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EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS ON
EXTERIOR DOMAINS
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Abstract. In this article we prove the existence of an infinite number of radial
solutions of ∆u+K(r)f(u) = 0, one with exactly n zeros for each nonnegative

integer n on the exterior of the ball of radius R > 0, BR, centered at the origin

in RN with u = 0 on ∂BR and limr→∞ u(r) = 0 where N > 2, f is odd with
f < 0 on (0, β), f > 0 on (β,∞), f(u) ∼ up with 0 < p < 1 for large u and

K(r) ∼ r−α with 0 < α < 2 for large r.

1. Introduction

In this article we study radial solutions of

∆u+K(r)f(u) = 0 in RN\BR, (1.1)

u = 0 on ∂BR, (1.2)

u→ 0 as |x| → ∞ (1.3)

where BR is the ball of radius R > 0 centered at the origin in RN and K(r) > 0.
We assume:

(H1) f is odd and locally Lipschitz, f < 0 on (0, β), f > 0 on (β,∞), f ′(β) > 0,
and f ′(0) < 0.

(H2) there exists p with 0 < p < 1 such that f(u) = |u|p−1u + g(u) where
limu→∞

|g(u)|
|u|p = 0.

We let F (u) =
∫ u
0
f(s) ds. Since f is odd it follows that F is even and from (H1) it

follows that F is bounded below by −F0 < 0, F has a unique positive zero, γ, with
0 < β < γ, and

(H3) −F0 < F < 0 on (0, γ), F > 0 on (γ,∞).
Interest in the topic for this paper comes from recent papers [5, 6, 15, 16, 18]

about solutions of differential equations on exterior domains. When f grows su-
perlinearly at infinity - i.e. limu→∞

f(u)
u = ∞, Ω = RN , and K(r) ≡ 1 then the

problem (1.1), (1.3) has been extensively studied [1, 2, 3, 7, 8, 13, 17, 19, 20]. In
[11, 12] equations (1.1)-(1.3) were studied with K(r) ∼ r−α, f superlinear, and
Ω = RN\BR with R > 0 with various values for α. In those papers we proved
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existence of an infinite number of solutions - one with exactly n zeros for each
nonnegative integer n such that u→ 0 as |x| → ∞ for all R > 0. In [9] we studied
(1.1)-(1.3) with K(r) ∼ r−α, f bounded, and Ω = RN\BR.

In this article we consider the case where f grows sublinearly at infinity - i.e.
limu→∞

f(u)
up = c0 > 0 with 0 < p < 1 and K(r) ∼ r−α with 0 < α < 2. In earlier

papers [10, 14] the case where f is sublinear and α > N−p(N−2) was investigated.
Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) =

u(|x|) = u(r) where x ∈ RN and r = |x|=
√
x2

1 + · · ·+ x2
N so that u solves

u′′(r) +
N − 1
r

u′(r) +K(r)f(u(r)) = 0 on (R,∞), where R > 0, (1.4)

u(R) = 0, u′(R) = b ∈ R. (1.5)

We will also assume that there exist constants k1 > 0, k2 > 0, and α with
0 < α < 2 such that

(H4) k1r
−α ≤ K(r) ≤ k2r

−α on [R,∞).
(H5) K is differentiable, on [R,∞), limr→∞

rK′

K = −α where 0 < α < 2, and
rK′

K + 2(N − 1) > 0 on [R,∞).

Note that (H5) implies r2(N−1)K(r) is increasing.
In this paper we prove the following result.

Theorem 1.1. Let N > 2, 0 < p < 1, and 0 < α < 2. Assuming (H1)–(H5) then
given a nonnegative integer n then there exists a solution of (1.4)-(1.5) with n zeros
on (R,∞) and limr→∞ u(r) = 0.

It is interesting to compare this theorem with the case α > 2. When α > 2 and R
is sufficiently large then it was shown in [10, 14] that there are no solutions of (1.1)-
(1.3) with limr→∞ u(r) = 0. On the other hand, it was also shown in [10, 14] that if
R > 0 is sufficiently small then solutions of (1.1)-(1.3) exist for α > N − p(N − 2).
We note in Theorem 1.1 that existence of solutions is established for all R > 0. Also
to the best of our knowledge existence of solutions of (1.1)-(1.3) is still unknown
when 2 < α < N − p(N − 2), 0 < p < 1, and R > 0 sufficiently small.

2. Preliminaries

From the standard existence-uniqueness theorem for ordinary differential equa-
tions [4] it follows there is a unique solution of (1.4)-(1.5) on [R,R + ε) for some
ε > 0. We then define

E =
1
2
u′2

K
+ F (u). (2.1)

Using (H5) we see that

E′ = − u′2

2rK

(
2(N − 1) +

rK ′

K

)
≤ 0 for 0 < α < 2(N − 1). (2.2)

Thus E is nonincreasing. Hence it follows that

1
2
u′2

K
+ F (u) = E(r) ≤ E(R) =

1
2

b2

K(R)
for r ≥ R (2.3)

and so we see from (H2)–(H4) that u and u′ are uniformly bounded wherever they
are defined from which it follows that the solution of (1.4)-(1.5) is defined on [R,∞).
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Lemma 2.1. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. If limr→∞ u(r) = L then f(L) = 0.

Proof. Multiplying (1.4) by rN−1 and integrating on (r0, r) where r0 > R gives

rN−1u′ = rN−1
0 u′(r0)−

∫ r

r0

tN−1Kf(u) dt.

Dividing by rNK gives

u′

rK
=
rN−1
0 u′(r0)
rNK

−
∫ r
r0
tN−1Kf(u) dt

rNK
. (2.4)

Using (H4) and that 0 < α < 2 < N then rNK ≥ k1r
N−α → ∞ as r → ∞.

Also if f(L) 6= 0 and r0, r are sufficiently large then it follows from (H4) that
|
∫ r
r0
tN−1Kf(u) dt| ≥ |f(L)|k1

2(N−α) (rN−α− rN−α0 )→∞ as r →∞ and so by L’Hôpital’s
rule and (2.4) we see

lim
r→∞

u′

rK
= − lim

r→∞

∫ r
r0
tN−1Kf(u) dt

rNK
= − lim

r→∞

f(u)
N + rK′

K

= − f(L)
N − α

. (2.5)

Thus by (H4) and (2.5) there exists an r0 > R such that

|u′| ≥ |f(L)|k1

2(N − α)
r1−α > 0 for r > r0. (2.6)

Integrating (2.6) on (r0, r) then gives

|u(r)− u(r0)| ≥ |f(L)|k1

2(N − α)(2− α)
(r2−α − r2−α0 ). (2.7)

Since 0 < α < 2 we see the right-hand side of (2.7) goes to +∞ but the left-hand
side goes to |L− u(r0)| - a contradiction. Thus it must be that f(L) = 0. �

Lemma 2.2. Let u satisfy (1.4)-(1.5) with b > 0 and suppose (H1)–(H5) hold. Let
N > 2, 0 < p < 1, and 0 < α < 2. Let 0 < ε < β. Then there exists tε,b > R such
that u(tε,b) = β − ε and u′ > 0 on [R, tε,b].

Proof. From (1.5) and since b > 0 by assumption we see that u is initially increasing
and positive. Now if u has a first critical point, M , with u′ > 0 on [R,M) then
u′(M) = 0 and u′′(M) ≤ 0 from which it follows that f(u(M)) ≥ 0. In addition,
by uniqueness of solutions of initial value problems it follows that u′′(M) < 0 and
so f(u(M)) > 0 and thus u(M) > β. Since u(R) = 0 the lemma then follows in
this case by the intermediate value theorem. Otherwise suppose the lemma does
not hold. Then u′ > 0 and 0 < u < β − ε for all r > R for some ε > 0 and so
by (H1) there exists a constant ε1 > 0 and r0 > R such that f(u) ≤ −ε1 < 0 for
r > r0 > R. Next multiplying (1.4) by rN−1, integrating on (r0, r), and using (H4)
gives

−rN−1u′ = −rN−1
0 u′(r0) +

∫ r

r0

tN−1Kf(u) dt

≤ −rN−1
0 u′(r0)− ε1k1

N − α
(rN−α − rN−α0 ).

Thus for some constant C1,

u′ ≥ C1r
1−N +

ε1k1

N − α
r1−α. (2.8)
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Integrating on (r0, r) gives:

u(r) ≥ u(r0) +
C1

2−N
(r2−N − r2−N0 ) +

ε1k1

(N − α)(2− α)
(r2−α − r2−α0 ). (2.9)

Now the left-hand side of (2.9) is bounded above by β but the right-hand side goes
to +∞ as r → ∞ since 0 < α < 2 < N - a contradiction. Hence the lemma
holds. �

Lemma 2.3. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then there exists a tb > R such that u(tb) = β and
u′ > 0 on [R, tb].

Proof. We rewrite (1.4) as

u′′ +
N − 1
r

u′ +K(r)
f(u)
u− β

(u− β) = 0

and then make the change of variables

u− β = r
1−N

2 v. (2.10)

Thus v satisfies

v′′ +
(
K(r)

f(u)
u− β

− (N − 1)(N − 3)
4r2

)
v = 0.

Suppose now that the lemma does not hold. Then by Lemma 2.2 we see for some
sufficiently small ε > 0 we have u′ > 0, β − ε < u < β, and f(u)

u−β > f ′(β)
2 (by

(H1)) for r > tε,b. Also for some r0 > R sufficiently large then by (H4) and since
0 < α < 2,

K(r)
f(u)
u− β

− (N − 1)(N − 3)
4r2

≥ k1f
′(β)

2rα
− (N − 1)(N − 3)

4r2
≥ 1
r2

for r > r0.

Next we consider a nontrivial solution w of

w′′ +
1
r2
w = 0 for r > r0.

It is straightforward to show w = C2e
r/2 sin

(√
3

2 ln(r) + C3

)
for constants C2 6= 0

and C3. Hence w has an infinite number of zeros on (r0,∞). It follows by the
Sturm comparison theorem [4] that between any two zeros of w then v must have a
zero and from (2.10) we see that u must equal β. Hence there exists a smallest value
of r, denoted tb, such that u(tb) = β and 0 < u < β on (R, tb). Thus u′(tb) ≥ 0 and
by uniqueness of solutions of initial value problems u′(tb) > 0. Also from Lemma
2.2 we have u′ > 0 on [R, tε,b] for all ε > 0 and since u′(tb) > 0 it follows that u′ > 0
on [R, tb]. This completes the proof. �

Lemma 2.4. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then limb→0+ tb =∞.

Proof. First we rewrite (1.4) as

(rN−1u′)′ = −rN−1Kf(u). (2.11)

From (H1) we have

there exists an ε2 > 0 such that −f(u) ≤ ε2u on [0, β/2]. (2.12)
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Next we define tb0 < tb to be the smallest value of t > 0 such that u(tb0) = β
2 .

The existence of tb0 follows from Lemma 2.3, since u(R) = 0, and the intermediate
value theorem. Combining (2.12) with (H4) gives

− rN−1Kf(u) ≤ ε2k2r
N−1−αu on [R, tb0 ]. (2.13)

Integrating (2.11) on [R, tb0 ], using (2.13) and that u is increasing on [R, tb0 ] (by
Lemma 2.3) gives

rN−1u′ ≤ RN−1b+
∫ r

R

ε2k2t
N−1−αu(t) dt

≤ RN−1b+ ε2k2u(r)
∫ r

R

tN−1−α dt

≤ RN−1b+
ε2k2

N − α
rN−αu.

(2.14)

Rewriting this inequality gives

u′ − ε2k2

N − α
r1−αu ≤ RN−1br1−N . (2.15)

Now let ε3 = ε2k2
(2−α)(N−α) > 0 and denote

µ(r) = e−ε3(r
2−α−R2−α) ≤ 1 for R ≤ r ≤ tb0 . (2.16)

Multiplying (2.15) by µ(r), using (2.16), and integrating on [R, r] ⊂ [R, tb0 ] gives

u ≤ RN−1b

N − 2
(R2−N − r2−N )eε3(r

2−α−R2−α). (2.17)

Now evaluating (2.17) at tb0 gives

β

2
≤ RN−1b

N − 2
(R2−N − t2−Nb0

)eε3(t
2−α
b0
−R2−α). (2.18)

Since 0 < α < 2 it follows from (2.18) that limb→0+ tb0 = ∞ and since tb0 < tb it
follows that

lim
b→0+

tb =∞.

This completes the proof. �

Lemma 2.5. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then u has a local maximum, Mb, and u′ > 0 on
[R,Mb).

Proof. From Lemma 2.3 we know u(tb) = β and u′(tb) > 0 so if the lemma does not
hold then it follows from Lemma 2.3 that u′ > 0 for r ≥ R. Since u is bounded by
(2.3) then it follows from (H2) and (H3) that there exists an L such that u→ L > β
with L finite. We see then by Lemma 2.1 that f(L) = 0 and so (H1) implies |L| ≤ β
contradicting that L > β. Thus u has a local maximum and so there is a smallest
value of t, denoted Mb, such that u′(Mb) = 0 and u′ > 0 on [R,Mb). This completes
the proof. �

Lemma 2.6. Let u satisfy (1.4)-(1.5) and suppose [(H1)–(H5)] hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then u(r) > 0 if b > 0 is sufficiently small.
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Proof. We use a similar argument as in [12]. First, if u′ > 0 for r ≥ R then u > 0 for
all r > R and so we are done in this case. Thus we suppose that u has a first critical
point Mb. Then u′(Mb) = 0, u′′(Mb) ≤ 0, and u′ > 0 on [R,Mb). By uniqueness of
solutions of initial value problems it follows that u′′(Mb) < 0 and thus Mb is a local
maximum. Now if 0 < u(Mb) < γ then it follows that E(Mb) = F (u(Mb)) < 0 (by
(H3)). Since E is nonincreasing by (2.2) it follows that u cannot be zero for r > Mb

for at such a zero, zb, of u we would have 0 ≤ 1
2
u′2(zb)
K(zb)

= E(zb) ≤ E(Mb) < 0
a contradiction. So we suppose now that u(Mb) ≥ γ. Then there exists tb1 with
tb < tb1 < Mb so that u(tb1) = β+γ

2 and u′ > 0 on [R,Mb).
Next we have the following identity which follows from (1.4) and (2.2),

(r2(N−1)KE)′ = (r2(N−1)K)′F (u). (2.19)

Integrating this on [R, r] gives

r2(N−1)KE =
1
2
R2(N−1)b2 +

∫ r

R

(t2(N−1)K)′F (u) dt. (2.20)

By (H3) we have F (u) ≤ 0 on [R, tb] and by (H5) we have (r2(N−1)K)′ > 0 so for
R < tb < r we have∫ r

R

(t2(N−1)K)′F (u) dt ≤
∫ r

tb

(t2(N−1)K)′F (u) dt. (2.21)

Next on [β, β+γ
2 ] it follows that there exists an ε4 > 0 such that F (u) ≤ −ε4 < 0.

Also from (H5) we see there is a k0 > 0 such that

2(N − 1) +
rK ′

K
≥ k0 for r ≥ R. (2.22)

Then it follows from (2.22) and (H4) that

(t2(N−1)K)′ = t2N−3K[2(N − 1) +
rK ′

K
] ≥ k0k1t

2N−3−α for t ≥ R. (2.23)

Thus from (2.20)-(2.23) we see

t
2(N−1)
b1

K(tb1)E(tb1) ≤ 1
2
R2(N−1)b2 − ε4k0k1

2N − 2− α
[t2N−2−α
b1

− t2N−2−α
b ]. (2.24)

Next solving (2.3) for u′, using (H4), and integrating on [tb, tb1 ] where u′ > 0 gives∫ β+γ
2

β

dt√
b2

K(R) − 2F (t)
=
∫ tb1

tb

u′(r) dr√
b2

K(R) − 2F (u(r))
≤
∫ tb1

tb

√
K dr

=
√
k2

1− α
2

(t1−
α
2

b1
− t1−

α
2

b )

(2.25)

and so by (H4) we see from (2.25) that for small b > 0 we have

0 <
1
2

∫ β+γ
2

β

dt√
−2F (t)

≤
∫ β+γ

2

β

dt√
b2

K(R) − 2F (t)
≤
√
k2

1− α
2

(
t
1−α2
b1
− t1−

α
2

b

)
. (2.26)

It follows then from (2.26) and since 0 < α < 2 that there exists an ε5 > 0 such
that

t
1−α2
b1

≥ t1−
α
2

b + ε5. (2.27)
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From the inequality
(x+ y)l ≥ xl + yl (2.28)

which holds if l ≥ 1, x ≥ 0, and y ≥ 0, it follows from (2.27) and since 2
2−α ≥ 1

that
tb1 ≥ tb + ε6 (2.29)

where ε6 = ε
2

2−α
5 . Next from (2.27)-(2.29) we see

t2N−2−α
b1

− t2N−2−α
b = [tN−1−α2

b1
− tN−1−α2

b ][tN−1−α2
b1

+ t
N−1−α2
b ]

≥ [(tb + ε6)N−1−α2 − tN−1−α2
b ]tN−1−α2

b

≥ ε7t
N−1−α2
b

(2.30)

where ε7 = ε
N−1−α2
6 > 0 and since N − 1− α

2 ≥ 1 by (H5).
Thus we see it follows from (2.24), (2.30), and Lemma 2.4 that

t
2(N−1)
b1

K(tb1)E(tb1) ≤ 1
2
R2N−2b2 − ε4ε7k0k1

2N − 2− α
t
N−1−α2
b → −∞ as b→ 0+.

Therefore, E(tb1) < 0 if b > 0 is sufficiently small. It then follows that u(t) > 0 for
t > tb1 for if there were a zb > tb1 such that u(zb) = 0 then since E is nonincreasing
we would have 0 ≤ E(zb) ≤ E(tb1) < 0 - a contradiction. In addition we know from
earlier that u > 0 on (R,Mb] and R < tb1 < Mb. Thus we see u > 0 on (R,∞).
This completes the proof. �

Lemma 2.7. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then Mb →∞ as b→∞.

Proof. If the Mb are bounded then there exists M0 > R such that Mb ≤M0 for all
large b. Now let vb = u

b . Then vb(R) = 0, v′b(R) = 1 and vb satisfies

v′′b +
N − 1
r

v′b +
K(r)f(bvb)

b
= 0 for r ≥ R. (2.31)

As in (2.1)-(2.2), (1
2
v′2b
K(r)

+
F (bvb)
b2

)′
≤ 0 for r ≥ R

and therefore
1
2
v′2b
K(r)

+
F (bvb)
b2

≤ 1
2K(R)

for r ≥ R.

It follows from this that the v′b are uniformly bounded on [R,∞) and since |vb(r)| ≤∫ r
R
|v′b(s)| ds it follows that the vb are uniformly bounded on [R,M0 + 1]. Since f is

sublinear we now show that K(r)f(bvb)
b → 0 on [R,M0 + 1] as b → ∞. To see this

note that from (H2) we have |g(u)|
|u|p ≤ 1 if |u| ≥ u0 > 0 and since g is continuous on

[0, u0] then |g(u)| ≤ C4 for |u| ≤ u0 for some constant C4. Combining these we see:

|g(u)| ≤ C4 + |u|p for all u. (2.32)

Therefore since the vb are uniformly bounded on [R,M0 + 1] and 0 < p < 1 then∣∣K(r)f(bvb)
b

∣∣ = K(r)
∣∣ |vb|p−1vb

b1−p
+
g(bvb)
b

∣∣
≤ K(r)

( |vb|p
b1−p

+
C4

b
+
|vb|p

b1−p

)
→ 0 as b→∞.

(2.33)
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Thus from (2.31), (2.33), and since the v′b are uniformly bounded it follows that the
v′′b are also uniformly bounded on [R,M0 + 1]. Then by the Arzela-Ascoli theorem
there exists a subsequence of the vb and v′b (still denoted vb and v′b) such that vb → v

uniformly and v′b → v′ uniformly on [R,M0 + 1]. In addition, v′′ + N−1
r v′ = 0,

v(R) = 0, and v′(R) = 1. Thus v = R
N−2 (1 − (Rr )N−2). In particular v′ > 0. On

the other hand, v′b(Mb) = 0 and since the Mb are bounded by M0 then there is a
subsequence (still labeled Mb) such that Mb → M and since v′b → v′ uniformly on
[R,M0 + 1] then 0 < v′(M) = limb→∞ v′b(Mb) = 0 - a contradiction. Thus it must
be that Mb →∞ as b→∞. This completes the proof. �

Lemma 2.8. - Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then u(Mb) → ∞ as b → ∞. In addition, there exists
a constant ε5 > 0 such that

[u(Mb)]
1−p
2 ≥ ε5M

1−α2
b .

Proof. It follows from Lemma 2.6 that

u

b
→ R

N − 2

(
1−

(R
r

)N−2)
uniformly on [R, 2R].

Hence
u(2R)
b
→ R

N − 2
(
1− 22−N) as b→∞.

Thus u(2R) ≥ R
2(N−2)

(
1− 22−N) b for sufficiently large b, and therefore u(2R)→∞

as b→∞. Since Mb →∞ as b→∞ (by Lemma 2.7), it follows that Mb > 2R for
large b, and since u is increasing on [R,Mb) it follows that u(Mb) ≥ u(2R) → ∞
from which it follows that u(Mb)→∞ as b→∞. This completes the first part of
the proof.

Next, from (2.1)-(2.2) we have

1
2
u′2

K
+ F (u) ≥ F (u(Mb)) on [R,Mb].

Rewriting this, integrating on [R,Mb] and using (H4) gives∫ Mb

R

u′√
2
√
F (u(Mb))− F (u(t))

≥
∫ Mb

R

√
K dr

≥
∫ Mb

R

√
k1r
−α2 dr

=
√
k1(M1−α2

b −R1−α2 )
1− α

2

.

(2.34)

Changing variables on the left-hand side, rewriting, and changing variables again
gives∫ Mb

R

u′√
2
√
F (u(Mb))− F (u(t))

=
∫ u(Mb)

0

dt√
2
√
F (u(Mb))− F (t)

=
u(Mb)√

2
√
F (u(Mb))

∫ 1

0

ds√
1− F (u(Mb)s)

F (u(Mb))

.

(2.35)
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From the first part of the theorem we know that u(Mb) → ∞ as b → ∞. Then
from (H2) it follows that F (u) = up+1

p+1 +G(u) where G(u) =
∫ u
0
g(s) ds. In a similar

way to (2.32) it follows that

|G(u)| ≤ C5 +
1

2(p+ 1)
|u|p+1 for all u for some constant C5. (2.36)

This along with (H2) and that 0 < p < 1 gives

lim
b→∞

∫ 1

0

ds√
1− F (u(Mb)s)

F (u(Mb))

=
∫ 1

0

ds√
1− sp+1

<

∫ 1

0

ds√
1− s

= 2. (2.37)

In addition we see that√
F (u(Mb)) = [u(Mb)]

p+1
2

√
1

p+ 1
+

G(u(Mb))
[u(Mb)]p+1

. (2.38)

Since u(Mb)→∞ as b→∞ and G(u)
|u|p+1 → 0 as u→∞ it follows from (2.38) that

lim
b→∞

[u(Mb)]
p+1
2√

F (u(Mb))
=
√
p+ 1. (2.39)

Therefore from (2.39) for large b we have

u(Mb)√
F (u(Mb))

≤ 2
√
p+ 1 [u(Mb)]

1−p
2 . (2.40)

Combining (2.34)-(2.40) we obtain for large b,

[u(Mb)]
1−p
2 ≥

√
k1

2(2− α)
√
p+ 1

(
M

1−α2
b −R1−α2

)
. (2.41)

Finally since Mb →∞ as b→∞ (by Lemma 2.7) we obtain

[u(Mb)]
1−p
2 ≥ ε5M

1−α2
b (2.42)

with ε5 =
√
k1

4(2−α)
√
p+1

> 0. This completes the proof. �

Lemma 2.9. Let u satisfy (1.4)-(1.5) and suppose (H1)–(H5) hold. Let N > 2,
0 < p < 1, and 0 < α < 2. Then for sufficiently large b there exists a zb > Mb such
that u′ < 0 on (Mb, zb] and u(zb) = 0. In addition, given a positive integer n then
if b is sufficiently large then u has n zeros on (R,∞).

Proof. First let v(r) = u(r + Mb). Then v(0) = u(Mb), v′(0) = u′(Mb) = 0, and
(1.4) becomes

v′′ +
N − 1
r +Mb

v′ +K(r +Mb)
(
|v|p−1v + g(v)

)
= 0. (2.43)

Next let

wλ(r) = λ−
2−α
1−p v(λr) = λ−

2−α
1−p u(λr +Mb) where λ

2−α
1−p = u(Mb). (2.44)

Then wλ(0) = λ−
2−α
1−p u(Mb) = 1 and w′λ(0) = 0. Now recall from Lemmas 2.7 and

2.8 that Mb → ∞ and u(Mb) → ∞ as b → ∞. Thus [u(Mb)]
2−α
1−p = λ → ∞ as

b→∞. In addition we see from (2.43)-(2.44) that wλ solves

w′′λ +
N − 1
r + Mb

λ

w′λ + λαK(λr +Mb)
[
|wλ|p−1wλ + λ−

(2−α)p
1−p g(λ

2−α
1−pwλ)

]
= 0. (2.45)
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We now define

Eλ =
1
2

w′2λ
λαK(λr +Mb)

+
1

p+ 1
|wλ|p+1 + λ

−(2−α)(1+p)
1−p G(λ

2−α
1−pwλ). (2.46)

Using (2.45) and (H5) we obtain

E′λ = − λ1−αw′2λ
2(λr +Mb)K(λr +Mb)

(
2(N − 1) +

(λr +Mb)K ′(λr +Mb)
K(λr +Mb)

)
≤ 0 for r ≥ 0.

(2.47)

Thus

Eλ(r) ≤ Eλ(0) =
1

p+ 1
+ λ

−(2−α)(1+p)
1−p G(λ

2−α
1−p ). (2.48)

From (H2) it follows that λ
−(2−α)(1+p)

1−p G(λ
2−α
1−p ) → 0 as λ → ∞. In addition it

follows from (2.36), (2.46), and (2.48) that for large λ,

1
2

w′2λ
λαK(λr +Mb)

+
|wλ|p+1

2(p+ 1)
≤ 2
p+ 1

. (2.49)

Hence the wλ are uniformly bounded on [0,∞). In addition, it follows from (H4)

and (2.49) that the w′λ are uniformly bounded by
√

4k2
p+1r

−α/2 on (r,∞). Then

from (2.45) it follows that the w′′λ are uniformly bounded by C6r
−(α2 +1) for some

constant C6. Thus wλ, w′λ, and w′′λ are uniformly bounded on compact subsets of
(0,∞) and so by the Arzela-Ascoli theorem a subsequence (still labeled wλ and w′λ)
converges uniformly on compact subsets of (0,∞) to some w and w′. In addition,
by the fundamental theorem of calculus with 0 ≤ r1 < r2 we have

|wλ(r1)− wλ(r2)| ≤
∫ r2

r1

|w′λ(s)| ds

≤
∫ r2

r1

√
4k2

p+ 1
s−α/2 ds

=

√
4k2

p+ 1
[r1−α/22 − r1−α/21 ]

(2.50)

and so we see from (2.50) and since 0 < α < 2 that the wλ are equicontinuous on
compact subsets of [0,∞). Thus it follows that w(r) is continuous on [0,∞) and in
particular w(0) = 1.

Next we show that wλ has a large number of zeros for large λ and hence u has
a large number of zeros for large b.

So suppose w > 0 on [0,∞). We see then from (2.45) and (H4) that

− (r +
Mb

λ
)N−1w′λ

=
∫ r

0

λαK(λ(r +
Mb

λ
))(r +

Mb

λ
)N−1

(
|wλ|p−1wλ + λ−

(2−α)p
1−p g(λ

2−α
1−pwλ)

)
.

(2.51)

We claim now that

lim
λ→∞

∫ r

0

λαK(λ(r +
Mb

λ
))(r +

Mb

λ
)N−1

(
λ−

(2−α)p
1−p g(λ

2−α
1−pwλ)

)
= 0 (2.52)

on any fixed compact subset of [0,∞).
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To see this note as in (2.32) we can similarly obtain the inequality |g(u)| ≤
C7 + ε|u|p for all u for some constant C7. Therefore using this and (H4) in (2.51)
we see that∣∣∣ ∫ r

0

λαK(λ(t+
Mb

λ
))(t+

Mb

λ
)N−1

(
λ−

(2−α)p
1−p g(λ

2−α
1−pwλ)

)
dt
∣∣∣

≤
∫ r

0

k2(t+
Mb

λ
)N−1−α

(
C7λ

− (2−α)p
1−p + ε|wλ|p

)
dt.

(2.53)

Now it follows from (2.42) and (2.44) that Mb ≤ ε6[u(Mb)]
1−p
2−α = ε6λ where

ε6 = ε
− 2

2−α
5 so that for some subsequence Mb

λ → A with 0 ≤ A ≤ ε6 and thus for
large λ we obtain from (2.53),∫ r

0

k2(t+
Mb

λ
)N−1−α

(
C7λ

− (2−α)p
1−p + ε|wλ|p

)
dt

≤ C7k2λ
− (2−α)p

1−p

∫ r

0

(t+ 2ε6)N−1−α + εk2

∫ r

0

(t+ 2ε6)N−1−α|wλ|p.

Both of these terms are small on any compact subset of [0,∞) (the first since λ→∞
and the second term by (2.49)) and so both of these limit to zero as λ→∞. This
establishes (2.52).

Therefore we see by using (H4) and taking limits in (2.51) we obtain

− (r +A)N−1w′ ≥ k1

∫ r

0

(t+A)N−1−αwp dt on (0,∞). (2.54)

Since w > 0 on [0,∞) it follows from (2.54) that w is decreasing so that

− (r +A)N−1w′ ≥ k1w
p (r +A)N−α −AN−α

N − α
on (0,∞). (2.55)

Rewriting (2.55) gives

− w′w−p ≥ k1

N − α
(r +A)1−α − k1A

N−α

N − α
(r +A)1−N on (0,∞). (2.56)

Next we analyze the two cases A = 0 and A 6= 0 separately.
Case 1: A 6= 0. Integrating (2.56) on (0, r) gives

−
(w1−p − 1

1− p

)
≥ k1

N − α

( (r +A)2−α

2− α
− A2−α

2− α

)
− k1A

N−α

N − α

( (r +A)2−N

2−N
− A2−N

2−N

)
.

Thus for some constant C8 we obtain

w1−p − 1
1− p

≤ − k1(r +A)2−α

(N − α)(2− α)
− k1(r +A)2−NAN−α

(N − 2)(N − α)
+ C8. (2.57)

The right-hand side of (2.57) goes to −∞ as r → ∞ since 0 < α < 2, 0 < p < 1,
N > 2 and so we see that w becomes negative which is a contradiction because we
assumed w > 0 and so w and hence u must have a zero for sufficiently large b.

Case 2: A = 0. In this case we see that (2.56) becomes

− w′w−p ≥ k1

N − α
r1−α on (0,∞). (2.58)
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Integrating (2.58) on (0, r] gives

w1−p − 1
1− p

≤ − k1r
2−α

(N − α)(2− α)

and therefore we see that w becomes negative. Thus we again obtain a contradiction
and so w and hence u has a zero if b is sufficiently large.

Thus there exists a zb > R such that u(zb) = 0 and u > 0 on (R, zb). In addition
by uniqueness of solutions of initial value problems it follows that u′(zb) < 0 and
then we can similarly show as in Lemma 2.5 that u has a local minimum mb > zb
for large enough b > 0 and also that w has a second zero z2,b (and hence u has a
second zero) if b is sufficiently large. In a similar way, given any positive integer
n we can show for large enough b that u has n zeros on (R,∞). Since wλ → w
uniformly on compact sets it follows then that if λ is sufficiently large then wλ will
have n zeros on (0,∞) and hence u(r, b) will have n zeros on (R,∞) if b > 0 is
sufficiently large. This completes the proof. �

3. proof of Theorem 1.1

We consider the set

{b > 0| u(r, b) > 0 for all r > R}.

This set is nonempty by Lemma 2.6 and is bounded from above by Lemma 2.9 so
there exists a b0 > 0 such that

b0 = sup{b > 0| u(r, b) > 0 for all r > R}.

We show now that u(r, b0) > 0 for r > R. If u(r0, b0) = 0 and u(r, b0) > 0 on
(R, r0) then u′(r0, b0) ≤ 0. By uniqueness of solutions of initial value problems it
follows that u′(r0, b0) < 0. Thus for r1 > r0 and r1 sufficiently close to r0 we have
u(r1, b0) < 0. Then for b close to b0 with b < b0 then u(r1, b) < 0 contradicting
the definition of b0. Hence u(r, b0) > 0 for r > R. Now by Lemma 2.3 we know
that u(r, b0) must get larger than β. If u′ > 0 for all r ≥ R then since u is
bounded it follows that u would has a limit which by Lemma 2.1 would have to
be less than or equal to β. Thus we see that u(r, b0) must have a local maximum
Mb0 > R and u′ > 0 on [R,Mb0). Next we show E(r, b0) ≥ 0 for all r ≥ R. If
E(r0, b0) < 0 then E(r0, b) < 0 for b > b0 and b close to b0. On the other hand, since
b > b0 it follows that there exists a zb such that u(zb, b) = 0. Thus E(zb, b) ≥ 0.
Since E is nonincreasing this implies zb < r0 for all b > b0. However zb → ∞
as b → b+0 for if the zb were bounded then this would force a subsequence of the
zb to converge to some z0 and then u(z0, b0) = 0 contradicting that u(r, b0) > 0.
Thus E(r, b0) ≥ 0 for all r ≥ R. It now follows that u(r, b0) cannot have a positive
local minimum, mb0 > Mb0 for at such a point u′(m, b0) = 0, u′′(m, b0) ≥ 0 and
so f(u(m, b0)) ≤ 0. Since u(m, b0) > 0 this then forces 0 < u(m, b0) ≤ β and thus
E(m, b0) = F (u(m, b0)) < 0 contradicting that E(r, b0) ≥ 0. Thus u′(r, b0) < 0 for
r > Mb0 and so limr→∞ u(r, b0) exists. Denoting this limit as L then L ≥ 0 since
u(r, b0) > 0 for r > R and by Lemma 2.1 we have f(L) = 0 so that L = 0 or L = β.
Then a similar argument as in Lemma 2.2 shows that u(r, b0) gets less than β and
so it follows that L = 0 and thus limr→∞ u(r, b0) = 0. Hence u(r, b0) is a positive
solution on (R,∞) and limr→∞ u(r, b0) = 0.
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Next from a lemma in [9] if b > bn is sufficiently close to bn where u(r, bn) has n
zeros on (R,∞) and

lim
r→∞

u(r, b) = 0

then u(r, b) has at most n + 1 zeros on (R,∞). From this lemma it then follows
that

{b > b0|u(r, b) has exactly one zero on (R,∞)}
is nonempty and again from Lemma 2.9 this set is bounded from above. Thus there
exists a b1 > b0 such that

b1 = sup{b > b0|u(r, b) has exactly one zero on (R,∞)}.

As above we can show u(r, b1) has exactly one zero on (R,∞) and

lim
r→∞

u(r, b1) = 0.

Similarly we can find bn > bn−1 such that u(r, bn) has exactly n zeros on (R,∞)
and

lim
r→∞

u(r, bn) = 0.

This completes the proof of Theorem 1.1.
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