.

Theorem 3.1. The semigroups S1 = eA
c
γt and S2 = eA

p
γt are not exponentially

stable for γ ≥ 0. That is, for γ ≥ 0 there exists sequences λν ∈ R such that

‖(Iiλν −Aγ,1)−1‖ ≥ C|λν |2, ‖(Iiλν −Aγ,2)−1‖ ≥ C|λν |2
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Proof. Let us take ` = π, f1 = f3 = f4 = 0 and f2 = sin(νx) when γ = 0 and
f2 = 1/ν sin(νx) to γ > 0. Because of the boundary conditions, we can assume
that the solution is

u = A sin(νx), v = iλA sin(νx), θ = B cos(νx), q = C sin(νx)

Note that A = Aν to simplify, we omit this dependence. To find the solution we
solve system (2.2)–(2.5) for F = (f1, . . . , f4):

p(λ)A+ βνB = m,

−iλβνA+ icλB + νC = 0 ,

−κνB + (iλτ + 1)C = 0 ,

where p(λ) = −λ2ρ + γν2λ2 + µν2 + αν4 and m = ρ or m = ρ/ν + γν if γ = 0 or
γ > 0 respectively. Solving for A we obtain

A =
[−λ2cτ + iλc+ κν2]m

p(λ)ν2 − (τλ2 − iλ)(cp(λ)− β2ν2)︸ ︷︷ ︸
:=∆

(3.1)

Now, for γ = 0 we take λ such that cp(λ)− β2ν2 = ρβ2

cατ , therefore we have

−cρλ2 + cµν2 + cαν4 − β2ν2 =
ρβ2

cατ
⇒ λ2 =

cµ− β2

cρ
ν2 +

α

ρ
ν4 − β2

c2ατ
.

Note that λ ≈
√

α
ρ ν

2 for large values of ν. Substitution of λ into the definition of

∆ yields

∆ =
β2

c
ν4 +

ρβ

c2ατ
ν2 − (τλ2 + iλ)

ρβ2

cατ
≈ c0ν2 +

σβ2

cα
.

Therefore we have that A ≈ αcτν4

c0ν2 = c1ν
2, where c1 does not depend on ν. There-

fore

‖Φ‖2H1
0
≥
∫ π

0

α|uxx|2 dx = αA2ν4

∫ π

0

| sin(νx)|2 dx =
1
2
αc21ν

8 ≈ α0|λ|4 →∞.

For γ > 0 we choose p(λ) = ξν2 hence λ is given by

(ρ+ γν2)λ2 = µν2 + αν4 − ξν2 ⇔ λ2 = λ2
ν ≈

α

γ
ν2

Taking ξ such that (γ − αcτ)ξ = −ταβ2 we have

∆ = p(λ)(ν2 − cτλ2) + τλ2β2ν2 + iλ(cp(λ)− β2ν2)

≈ ξ(1− αcτ

γ
)ν4 +

ταβ2

γ
ν4 + iλ(cξ − β2)ν2 ≈ c2ν3.

Substitution on (3.1) we obtain A ≈ ξ0, that is A is asymptotically equals to a
constant for ν large. Recalling the definition of λ we obtain

‖Φ‖2H1
γ
≥
∫ π

0

α|uxx|2 dx = αA2ν4

∫ π

0

| sin(νx)|2 dx =
1
2
αξ2

0ν
4 ≈ α0|λ|4 →∞.

So the result follow in case of Cattaneo law. Let us consider the Gurtin-Pipkin law.
We take fi, i = 1, . . . , 4 as above and κ(t) = Ke−σt. Therefore, the solution is of
the form

u = A sin(νx), v = iλA sin(νx), θ = B cos(νx), η = ϕ cos(νx)
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Solving (2.6) we obtain

ϕ =
B

iλ
(1− e−iλs) ⇒

∫ ∞
0

κ(s)ηxx(t− s) ds =
KBν2

σ(iλ+ σ)
cos(νx)

To find the exact solutions we solve the system

p(λ)A+ βνB = m

−βνA+ (c+
Kν2

σ(−λ2 + σiλ)
)B = 0

so we have

A =
[cσ(−λ2 + σiλ) +Kν2]m

p(λ)Kν2 + (cp+ β2ν2)σ(−λ2 + σiλ)
Note that A have the same estructure of (3.1), therefore using the same arguments
we obtain that

‖Φ‖2H2
γ
≥ α0|λν |4 →∞.

Since Φ = (Iλν−Aγ,i)−1Fν , them item (2.8) of Theorem 2.1 implies the result. �

Now we are able to show the polynomial rate of decay

Theorem 3.2. The optimal rate of decay of the semigroup Si(t) = eAγ,it is given
by

‖eAγ,itΦ0‖ ≤
C√
t
‖Aγ,iΦ0‖Hiγ , γ ≥ 0, i = 1, 2.

Proof. Here we use relation (2.8) of Theorem 2.1. Since D(Aγ,i) has compact
embedding over the phase space Hiγ , then the corresponding resolvent operators
are compact. It is not difficult to see that 0 ∈ ρ(Aγ,i). Therefore to show that
iR ⊂ ρ(Aγ,i) it is enough to prove that there is no imaginary eigenvalues. Suppose
that there exists W 6= 0 such that iλW − Aγ,iW = 0. Using (2.9) we conclude
that flux q = 0, from equations (2.5) or (2.6) we conclude that θ = 0. Using that
q = 0 and θ = 0 in (2.4) we conclude that v = 0, therefore W = 0. This is the
contradiction that implies that iR ⊂ ρ(Aγ,i). Next we prove that the resolvent
operator is bounded. Multiplying (2.4) by

∫ x
0
θ ds we obtain

κ

∫ `

0

|θ|2 dx

= −τ
c

∫ `

0

q

∫ x

0

ciλθ ds dx+
∫ `

0

q

∫ x

0

θ ds dx−
∫ `

0

f4

∫ x

0

θ ds dx

= −τ
c

∫ `

0

q(q − βv) dx+
∫ `

0

q

∫ x

0

θ ds dx+R

≤ C‖Φ‖H‖F‖H + C‖v‖‖q‖,

(3.2)

where R is such that |R| ≤ C‖Φ‖H‖F‖H. Using (2.6) we conclude that∫ `

0

|θx|2 dx ≤ c(1 + |λ|2)
∫ `

0

|q|2 dx+ c

∫ `

0

|f4|2 dx.

Therefore ∫ `

0

|θx|2 dx ≤ c|λ|2‖Φ‖‖F‖|+ ‖F‖2. (3.3)
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Multiplying (1.7) by
∫ x

0
v dx we have

β

∫ `

0

|v|2 dx = c

∫ `

0

cωxx

∫ x

0

ciλv ds dx+
∫ `

0

qv dx−
∫ `

0

f3

∫ x

0

v ds dx

= cµ

∫ `

0

θux dx− cα
∫ `

0

θxuxx dx+ cβ

∫ `

0

|θ|2 dx+R ,

where ω is the solution of ωxx = θ, ωx(0) = ωx(`) = 0. Using (3.3) we obtain

β

∫ `

0

|v|2 dx ≤ Cε|λ|2‖Φ‖H‖F‖H + ε

∫ `

0

|uxx|2 dx (3.4)

for λ large. Multiplying (1.4) by u we obtain∫ `

0

α|uxx|2 dx+
∫ `

0

µ|ux|2 dx =
∫ `

0

ρ|v|2 dx+ γ

∫ `

0

ρ|vx|2 dx−
∫ `

0

βθux dx+R .

Therefore, using (3.4) we obtain (with γ = 0)∫ `

0

α|uxx|2 dx+
∫ `

0

µ|ux|2 dx ≤ C‖Φ‖H‖F‖H (3.5)

Finally, summing inequalities (3.2), (3.4), (3.5) we obtain

‖Φ‖H ≤ C|λ|2‖F‖H.
So our conclusion follows for Cattaneo’s law with γ = 0. Now let us consider γ > 0.
Multiplying (2.4) by qx we have∫ `

0

|qx|2 dx = iλc

∫ `

0

θqx dx− β
∫ `

0

vxxq dx+
∫ `

0

f3qx dx .

Using (1.4) we obtain∫ `

0

|qx|2 dx ≤ C|λ|2
∫ `

0

|θ|2 dx+ Cε|λ|2‖U‖‖F‖+ ε

∫ `

0

|uxx|2 dx+ C‖F‖2.

On the other hand, multiplying (1.7) by vx we have

β

∫ `

0

|vx|2 dx = iλc

∫ `

0

θvx dx+
∫ `

0

qxvx dx+R .

Therefore

β

∫ `

0

|vx|2 dx ≤ C|λ|2
∫ `

0

|θ|2 dx+ C

∫ `

0

|qx|2 dx+R .

Using (2.3) with γ > 0 we obtain

|λ|‖v‖L2 ≤ C‖uxx‖+ C‖θ‖−1 + C‖F‖ ⇒ |λ|‖v‖L2 ≤ C‖U‖+ C‖F‖ .
The above inequality and (3.2) imply

C|λ|2
∫ `

0

|θ|2 dx ≤ Cε|λ|2‖U‖‖F‖+ C‖F‖2 + ε‖U‖2 .

So we have
‖U‖2 ≤ Cε|λ|2‖U‖‖F‖+ C‖F‖2 + ε‖U‖2 .

Therefore our conclusion follows. Finally, for Gurtin-Pipkin’s model, inequality
(2.9) implies ∫ `

0

|q|2 dx ≤
∫ ∞

0

κ ds

∫ `

0

κ|ηx|2 dx ≤ C‖Φ‖H‖F‖H . (3.6)
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Multiplying (2.4) by
∫∞

0
κη ds and using (2.5), we obtain∫ ∞

0

κ ds

∫ `

0

|θ|2 dx ≤ C‖Φ‖H‖F‖H + C‖η‖M1‖v‖ .

Differentiating (2.6) with respect to x and multiplying by κθx and using (2.9) we
obtain ∫ ∞

0

κ ds

∫ `

0

|θx|2 dx ≤ C|λ|2‖Φ‖H‖F‖H + C‖F‖2H .

Therefore, to estimate u and v we follows same above reasoning, so our conclusion
follows. Finally, the optimality follows from Theorem 2.1 and Theorem 3.1. In fact,
let us suppose that the rate of decay can be improved, for example as t−1/(2−ε).
Then relation (2.8) of Theorem 2.1 implies that

‖(iλI −Aγ,i)−1‖ ≤ C|λ|2−ε, ∀λ ∈ R.
This is a contradiction to Theorem 3.1. Hence the rate can not be improved. The
proof is complete. �
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