Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 253, pp. 1–14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF SOLUTIONS FOR SUBLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH A. IAIA

Communicated by Ira Herbst

ABSTRACT. In this article we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u) = 0$, one with exactly n zeros for each nonnegative integer n on the exterior of the ball of radius R > 0, B_R , centered at the origin in \mathbb{R}^N with u = 0 on ∂B_R and $\lim_{r \to \infty} u(r) = 0$ where N > 2, f is odd with f < 0 on $(0, \beta)$, f > 0 on (β, ∞) , $f(u) \sim u^p$ with 0 for large <math>u and $K(r) \sim r^{-\alpha}$ with $0 < \alpha < 2$ for large r.

1. INTRODUCTION

In this article we study radial solutions of

$$\Delta u + K(r)f(u) = 0 \quad \text{in } \mathbb{R}^N \backslash B_R, \tag{1.1}$$

$$u = 0 \quad \text{on } \partial B_R, \tag{1.2}$$

$$u \to 0 \quad \text{as } |x| \to \infty$$
 (1.3)

where B_R is the ball of radius R > 0 centered at the origin in \mathbb{R}^N and K(r) > 0. We assume:

- (H1) f is odd and locally Lipschitz, f < 0 on $(0, \beta)$, f > 0 on (β, ∞) , $f'(\beta) > 0$, and f'(0) < 0.
- (H2) there exists p with $0 such that <math>f(u) = |u|^{p-1}u + g(u)$ where $\lim_{u \to \infty} \frac{|g(u)|}{|u|^p} = 0.$

We let $F(u) = \int_0^u f(s) ds$. Since f is odd it follows that F is even and from (H1) it follows that F is bounded below by $-F_0 < 0$, F has a unique positive zero, γ , with $0 < \beta < \gamma$, and

(H3) $-F_0 < F < 0$ on $(0, \gamma), F > 0$ on (γ, ∞) .

Interest in the topic for this paper comes from recent papers [5, 6, 15, 16, 18] about solutions of differential equations on exterior domains. When f grows superlinearly at infinity - i.e. $\lim_{u\to\infty} \frac{f(u)}{u} = \infty$, $\Omega = \mathbb{R}^N$, and $K(r) \equiv 1$ then the problem (1.1), (1.3) has been extensively studied [1, 2, 3, 7, 8, 13, 17, 19, 20]. In [11, 12] equations (1.1)-(1.3) were studied with $K(r) \sim r^{-\alpha}$, f superlinear, and $\Omega = \mathbb{R}^N \setminus B_R$ with R > 0 with various values for α . In those papers we proved

²⁰¹⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domains; semilinear; sublinear; radial.

^{©2017} Texas State University.

Submitted February 12, 2017. Published October 10, 2017.

existence of an infinite number of solutions - one with exactly n zeros for each nonnegative integer n such that $u \to 0$ as $|x| \to \infty$ for all R > 0. In [9] we studied (1.1)-(1.3) with $K(r) \sim r^{-\alpha}$, f bounded, and $\Omega = \mathbb{R}^N \setminus B_R$.

In this article we consider the case where f grows sublinearly at infinity - i.e. $\lim_{u\to\infty} \frac{f(u)}{u^p} = c_0 > 0$ with $0 and <math>K(r) \sim r^{-\alpha}$ with $0 < \alpha < 2$. In earlier papers [10, 14] the case where f is sublinear and $\alpha > N - p(N-2)$ was investigated.

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) = u(|x|) = u(r) where $x \in \mathbb{R}^N$ and $r = |x| = \sqrt{x_1^2 + \cdots + x_N^2}$ so that u solves

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R,\infty), \text{ where } R > 0,$$
(1.4)

$$u(R) = 0, u'(R) = b \in \mathbb{R}.$$
 (1.5)

We will also assume that there exist constants $k_1 > 0$, $k_2 > 0$, and α with $0 < \alpha < 2$ such that

- (H4) $k_1 r^{-\alpha} \le K(r) \le k_2 r^{-\alpha}$ on $[R, \infty)$.
- (H5) K is differentiable, on $[R, \infty)$, $\lim_{r \to \infty} \frac{rK'}{K} = -\alpha$ where $0 < \alpha < 2$, and $\frac{rK'}{K} + 2(N-1) > 0$ on $[R, \infty)$.

Note that (H5) implies $r^{2(N-1)}K(r)$ is increasing.

In this paper we prove the following result.

Theorem 1.1. Let N > 2, $0 , and <math>0 < \alpha < 2$. Assuming (H1)–(H5) then given a nonnegative integer n then there exists a solution of (1.4)-(1.5) with n zeros on (R, ∞) and $\lim_{r\to\infty} u(r) = 0$.

It is interesting to compare this theorem with the case $\alpha > 2$. When $\alpha > 2$ and R is sufficiently large then it was shown in [10, 14] that there are *no* solutions of (1.1)-(1.3) with $\lim_{r\to\infty} u(r) = 0$. On the other hand, it was also shown in [10, 14] that if R > 0 is sufficiently small then solutions of (1.1)-(1.3) exist for $\alpha > N - p(N - 2)$. We note in Theorem 1.1 that existence of solutions is established for all R > 0. Also to the best of our knowledge existence of solutions of (1.1)-(1.3) is still unknown when $2 < \alpha < N - p(N - 2)$, 0 , and <math>R > 0 sufficiently small.

2. Preliminaries

From the standard existence-uniqueness theorem for ordinary differential equations [4] it follows there is a unique solution of (1.4)-(1.5) on $[R, R + \epsilon)$ for some $\epsilon > 0$. We then define

$$E = \frac{1}{2}\frac{u'^2}{K} + F(u).$$
(2.1)

Using (H5) we see that

$$E' = -\frac{u'^2}{2rK} \left(2(N-1) + \frac{rK'}{K} \right) \le 0 \quad \text{for } 0 < \alpha < 2(N-1).$$
 (2.2)

Thus E is nonincreasing. Hence it follows that

$$\frac{1}{2}\frac{u'^2}{K} + F(u) = E(r) \le E(R) = \frac{1}{2}\frac{b^2}{K(R)} \quad \text{for } r \ge R$$
(2.3)

and so we see from (H2)–(H4) that u and u' are uniformly bounded wherever they are defined from which it follows that the solution of (1.4)-(1.5) is defined on $[R, \infty)$.

3

Lemma 2.1. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. If $\lim_{r\to\infty} u(r) = L$ then f(L) = 0.

Proof. Multiplying (1.4) by r^{N-1} and integrating on (r_0, r) where $r_0 > R$ gives

$$r^{N-1}u' = r_0^{N-1}u'(r_0) - \int_{r_0}' t^{N-1}Kf(u) \, dt.$$

Dividing by $r^N K$ gives

$$\frac{u'}{rK} = \frac{r_0^{N-1}u'(r_0)}{r^N K} - \frac{\int_{r_0}^r t^{N-1} K f(u) \, dt}{r^N K}.$$
(2.4)

Using (H4) and that $0 < \alpha < 2 < N$ then $r^N K \ge k_1 r^{N-\alpha} \to \infty$ as $r \to \infty$. Also if $f(L) \neq 0$ and r_0, r are sufficiently large then it follows from (H4) that $|\int_{r_0}^r t^{N-1} K f(u) dt| \ge \frac{|f(L)|k_1}{2(N-\alpha)} (r^{N-\alpha} - r_0^{N-\alpha}) \to \infty$ as $r \to \infty$ and so by L'Hôpital's rule and (2.4) we see

$$\lim_{r \to \infty} \frac{u'}{rK} = -\lim_{r \to \infty} \frac{\int_{r_0}^r t^{N-1} K f(u) \, dt}{r^N K} = -\lim_{r \to \infty} \frac{f(u)}{N + \frac{rK'}{K}} = -\frac{f(L)}{N - \alpha}.$$
 (2.5)

Thus by (H4) and (2.5) there exists an $r_0 > R$ such that

$$|u'| \ge \frac{|f(L)|k_1}{2(N-\alpha)} r^{1-\alpha} > 0 \quad \text{for } r > r_0.$$
(2.6)

Integrating (2.6) on (r_0, r) then gives

$$|u(r) - u(r_0)| \ge \frac{|f(L)|k_1}{2(N - \alpha)(2 - \alpha)} (r^{2 - \alpha} - r_0^{2 - \alpha}).$$
(2.7)

Since $0 < \alpha < 2$ we see the right-hand side of (2.7) goes to $+\infty$ but the left-hand side goes to $|L - u(r_0)|$ - a contradiction. Thus it must be that f(L) = 0.

Lemma 2.2. Let u satisfy (1.4)-(1.5) with b > 0 and suppose (H1)–(H5) hold. Let $N > 2, 0 , and <math>0 < \alpha < 2$. Let $0 < \epsilon < \beta$. Then there exists $t_{\epsilon,b} > R$ such that $u(t_{\epsilon,b}) = \beta - \epsilon$ and u' > 0 on $[R, t_{\epsilon,b}]$.

Proof. From (1.5) and since b > 0 by assumption we see that u is initially increasing and positive. Now if u has a first critical point, M, with u' > 0 on [R, M) then u'(M) = 0 and $u''(M) \le 0$ from which it follows that $f(u(M)) \ge 0$. In addition, by uniqueness of solutions of initial value problems it follows that u''(M) < 0 and so f(u(M)) > 0 and thus $u(M) > \beta$. Since u(R) = 0 the lemma then follows in this case by the intermediate value theorem. Otherwise suppose the lemma does not hold. Then u' > 0 and $0 < u < \beta - \epsilon$ for all r > R for some $\epsilon > 0$ and so by (H1) there exists a constant $\epsilon_1 > 0$ and $r_0 > R$ such that $f(u) \le -\epsilon_1 < 0$ for $r > r_0 > R$. Next multiplying (1.4) by r^{N-1} , integrating on (r_0, r) , and using (H4) gives

$$-r^{N-1}u' = -r_0^{N-1}u'(r_0) + \int_{r_0}' t^{N-1}Kf(u) dt$$

$$\leq -r_0^{N-1}u'(r_0) - \frac{\epsilon_1 k_1}{N-\alpha}(r^{N-\alpha} - r_0^{N-\alpha}).$$

Thus for some constant C_1 ,

$$u' \ge C_1 r^{1-N} + \frac{\epsilon_1 k_1}{N-\alpha} r^{1-\alpha}.$$
 (2.8)

Integrating on (r_0, r) gives:

$$u(r) \ge u(r_0) + \frac{C_1}{2 - N} (r^{2 - N} - r_0^{2 - N}) + \frac{\epsilon_1 k_1}{(N - \alpha)(2 - \alpha)} (r^{2 - \alpha} - r_0^{2 - \alpha}).$$
(2.9)

Now the left-hand side of (2.9) is bounded above by β but the right-hand side goes to $+\infty$ as $r \to \infty$ since $0 < \alpha < 2 < N$ - a contradiction. Hence the lemma holds.

J. A. IAIA

Lemma 2.3. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then there exists a $t_b > R$ such that $u(t_b) = \beta$ and u' > 0 on $[R, t_b]$.

Proof. We rewrite (1.4) as

$$u'' + \frac{N-1}{r}u' + K(r)\frac{f(u)}{u-\beta}(u-\beta) = 0$$

and then make the change of variables

$$u - \beta = r^{\frac{1-N}{2}}v.$$
 (2.10)

Thus v satisfies

$$v'' + \left(K(r)\frac{f(u)}{u-\beta} - \frac{(N-1)(N-3)}{4r^2}\right)v = 0.$$

Suppose now that the lemma does not hold. Then by Lemma 2.2 we see for some sufficiently small $\epsilon > 0$ we have u' > 0, $\beta - \epsilon < u < \beta$, and $\frac{f(u)}{u-\beta} > \frac{f'(\beta)}{2}$ (by (H1)) for $r > t_{\epsilon,b}$. Also for some $r_0 > R$ sufficiently large then by (H4) and since $0 < \alpha < 2$,

$$K(r)\frac{f(u)}{u-\beta} - \frac{(N-1)(N-3)}{4r^2} \ge \frac{k_1 f'(\beta)}{2r^{\alpha}} - \frac{(N-1)(N-3)}{4r^2} \ge \frac{1}{r^2} \text{ for } r > r_0.$$

Next we consider a nontrivial solution w of

$$w'' + \frac{1}{r^2}w = 0$$
 for $r > r_0$.

It is straightforward to show $w = C_2 e^{r/2} \sin\left(\frac{\sqrt{3}}{2}\ln(r) + C_3\right)$ for constants $C_2 \neq 0$ and C_3 . Hence w has an infinite number of zeros on (r_0, ∞) . It follows by the Sturm comparison theorem [4] that between any two zeros of w then v must have a zero and from (2.10) we see that u must equal β . Hence there exists a smallest value of r, denoted t_b , such that $u(t_b) = \beta$ and $0 < u < \beta$ on (R, t_b) . Thus $u'(t_b) \ge 0$ and by uniqueness of solutions of initial value problems $u'(t_b) > 0$. Also from Lemma 2.2 we have u' > 0 on $[R, t_{\epsilon,b}]$ for all $\epsilon > 0$ and since $u'(t_b) > 0$ it follows that u' > 0on $[R, t_b]$. This completes the proof.

Lemma 2.4. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then $\lim_{b\to 0^+} t_b = \infty$.

Proof. First we rewrite (1.4) as

$$(r^{N-1}u')' = -r^{N-1}Kf(u). (2.11)$$

From (H1) we have

there exists an
$$\epsilon_2 > 0$$
 such that $-f(u) \le \epsilon_2 u$ on $[0, \beta/2]$. (2.12)

Next we define $t_{b_0} < t_b$ to be the smallest value of t > 0 such that $u(t_{b_0}) = \frac{\beta}{2}$. The existence of t_{b_0} follows from Lemma 2.3, since u(R) = 0, and the intermediate value theorem. Combining (2.12) with (H4) gives

$$-r^{N-1}Kf(u) \le \epsilon_2 k_2 r^{N-1-\alpha} u \text{ on } [R, t_{b_0}].$$
(2.13)

Integrating (2.11) on $[R, t_{b_0}]$, using (2.13) and that u is increasing on $[R, t_{b_0}]$ (by Lemma 2.3) gives

$$r^{N-1}u' \leq R^{N-1}b + \int_{R}^{r} \epsilon_{2}k_{2}t^{N-1-\alpha}u(t) dt$$

$$\leq R^{N-1}b + \epsilon_{2}k_{2}u(r) \int_{R}^{r} t^{N-1-\alpha} dt$$

$$\leq R^{N-1}b + \frac{\epsilon_{2}k_{2}}{N-\alpha}r^{N-\alpha}u.$$

(2.14)

Rewriting this inequality gives

$$u' - \frac{\epsilon_2 k_2}{N - \alpha} r^{1 - \alpha} u \le R^{N - 1} b r^{1 - N}.$$
(2.15)

Now let $\epsilon_3 = \frac{\epsilon_2 k_2}{(2-\alpha)(N-\alpha)} > 0$ and denote

$$\mu(r) = e^{-\epsilon_3(r^{2-\alpha} - R^{2-\alpha})} \le 1 \quad \text{for } R \le r \le t_{b_0}.$$
 (2.16)

Multiplying (2.15) by $\mu(r)$, using (2.16), and integrating on $[R, r] \subset [R, t_{b_0}]$ gives

$$u \le \frac{R^{N-1}b}{N-2} (R^{2-N} - r^{2-N}) e^{\epsilon_3 (r^{2-\alpha} - R^{2-\alpha})}.$$
(2.17)

Now evaluating (2.17) at t_{b_0} gives

$$\frac{\beta}{2} \le \frac{R^{N-1}b}{N-2} (R^{2-N} - t_{b_0}^{2-N}) e^{\epsilon_3 (t_{b_0}^{2-\alpha} - R^{2-\alpha})}.$$
(2.18)

Since $0 < \alpha < 2$ it follows from (2.18) that $\lim_{b\to 0^+} t_{b_0} = \infty$ and since $t_{b_0} < t_b$ it follows that

$$\lim_{b \to 0^+} t_b = \infty.$$

This completes the proof.

Lemma 2.5. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then u has a local maximum, M_b , and u' > 0 on $[R, M_b)$.

Proof. From Lemma 2.3 we know $u(t_b) = \beta$ and $u'(t_b) > 0$ so if the lemma does not hold then it follows from Lemma 2.3 that u' > 0 for $r \ge R$. Since u is bounded by (2.3) then it follows from (H2) and (H3) that there exists an L such that $u \to L > \beta$ with L finite. We see then by Lemma 2.1 that f(L) = 0 and so (H1) implies $|L| \le \beta$ contradicting that $L > \beta$. Thus u has a local maximum and so there is a smallest value of t, denoted M_b , such that $u'(M_b) = 0$ and u' > 0 on $[R, M_b)$. This completes the proof.

Lemma 2.6. Let u satisfy (1.4)-(1.5) and suppose [(H1)-(H5)] hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then u(r) > 0 if b > 0 is sufficiently small.

Proof. We use a similar argument as in [12]. First, if u' > 0 for $r \ge R$ then u > 0 for all r > R and so we are done in this case. Thus we suppose that u has a first critical point M_b . Then $u'(M_b) = 0$, $u''(M_b) \le 0$, and u' > 0 on $[R, M_b)$. By uniqueness of solutions of initial value problems it follows that $u''(M_b) < 0$ and thus M_b is a local maximum. Now if $0 < u(M_b) < \gamma$ then it follows that $E(M_b) = F(u(M_b)) < 0$ (by (H3)). Since E is nonincreasing by (2.2) it follows that u cannot be zero for $r > M_b$ for at such a zero, z_b , of u we would have $0 \le \frac{1}{2} \frac{u'^2(z_b)}{K(z_b)} = E(z_b) \le E(M_b) < 0$ a contradiction. So we suppose now that $u(M_b) \ge \gamma$. Then there exists t_{b_1} with $t_b < t_{b_1} < M_b$ so that $u(t_{b_1}) = \frac{\beta + \gamma}{2}$ and u' > 0 on $[R, M_b)$.

Next we have the following identity which follows from (1.4) and (2.2),

$$(r^{2(N-1)}KE)' = (r^{2(N-1)}K)'F(u).$$
(2.19)

Integrating this on [R, r] gives

$$r^{2(N-1)}KE = \frac{1}{2}R^{2(N-1)}b^2 + \int_R^r (t^{2(N-1)}K)'F(u)\,dt.$$
 (2.20)

By (H3) we have $F(u) \leq 0$ on $[R, t_b]$ and by (H5) we have $(r^{2(N-1)}K)' > 0$ so for $R < t_b < r$ we have

$$\int_{R}^{r} (t^{2(N-1)}K)'F(u) \, dt \le \int_{t_b}^{r} (t^{2(N-1)}K)'F(u) \, dt.$$
(2.21)

Next on $[\beta, \frac{\beta+\gamma}{2}]$ it follows that there exists an $\epsilon_4 > 0$ such that $F(u) \leq -\epsilon_4 < 0$. Also from (H5) we see there is a $k_0 > 0$ such that

$$2(N-1) + \frac{rK'}{K} \ge k_0 \text{ for } r \ge R.$$
(2.22)

Then it follows from (2.22) and (H4) that

$$(t^{2(N-1)}K)' = t^{2N-3}K[2(N-1) + \frac{rK'}{K}] \ge k_0k_1t^{2N-3-\alpha} \text{ for } t \ge R.$$
 (2.23)

Thus from (2.20)-(2.23) we see

$$t_{b_1}^{2(N-1)}K(t_{b_1})E(t_{b_1}) \le \frac{1}{2}R^{2(N-1)}b^2 - \frac{\epsilon_4k_0k_1}{2N-2-\alpha}[t_{b_1}^{2N-2-\alpha} - t_b^{2N-2-\alpha}].$$
 (2.24)

Next solving (2.3) for u', using (H4), and integrating on $[t_b, t_{b_1}]$ where u' > 0 gives

$$\int_{\beta}^{\frac{\beta+\gamma}{2}} \frac{dt}{\sqrt{\frac{b^2}{K(R)} - 2F(t)}} = \int_{t_b}^{t_{b_1}} \frac{u'(r) \, dr}{\sqrt{\frac{b^2}{K(R)} - 2F(u(r))}} \le \int_{t_b}^{t_{b_1}} \sqrt{K} \, dr$$

$$= \frac{\sqrt{k_2}}{1 - \frac{\alpha}{2}} (t_{b_1}^{1 - \frac{\alpha}{2}} - t_b^{1 - \frac{\alpha}{2}})$$
(2.25)

and so by (H4) we see from (2.25) that for small b > 0 we have

$$0 < \frac{1}{2} \int_{\beta}^{\frac{\beta+\gamma}{2}} \frac{dt}{\sqrt{-2F(t)}} \le \int_{\beta}^{\frac{\beta+\gamma}{2}} \frac{dt}{\sqrt{\frac{b^2}{K(R)} - 2F(t)}} \le \frac{\sqrt{k_2}}{1 - \frac{\alpha}{2}} \left(t_{b_1}^{1 - \frac{\alpha}{2}} - t_b^{1 - \frac{\alpha}{2}} \right).$$
(2.26)

It follows then from (2.26) and since $0 < \alpha < 2$ that there exists an $\epsilon_5 > 0$ such that

$$t_{b_1}^{1-\frac{\alpha}{2}} \ge t_b^{1-\frac{\alpha}{2}} + \epsilon_5.$$
 (2.27)

From the inequality

$$(x+y)^l \ge x^l + y^l \tag{2.28}$$

which holds if $l \ge 1$, $x \ge 0$, and $y \ge 0$, it follows from (2.27) and since $\frac{2}{2-\alpha} \ge 1$ that

$$t_{b_1} \ge t_b + \epsilon_6 \tag{2.29}$$

where $\epsilon_6 = \epsilon_5^{\frac{2}{2-\alpha}}$. Next from (2.27)-(2.29) we see $t_2^{2N-2-\alpha} - t_2^{2N-2-\alpha} = [t_2^{N-1-\frac{\alpha}{2}} - t_2^{N-1-\frac{\alpha}{2}}][t_2^{N-1-\frac{\alpha}{2}} + t_2^{N-1-\frac{\alpha}{2}}]$ t_b^2

$$\begin{aligned} & t_{\mu_{1}}^{2N-2-\alpha} - t_{b}^{2N-2-\alpha} = [t_{b_{1}}^{N-1-\frac{\alpha}{2}} - t_{b}^{N-1-\frac{\alpha}{2}}][t_{b_{1}}^{N-1-\frac{\alpha}{2}} + t_{b}^{N-1-\frac{\alpha}{2}}] \\ & \geq [(t_{b} + \epsilon_{6})^{N-1-\frac{\alpha}{2}} - t_{b}^{N-1-\frac{\alpha}{2}}]t_{b}^{N-1-\frac{\alpha}{2}} \\ & \geq \epsilon_{7}t_{b}^{N-1-\frac{\alpha}{2}} \end{aligned}$$
(2.30)

where $\epsilon_7 = \epsilon_6^{N-1-\frac{\alpha}{2}} > 0$ and since $N - 1 - \frac{\alpha}{2} \ge 1$ by (H5). Thus we see it follows from (2.24), (2.30), and Lemma 2.4 that

$$t_{b_1}^{2(N-1)}K(t_{b_1})E(t_{b_1}) \le \frac{1}{2}R^{2N-2}b^2 - \frac{\epsilon_4\epsilon_7k_0k_1}{2N-2-\alpha}t_b^{N-1-\frac{\alpha}{2}} \to -\infty \text{ as } b \to 0^+.$$

Therefore, $E(t_{b_1}) < 0$ if b > 0 is sufficiently small. It then follows that u(t) > 0 for $t > t_{b_1}$ for if there were a $z_b > t_{b_1}$ such that $u(z_b) = 0$ then since E is nonincreasing we would have $0 \leq E(z_b) \leq E(t_{b_1}) < 0$ - a contradiction. In addition we know from earlier that u > 0 on $(R, M_b]$ and $R < t_{b_1} < M_b$. Thus we see u > 0 on (R, ∞) . This completes the proof. \square

Lemma 2.7. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then $M_b \to \infty$ as $b \to \infty$.

Proof. If the M_b are bounded then there exists $M_0 > R$ such that $M_b \leq M_0$ for all large b. Now let $v_b = \frac{u}{b}$. Then $v_b(R) = 0$, $v'_b(R) = 1$ and v_b satisfies

$$v_b'' + \frac{N-1}{r}v_b' + \frac{K(r)f(bv_b)}{b} = 0 \quad \text{for } r \ge R.$$
(2.31)

As in (2.1)-(2.2),

$$\left(\frac{1}{2}\frac{v_b'^2}{K(r)} + \frac{F(bv_b)}{b^2}\right)' \le 0 \quad \text{for } r \ge R$$

and therefore

$$\frac{1}{2}\frac{v_b'^2}{K(r)} + \frac{F(bv_b)}{b^2} \le \frac{1}{2K(R)} \quad \text{for } r \ge R.$$

It follows from this that the v'_b are uniformly bounded on $[R, \infty)$ and since $|v_b(r)| \leq |v_b(r)| < |v_b($ $\int_{R}^{r} |v_{b}'(s)| ds$ it follows that the v_{b} are uniformly bounded on $[R, M_{0} + 1]$. Since f is sublinear we now show that $\frac{K(r)f(bv_b)}{b} \to 0$ on $[R, M_0 + 1]$ as $b \to \infty$. To see this note that from (H2) we have $\frac{|g(u)|}{|u|^p} \le 1$ if $|u| \ge u_0 > 0$ and since g is continuous on $[0, u_0]$ then $|g(u)| \leq C_4$ for $|u| \leq u_0$ for some constant C_4 . Combining these we see:

$$|g(u)| \le C_4 + |u|^p$$
 for all u . (2.32)

Therefore since the v_b are uniformly bounded on $[R, M_0 + 1]$ and 0 then

$$\left|\frac{K(r)f(bv_b)}{b}\right| = K(r)\left|\frac{|v_b|^{p-1}v_b}{b^{1-p}} + \frac{g(bv_b)}{b}\right| \\
\leq K(r)\left(\frac{|v_b|^p}{b^{1-p}} + \frac{C_4}{b} + \frac{|v_b|^p}{b^{1-p}}\right) \to 0 \quad \text{as } b \to \infty.$$
(2.33)

J. A. IAIA

Thus from (2.31), (2.33), and since the v'_b are uniformly bounded it follows that the v''_b are also uniformly bounded on $[R, M_0 + 1]$. Then by the Arzela-Ascoli theorem there exists a subsequence of the v_b and v'_b (still denoted v_b and v'_b) such that $v_b \to v$ uniformly and $v'_b \to v'$ uniformly on $[R, M_0 + 1]$. In addition, $v'' + \frac{N-1}{r}v' = 0$, v(R) = 0, and v'(R) = 1. Thus $v = \frac{R}{N-2}(1 - (\frac{R}{r})^{N-2})$. In particular v' > 0. On the other hand, $v'_b(M_b) = 0$ and since the M_b are bounded by M_0 then there is a subsequence (still labeled M_b) such that $M_b \to M$ and since $v'_b \to v'$ uniformly on $[R, M_0 + 1]$ then $0 < v'(M) = \lim_{b \to \infty} v'_b(M_b) = 0$ - a contradiction. Thus it must be that $M_b \to \infty$ as $b \to \infty$. This completes the proof.

Lemma 2.8. - Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then $u(M_b) \to \infty$ as $b \to \infty$. In addition, there exists a constant $\epsilon_5 > 0$ such that

$$[u(M_b)]^{\frac{1-p}{2}} \ge \epsilon_5 M_b^{1-\frac{\alpha}{2}}.$$

Proof. It follows from Lemma 2.6 that

$$\frac{u}{b} \to \frac{R}{N-2} \left(1 - \left(\frac{R}{r}\right)^{N-2} \right) \quad \text{uniformly on } [R, 2R].$$

Hence

$$\frac{u(2R)}{b} \to \frac{R}{N-2} \left(1 - 2^{2-N}\right) \quad \text{as } b \to \infty.$$

Thus $u(2R) \geq \frac{R}{2(N-2)} (1-2^{2-N}) b$ for sufficiently large b, and therefore $u(2R) \to \infty$ as $b \to \infty$. Since $M_b \to \infty$ as $b \to \infty$ (by Lemma 2.7), it follows that $M_b > 2R$ for large b, and since u is increasing on $[R, M_b)$ it follows that $u(M_b) \geq u(2R) \to \infty$ from which it follows that $u(M_b) \to \infty$ as $b \to \infty$. This completes the first part of the proof.

Next, from (2.1)-(2.2) we have

$$\frac{1}{2}\frac{u'^2}{K} + F(u) \ge F(u(M_b)) \quad \text{on } [R, M_b]$$

Rewriting this, integrating on $[R, M_b]$ and using (H4) gives

$$\int_{R}^{M_{b}} \frac{u'}{\sqrt{2}\sqrt{F(u(M_{b})) - F(u(t))}} \geq \int_{R}^{M_{b}} \sqrt{K} dr \\
\geq \int_{R}^{M_{b}} \sqrt{k_{1}} r^{-\frac{\alpha}{2}} dr \\
= \frac{\sqrt{k_{1}}(M_{b}^{1-\frac{\alpha}{2}} - R^{1-\frac{\alpha}{2}})}{1 - \frac{\alpha}{2}}.$$
(2.34)

Changing variables on the left-hand side, rewriting, and changing variables again gives

$$\int_{R}^{M_{b}} \frac{u'}{\sqrt{2}\sqrt{F(u(M_{b})) - F(u(t))}} = \int_{0}^{u(M_{b})} \frac{dt}{\sqrt{2}\sqrt{F(u(M_{b})) - F(t)}} = \frac{u(M_{b})}{\sqrt{2}\sqrt{F(u(M_{b}))}} \int_{0}^{1} \frac{ds}{\sqrt{1 - \frac{F(u(M_{b})s)}{F(u(M_{b}))}}}.$$
(2.35)

From the first part of the theorem we know that $u(M_b) \to \infty$ as $b \to \infty$. Then from (H2) it follows that $F(u) = \frac{u^{p+1}}{p+1} + G(u)$ where $G(u) = \int_0^u g(s) \, ds$. In a similar way to (2.32) it follows that

$$|G(u)| \le C_5 + \frac{1}{2(p+1)} |u|^{p+1}$$
 for all *u* for some constant C_5 . (2.36)

This along with (H2) and that 0 gives

$$\lim_{b \to \infty} \int_0^1 \frac{ds}{\sqrt{1 - \frac{F(u(M_b)s)}{F(u(M_b))}}} = \int_0^1 \frac{ds}{\sqrt{1 - s^{p+1}}} < \int_0^1 \frac{ds}{\sqrt{1 - s}} = 2.$$
(2.37)

In addition we see that

$$\sqrt{F(u(M_b))} = [u(M_b)]^{\frac{p+1}{2}} \sqrt{\frac{1}{p+1} + \frac{G(u(M_b))}{[u(M_b)]^{p+1}}}.$$
(2.38)

Since $u(M_b) \to \infty$ as $b \to \infty$ and $\frac{G(u)}{|u|^{p+1}} \to 0$ as $u \to \infty$ it follows from (2.38) that

$$\lim_{b \to \infty} \frac{[u(M_b)]^{\frac{p+1}{2}}}{\sqrt{F(u(M_b))}} = \sqrt{p+1}.$$
(2.39)

Therefore from (2.39) for large b we have

$$\frac{u(M_b)}{\sqrt{F(u(M_b))}} \le 2\sqrt{p+1} \ [u(M_b)]^{\frac{1-p}{2}}.$$
(2.40)

Combining (2.34)-(2.40) we obtain for large b,

$$[u(M_b)]^{\frac{1-p}{2}} \ge \frac{\sqrt{k_1}}{2(2-\alpha)\sqrt{p+1}} \left(M_b^{1-\frac{\alpha}{2}} - R^{1-\frac{\alpha}{2}}\right).$$
(2.41)

Finally since $M_b \to \infty$ as $b \to \infty$ (by Lemma 2.7) we obtain

$$[u(M_b)]^{\frac{1-p}{2}} \ge \epsilon_5 M_b^{1-\frac{\alpha}{2}}$$
(2.42)

with
$$\epsilon_5 = \frac{\sqrt{k_1}}{4(2-\alpha)\sqrt{p+1}} > 0$$
. This completes the proof.

Lemma 2.9. Let u satisfy (1.4)-(1.5) and suppose (H1)-(H5) hold. Let N > 2, $0 , and <math>0 < \alpha < 2$. Then for sufficiently large b there exists a $z_b > M_b$ such that u' < 0 on $(M_b, z_b]$ and $u(z_b) = 0$. In addition, given a positive integer n then if b is sufficiently large then u has n zeros on (R, ∞) .

Proof. First let $v(r) = u(r + M_b)$. Then $v(0) = u(M_b)$, $v'(0) = u'(M_b) = 0$, and (1.4) becomes

$$v'' + \frac{N-1}{r+M_b}v' + K(r+M_b)\left(|v|^{p-1}v + g(v)\right) = 0.$$
(2.43)

Next let

$$w_{\lambda}(r) = \lambda^{-\frac{2-\alpha}{1-p}} v(\lambda r) = \lambda^{-\frac{2-\alpha}{1-p}} u(\lambda r + M_b) \quad \text{where } \lambda^{\frac{2-\alpha}{1-p}} = u(M_b). \tag{2.44}$$

Then $w_{\lambda}(0) = \lambda^{-\frac{2-\alpha}{1-p}} u(M_b) = 1$ and $w'_{\lambda}(0) = 0$. Now recall from Lemmas 2.7 and 2.8 that $M_b \to \infty$ and $u(M_b) \to \infty$ as $b \to \infty$. Thus $[u(M_b)]^{\frac{2-\alpha}{1-p}} = \lambda \to \infty$ as $b \to \infty$. In addition we see from (2.43)-(2.44) that w_{λ} solves

$$w_{\lambda}^{\prime\prime} + \frac{N-1}{r + \frac{M_b}{\lambda}} w_{\lambda}^{\prime} + \lambda^{\alpha} K(\lambda r + M_b) \left[|w_{\lambda}|^{p-1} w_{\lambda} + \lambda^{-\frac{(2-\alpha)p}{1-p}} g(\lambda^{\frac{2-\alpha}{1-p}} w_{\lambda}) \right] = 0.$$
(2.45)

We now define

$$E_{\lambda} = \frac{1}{2} \frac{w_{\lambda}^{\prime 2}}{\lambda^{\alpha} K(\lambda r + M_b)} + \frac{1}{p+1} |w_{\lambda}|^{p+1} + \lambda^{\frac{-(2-\alpha)(1+p)}{1-p}} G(\lambda^{\frac{2-\alpha}{1-p}} w_{\lambda}).$$
(2.46)

Using (2.45) and (H5) we obtain

$$E'_{\lambda} = -\frac{\lambda^{1-\alpha} w_{\lambda}^{\prime 2}}{2(\lambda r + M_b) K(\lambda r + M_b)} \Big(2(N-1) + \frac{(\lambda r + M_b) K'(\lambda r + M_b)}{K(\lambda r + M_b)} \Big)$$

$$\leq 0 \quad \text{for } r \geq 0.$$
(2.47)

Thus

$$E_{\lambda}(r) \le E_{\lambda}(0) = \frac{1}{p+1} + \lambda^{\frac{-(2-\alpha)(1+p)}{1-p}} G(\lambda^{\frac{2-\alpha}{1-p}}).$$
(2.48)

From (H2) it follows that $\lambda^{\frac{-(2-\alpha)(1+p)}{1-p}}G(\lambda^{\frac{2-\alpha}{1-p}}) \to 0$ as $\lambda \to \infty$. In addition it follows from (2.36), (2.46), and (2.48) that for large λ ,

$$\frac{1}{2} \frac{w_{\lambda}^{\prime 2}}{\lambda^{\alpha} K(\lambda r + M_b)} + \frac{|w_{\lambda}|^{p+1}}{2(p+1)} \le \frac{2}{p+1}.$$
(2.49)

Hence the w_{λ} are uniformly bounded on $[0, \infty)$. In addition, it follows from (H4) and (2.49) that the w'_{λ} are uniformly bounded by $\sqrt{\frac{4k_2}{p+1}}r^{-\alpha/2}$ on (r,∞) . Then from (2.45) it follows that the w''_{λ} are uniformly bounded by $C_6r^{-(\frac{\alpha}{2}+1)}$ for some constant C_6 . Thus w_{λ} , w'_{λ} , and w''_{λ} are uniformly bounded on compact subsets of $(0,\infty)$ and so by the Arzela-Ascoli theorem a subsequence (still labeled w_{λ} and w'_{λ}) converges uniformly on compact subsets of $(0,\infty)$ to some w and w'. In addition, by the fundamental theorem of calculus with $0 \leq r_1 < r_2$ we have

$$|w_{\lambda}(r_{1}) - w_{\lambda}(r_{2})| \leq \int_{r_{1}}^{r_{2}} |w_{\lambda}'(s)| \, ds$$

$$\leq \int_{r_{1}}^{r_{2}} \sqrt{\frac{4k_{2}}{p+1}} s^{-\alpha/2} \, ds$$

$$= \sqrt{\frac{4k_{2}}{p+1}} [r_{2}^{1-\alpha/2} - r_{1}^{1-\alpha/2}]$$
(2.50)

and so we see from (2.50) and since $0 < \alpha < 2$ that the w_{λ} are equicontinuous on compact subsets of $[0, \infty)$. Thus it follows that w(r) is continuous on $[0, \infty)$ and in particular w(0) = 1.

Next we show that w_{λ} has a large number of zeros for large λ and hence u has a large number of zeros for large b.

So suppose w > 0 on $[0, \infty)$. We see then from (2.45) and (H4) that

$$-(r+\frac{M_b}{\lambda})^{N-1}w'_{\lambda}$$

$$=\int_0^r \lambda^{\alpha} K(\lambda(r+\frac{M_b}{\lambda}))(r+\frac{M_b}{\lambda})^{N-1} \Big(|w_{\lambda}|^{p-1}w_{\lambda}+\lambda^{-\frac{(2-\alpha)p}{1-p}}g(\lambda^{\frac{2-\alpha}{1-p}}w_{\lambda})\Big).$$
(2.51)

We claim now that

$$\lim_{\lambda \to \infty} \int_0^r \lambda^{\alpha} K(\lambda(r + \frac{M_b}{\lambda}))(r + \frac{M_b}{\lambda})^{N-1} \left(\lambda^{-\frac{(2-\alpha)p}{1-p}} g(\lambda^{\frac{2-\alpha}{1-p}} w_\lambda)\right) = 0$$
(2.52)

on any fixed compact subset of $[0, \infty)$.

10

To see this note as in (2.32) we can similarly obtain the inequality $|g(u)| \leq C_7 + \epsilon |u|^p$ for all u for some constant C_7 . Therefore using this and (H4) in (2.51) we see that

$$\left| \int_{0}^{r} \lambda^{\alpha} K(\lambda(t + \frac{M_{b}}{\lambda}))(t + \frac{M_{b}}{\lambda})^{N-1} \left(\lambda^{-\frac{(2-\alpha)p}{1-p}} g(\lambda^{\frac{2-\alpha}{1-p}} w_{\lambda}) \right) dt \right|$$

$$\leq \int_{0}^{r} k_{2}(t + \frac{M_{b}}{\lambda})^{N-1-\alpha} \left(C_{7} \lambda^{-\frac{(2-\alpha)p}{1-p}} + \epsilon |w_{\lambda}|^{p} \right) dt.$$
(2.53)

Now it follows from (2.42) and (2.44) that $M_b \leq \epsilon_6 [u(M_b)]^{\frac{1-p}{2-\alpha}} = \epsilon_6 \lambda$ where $\epsilon_6 = \epsilon_5^{-\frac{2}{2-\alpha}}$ so that for some subsequence $\frac{M_b}{\lambda} \to A$ with $0 \leq A \leq \epsilon_6$ and thus for large λ we obtain from (2.53),

$$\int_0^r k_2 (t + \frac{M_b}{\lambda})^{N-1-\alpha} \left(C_7 \lambda^{-\frac{(2-\alpha)p}{1-p}} + \epsilon |w_\lambda|^p \right) dt$$

$$\leq C_7 k_2 \lambda^{-\frac{(2-\alpha)p}{1-p}} \int_0^r (t+2\epsilon_6)^{N-1-\alpha} + \epsilon k_2 \int_0^r (t+2\epsilon_6)^{N-1-\alpha} |w_\lambda|^p.$$

Both of these terms are small on any compact subset of $[0, \infty)$ (the first since $\lambda \to \infty$ and the second term by (2.49)) and so both of these limit to zero as $\lambda \to \infty$. This establishes (2.52).

Therefore we see by using (H4) and taking limits in (2.51) we obtain

$$-(r+A)^{N-1}w' \ge k_1 \int_0^r (t+A)^{N-1-\alpha} w^p \, dt \quad \text{on } (0,\infty).$$
 (2.54)

Since w > 0 on $[0, \infty)$ it follows from (2.54) that w is decreasing so that

$$-(r+A)^{N-1}w' \ge k_1 w^p \frac{(r+A)^{N-\alpha} - A^{N-\alpha}}{N-\alpha} \quad \text{on } (0,\infty).$$
(2.55)

Rewriting (2.55) gives

$$-w'w^{-p} \ge \frac{k_1}{N-\alpha}(r+A)^{1-\alpha} - \frac{k_1A^{N-\alpha}}{N-\alpha}(r+A)^{1-N} \text{ on } (0,\infty).$$
(2.56)

Next we analyze the two cases A = 0 and $A \neq 0$ separately.

Case 1: $A \neq 0$. Integrating (2.56) on (0, r) gives

$$-\left(\frac{w^{1-p}-1}{1-p}\right) \geq \frac{k_1}{N-\alpha} \left(\frac{(r+A)^{2-\alpha}}{2-\alpha} - \frac{A^{2-\alpha}}{2-\alpha}\right) - \frac{k_1 A^{N-\alpha}}{N-\alpha} \left(\frac{(r+A)^{2-N}}{2-N} - \frac{A^{2-N}}{2-N}\right).$$

Thus for some constant C_8 we obtain

$$\frac{w^{1-p}-1}{1-p} \le -\frac{k_1(r+A)^{2-\alpha}}{(N-\alpha)(2-\alpha)} - \frac{k_1(r+A)^{2-N}A^{N-\alpha}}{(N-2)(N-\alpha)} + C_8.$$
 (2.57)

The right-hand side of (2.57) goes to $-\infty$ as $r \to \infty$ since $0 < \alpha < 2$, 0 , <math>N > 2 and so we see that w becomes negative which is a contradiction because we assumed w > 0 and so w and hence u must have a zero for sufficiently large b.

Case 2: A = 0. In this case we see that (2.56) becomes

$$-w'w^{-p} \ge \frac{k_1}{N-\alpha} r^{1-\alpha}$$
 on $(0,\infty)$. (2.58)

Integrating (2.58) on (0, r] gives

$$\frac{w^{1-p} - 1}{1-p} \le -\frac{k_1 r^{2-\alpha}}{(N-\alpha)(2-\alpha)}$$

J. A. IAIA

and therefore we see that w becomes negative. Thus we again obtain a contradiction and so w and hence u has a zero if b is sufficiently large.

Thus there exists a $z_b > R$ such that $u(z_b) = 0$ and u > 0 on (R, z_b) . In addition by uniqueness of solutions of initial value problems it follows that $u'(z_b) < 0$ and then we can similarly show as in Lemma 2.5 that u has a local minimum $m_b > z_b$ for large enough b > 0 and also that w has a second zero $z_{2,b}$ (and hence u has a second zero) if b is sufficiently large. In a similar way, given any positive integer n we can show for large enough b that u has n zeros on (R, ∞) . Since $w_\lambda \to w$ uniformly on compact sets it follows then that if λ is sufficiently large then w_λ will have n zeros on $(0, \infty)$ and hence u(r, b) will have n zeros on (R, ∞) if b > 0 is sufficiently large. This completes the proof. \Box

3. PROOF OF THEOREM 1.1

We consider the set

$$\{b > 0 | u(r, b) > 0 \text{ for all } r > R\}.$$

This set is nonempty by Lemma 2.6 and is bounded from above by Lemma 2.9 so there exists a $b_0 > 0$ such that

$$b_0 = \sup\{b > 0 \mid u(r, b) > 0 \text{ for all } r > R\}.$$

We show now that $u(r, b_0) > 0$ for r > R. If $u(r_0, b_0) = 0$ and $u(r, b_0) > 0$ on (R, r_0) then $u'(r_0, b_0) \leq 0$. By uniqueness of solutions of initial value problems it follows that $u'(r_0, b_0) < 0$. Thus for $r_1 > r_0$ and r_1 sufficiently close to r_0 we have $u(r_1, b_0) < 0$. Then for b close to b_0 with $b < b_0$ then $u(r_1, b) < 0$ contradicting the definition of b_0 . Hence $u(r, b_0) > 0$ for r > R. Now by Lemma 2.3 we know that $u(r, b_0)$ must get larger than β . If u' > 0 for all $r \geq R$ then since u is bounded it follows that u would have a limit which by Lemma 2.1 would have to be less than or equal to β . Thus we see that $u(r, b_0)$ must have a local maximum $M_{b_0} > R$ and u' > 0 on $[R, M_{b_0})$. Next we show $E(r, b_0) \ge 0$ for all $r \ge R$. If $E(r_0, b_0) < 0$ then $E(r_0, b) < 0$ for $b > b_0$ and b close to b_0 . On the other hand, since $b > b_0$ it follows that there exists a z_b such that $u(z_b, b) = 0$. Thus $E(z_b, b) \ge 0$. Since E is nonincreasing this implies $z_b < r_0$ for all $b > b_0$. However $z_b \to \infty$ as $b \to b_0^+$ for if the z_b were bounded then this would force a subsequence of the z_b to converge to some z_0 and then $u(z_0, b_0) = 0$ contradicting that $u(r, b_0) > 0$. Thus $E(r, b_0) \ge 0$ for all $r \ge R$. It now follows that $u(r, b_0)$ cannot have a positive local minimum, $m_{b_0} > M_{b_0}$ for at such a point $u'(m, b_0) = 0$, $u''(m, b_0) \ge 0$ and so $f(u(m, b_0)) \leq 0$. Since $u(m, b_0) > 0$ this then forces $0 < u(m, b_0) \leq \beta$ and thus $E(m, b_0) = F(u(m, b_0)) < 0$ contradicting that $E(r, b_0) \ge 0$. Thus $u'(r, b_0) < 0$ for $r > M_{b_0}$ and so $\lim_{r\to\infty} u(r, b_0)$ exists. Denoting this limit as L then $L \ge 0$ since $u(r, b_0) > 0$ for r > R and by Lemma 2.1 we have f(L) = 0 so that L = 0 or $L = \beta$. Then a similar argument as in Lemma 2.2 shows that $u(r, b_0)$ gets less than β and so it follows that L = 0 and thus $\lim_{r \to \infty} u(r, b_0) = 0$. Hence $u(r, b_0)$ is a positive solution on (R, ∞) and $\lim_{r\to\infty} u(r, b_0) = 0$.

Next from a lemma in [9] if $b > b_n$ is sufficiently close to b_n where $u(r, b_n)$ has n zeros on (R, ∞) and

$$\lim_{r \to \infty} u(r, b) = 0$$

then u(r, b) has at most n + 1 zeros on (R, ∞) . From this lemma it then follows that

$$\{b > b_0 | u(r, b) \text{ has exactly one zero on } (R, \infty)\}$$

is nonempty and again from Lemma 2.9 this set is bounded from above. Thus there exists a $b_1 > b_0$ such that

$$b_1 = \sup\{b > b_0 | u(r, b) \text{ has exactly one zero on } (R, \infty)\}.$$

As above we can show $u(r, b_1)$ has exactly one zero on (R, ∞) and

$$\lim_{r \to \infty} u(r, b_1) = 0$$

Similarly we can find $b_n > b_{n-1}$ such that $u(r, b_n)$ has exactly n zeros on (R, ∞) and

$$\lim u(r, b_n) = 0.$$

This completes the proof of Theorem 1.1.

References

- H. Berestycki, P.L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- H. Berestycki, P.L. Lions; Non-linear scalar field equations II, Arch. Rational Mech. Anal., Volume 82 (1983), 347-375.
- [3] M. Berger; Nonlinearity and functional analysis, Academic Free Press, New York, 1977.
- [4] G. Birkhoff, G. C. Rota; Ordinary differential equations, Ginn and Company, 1962.
- [5] A. Castro, L. Sankar, R. Shivaji; Uniqueness of nonnegative solutions for semipositone problems on exterior domains, *Journal of Mathematical Analysis and Applications*, Volume 394, Issue 1 (2012), 432-437.
- [6] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, *Boundary Value Problems*, 2014 (2014), 198-207.
- [7] C. Cortazar, J. Dolbeault, M. Garcia-Huidobro, R. Manasevich; Existence of sign changing solutions for an equation with weighted p-Laplace operator, *Nonlinear Analysis: Theory, Methods, Applications*, Vol 110 (2014), 1-22.
- [8] C. Cortazar, M. Garcia-Huidobro, C. Yarur; On the existence of sign changing bound state solutions of a quasilinear equation, *Journal of Differential Equations*, Vol 254 Issue 16 (2013), 2603-2625.
- [9] J. Iaia; Existence and nonexistence for semilinear equations on exterior domains, submitted to the *Journal of Partial Differential Equations*, 2016.
- [10] J. Iaia; Existence and nonexistence of solutions for sublinear equations on exterior domains, submitted to the *Electronic Journal of Differential Equations*, Vol. 2017 (2017), No. 214, pp. 1-13.
- [11] J. Iaia; Existence for semilinear equations on exterior domains, *Electronic Journal of the Qualitative Theory of Differential Equations*, No. 108 (2016), 1-12.
- [12] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, to appear in *Journal of Mathematical Analysis and Applications*, 446 (2017), 591-604.
- [13] C. K. R. T. Jones, T. Kupper; On the infinitely many solutions of a semi-linear equation, SIAM J. Math. Anal., Volume 17 (1986), 803-835.
- [14] J. Joshi; Existence and nonexistence of solutions of sublinear problems with prescribed number of zeros on exterior domains, *Electronic Journal of Differential Equations*, Vol. 2017 (2017), No. 133, 1-10.

- [15] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, *Journal of Mathematical Analysis and Applications*, 434, No. 2 (2016), 1597-1611.
- [16] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10 (2011), 861-875.
- [17] K. McLeod, W. C. Troy, F. B. Weissler; Radial solutions of $\Delta u + f(u) = 0$ with prescribed numbers of zeros, *Journal of Differential Equations*, Volume 83, Issue 2 (1990), 368-373.
- [18] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1 (2013), 146-153.
- [19] J. Serrin, M. Tang; Uniqueness of ground states for quasilinear elliptic equations, Indiana University Mathematics Journal, Vol 49 No 3 (2000), 897-923.
- [20] W. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), 149-162.

Joseph A. Iaia

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NORTH TEXAS P.O. BOX 311430 DENTON, TX 76203-1430, USA

E-mail address: iaia@unt.edu