
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 243, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

HIGHER ORDER MULTI-TERM TIME-FRACTIONAL PARTIAL
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Communicated by Mokhtar Kirane

Abstract. In this work we discuss higher order multi-term partial differential

equation (PDE) with the Caputo-Fabrizio fractional derivative in time. Using

method of separation of variables, we reduce fractional order partial differential
equation to the integer order. We represent explicit solution of formulated

problem in particular case by Fourier series.

1. Introduction

Consideration of new fractional derivative with non-singular kernel was initiated
by Caputo and Fabrizio in their work [1]. Motivation came from application. Pre-
cisely, new fractional derivatives can better describe material heterogeneities and
structures with different scales. Special role of spatial fractional derivative in the
study of the macroscopic behaviors of some materials, related with nonlocal in-
teractions, which are prevalent in determining the properties of the material was
also highlighted. In their next work [2], authors represented some applications of
the introduced fractional derivative. Nieto and Losada [3] studied some properties
of this fractional derivative naming it as Caputo-Fabrizio (CF) derivative. They
introduced fractional integral associated with the CF derivative, applying it to the
solution of linear and nonlinear differential equations involving CF derivative.

Later, many authors showed interest in the CF derivative and as a result, several
applications were discovered. For instance, in groundwater modeling, in electrical
circuits, in controlling the wave movement, in nonlinear Fisher’s reaction-diffusion
equation, in modeling of a mass-spring-damper system, etc. We note also some
recent works related with CF derivative [4, 5, 6, 7, 8, 9].

Different methods were applied for solving differential equations involving CF
derivative. Namely, Laplace transform, reduction to integral equations, and reduc-
tion to integer order differential equations. Last two methods were used in the
works [10, 11].

In this paper, we aim to show an algorithm to reduce initial value problem (IVP)
for multi-term fractional DE with CF derivative to the IVP for integer order DE and
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using this result to prove a unique solvability of a boundary-value problem (BVP)
for PDE involving CF derivative on time-variable. First, we give preliminary infor-
mation on CF derivative and then we formulate our main problem. Representing
formal solution of the formulated problem by infinite series, in particular case, we
prove uniform convergence of that infinite series.

2. Preliminaries

The fractional derivative of order α (0 < α < 1) in CF sense [2] is defined as

CFD
α
atg(t) =

1
1− α

∫ t

a

g′(s)e−
α

1−α (t−s)ds . (2.1)

This operator is well defined on the space

Wα,1 =
{
g(t) ∈ L1(a,∞) : (g(t)− ga(s))e−

α
1−α (t−s) ∈ L1(a, t)× L1(a,∞)

}
,

whose norm, for α 6= 1 is given by

‖g(t)‖Wα,1 =
∫ ∞
a

|g(t)dt+
α

1− α

∫ ∞
a

∫ t

−∞
|gs(s)|e−

α
1−α (t−s)dsdt,

where ga(t) = g(t), t ≥ a, ga(t) = 0, −∞ < t < a [2]. The following equality is
shown in [4],

CFD
α+n
at g(t) = CFD

α
at (CFDn

atg(t)) .

3. Formulation of a problem and formal solution

Consider the time-fractional PDE
k∑

n=0

λn · CFDα+n
0t u(t, x)− uxx(t, x) = f(t, x) (3.1)

in a domain Ω = {(t, x) : 0 < t < q, 0 < x < 1}. Here λn are given real numbers,
f(t, x) is a given function, k ∈ N0, q ∈ R+.

Problem. Find a solution of (3.1) satisfying the following conditions:

u(t, x) ∈ C2(Ω),
∂nu(t, x)
∂tn

∈Wα,1(0, q), (3.2)

u(t, 0) = u(t, 1) = 0,
∂iu(t, x)
∂ti

∣∣
t=0

= C̃i, i = 0, 1, 2, . . . , k, (3.3)

where C̃i are any real numbers.

3.1. Solution of higher order multi-term fractional ordinary differential
equations. We expand u(t, x) as the Fourier series

u(t, x) =
∞∑
m=1

Tm(t) sinmπx, (3.4)

where Tm(t) are the Fourier coefficients of u(t, x).
Substituting this representation in (3.1) and considering the initial conditions

(3.3), we get the following IVP with respect to time-variable:
k∑

n=0

λn · CFDα+n
0t Tm(t) + (mπ)2Tm(t) = fm(t),

T (i)
m (0) = Ci, i = 0, 1, 2, . . . , k

(3.5)
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where fm(t) are Fourier coefficients of f(t, x).
Based on definition (2.1) and initial conditions (3.3), after integrating by parts,

we rewrite the fractional derivatives as follows:

CFD
α
0tTm(t) =

1
1− α

Tm(t)− α

(1− α)2

∫ t

0

Tm(s)e−
α

1−α (t−s)ds− Tm(0)
1− α

e−
α

1−α t,

CFD
α+1
0t Tm(t) =

1
1− α

T ′m(t)− α

(1− α)2
Tm(t) +

α2

(1− α)3

∫ t

0

Tm(s)e−
α

1−α (t−s)ds

+
αTm(0)
(1− α)2

e−
α

1−α t − T ′m(0)
1− α

e−
α

1−α t,

CFD
α+2
0t Tm(t) =

1
1− α

T ′′m(t)− α

(1− α)2
T ′m(t) +

α2

(1− α)3
Tm(t)

− α3

(1− α)4

∫ t

0

Tm(s)e−
α

1−α (t−s)ds− α2Tm(0)
(1− α)3

e−
α

1−α t

+
αT ′m(0)
(1− α)2

e−
α

1−α t − T ′′m(0)
1− α

e−
α

1−α t .

Continuing this procedure, we find for n ≥ 1 the formula

CFD
α+n
0t Tm(t) =

1
1− α

{ n∑
i=0

(
− α

1− α
)i[
T (n−i)
m (t)− T (n−i)

m (0)e−
α

1−α t
]

+
(
− α

1− α
)n+1

∫ t

0

Tm(s)e−
α

1−α (t−s)ds
}
.

(3.6)

We substitute (3.6) into (3.5) and deduce

k∑
n=0

λn
(1− α)

{ n∑
i=0

(
− α

1− α
)i[
T (n−i)
m (t)− T (n−i)

m (0)e−
α

1−α t
]

+
(
− α

1− α
)n+1

∫ t

0

Tm(s)e−
α

1−α (t−s)ds
}

+ (mπ)2Tm(t)

= fm(t).

We multiply this equality by (1− α)e
α

1−α t:

k∑
n=0

λn

{ n∑
i=0

(
− α

1− α
)i[
T (n−i)
m (t)e

α
1−α t − T (n−i)

m (0)
]

+
(
− α

1− α
)n+1

∫ t

0

Tm(s)e
α

1−α sds
}

+ (mπ)2(1− α)Tm(t)e
α

1−α t

= (1− α)e
α

1−α tfm(t).

(3.7)
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Introducing new function T̃m(t) = Tm(t)e
α

1−α t, we rewrite some items of (3.7):

T ′m(t)e
α

1−α t = T̃ ′m(t)− α

1− α
T̃m(t),

T ′′m(t)e
α

1−α t = T̃ ′′m(t)− 2α
1− α

T̃ ′m(t) +
( α

1− α
)2
T̃m(t),

. . .

T (n)
m (t)e

α
1−α t =

n∑
j=0

(−1)n−j
n!

j!(n− j)!
( α

1− α
)n−j

T̃ (j)
m (t).

(3.8)

We note that T̃ (0)
m (t) = T̃m(t).

Considering (3.8), from (3.7) we deduce

k∑
n=0

λn

{ n∑
i=0

(
− α

1− α
)i n−i∑
j=0

(n− i)!
j!(n− i− j)!

(
− α

1− α
)n−i−j

×
[
T̃ (j)
m (t)− T̃ (j)

m (0)
]

+
(
− α

1− α
)n+1

∫ t

0

T̃m(s)ds
}

+ (mπ)2(1− α)T̃m(t)

= (1− α)e
α

1−α tfm(t).

(3.9)

Differentiating (3.9) once by t, we will get (k + 1)th order DE. Using its general
solution and applying initial conditions, one can get explicit form of functions Tm(t),
consequently formal solution of the formulated problem is represented by infinite
series (3.4). Imposing certain conditions to the given functions, we prove uniform
convergence of infinite series, which will complete the proof of the unique solvability
of the formulated problem.

In the next section we show the complete steps in a particular case. We note
that even this particular case was not considered before.

4. Particular case

In this subsection we consider the case k = 2, to show the complete steps. In this
case, after differentiating (3.9) once with respect to t, we get the following third
order ordinary DE,

T̃ ′′′m (t) +A1T̃
′′
m(t) +A2T̃

′
m(t) +A3T̃m = gm(t) (4.1)

where T̃m(t) = Tm(t)e
α

1−α t,

A1 = − 3α
1− α

+
λ1

λ2
,

A2 = 3
(
− α

1− α
)2 +

λ0 − 2αλ1
1−α + (mπ)2(1− α)

λ2
,

A3 =
(
− α

1− α
)3 +

(
− α

1−α
)2
λ1 − α

1−αλ0

λ2
,

gm(t) = [αfm(t) + (1− α)fm′(t)]e
α

1−α t.

(4.2)
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4.1. General solution. The characteristic equation of (4.1) is

µ3 +A1µ
2 +A2µ+A3 = 0,

whose discriminant is

∆m = −4A3
1A3 +A2

1A
2
2 − 4A3

2 + 18A1A2A3 − 27A2
3.

According to the general theory, form of solutions depends on the sign of the dis-
criminant. Below we will give explicit forms of solutions case by case.

Case ∆m > 0. The characteristic equation has 3 different real roots (µ1, µ2, µ3),
hence based on general solution we can find explicit form of Tm(t) as

Tm(t) = C1e
(µ1− α

1−α )t + C2e
(µ2− α

1−α )t + C3e
(µ3− α

1−α )t

+
1

(µ2µ2
3 − µ2

2µ3 − µ1µ2
3 + µ2

1µ3 + µ1µ2
2 − µ2

1µ2)

×
[
e(µ1− α

1−α )t(µ3 − µ2)
∫ (

αgm(z) + (1− α)g′m(z)
)
e(

α
1−α−µ1)z dz

+ e(µ2− α
1−α )t(µ1 − µ3)

∫
(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ2)z dz

+ e(µ3− α
1−α )t(µ2 − µ1)

∫
(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ3)z dz

]
.

(4.3)

Case ∆m < 0. The characteristic equation has one real (µ1) and two complex-
conjugate roots (µ2 = µ21 ± iµ22). Therefore, Tm(t) has the form

Tm(t) = C1e
(µ1− α

1−α )t + (C2 cosµ22t+ C3 sinµ22t)e(µ21− α
1−α )t

+
1

µ2
22 − 3µ2

21 − 2µ1µ21 + µ2
1

[
e(µ1− α

1−α )t

∫
(αgm(z)

+ (1− α)g′m(z))e(
α

1−α−µ1)z dz +
1
µ22

e(µ21− α
1−α )t cosµ22t

∫
(µ1 sinµ22z

− µ21 sinµ22z − µ22 cosµ22z) (αgm(z) + (1− α)g′m(z)) e(
α

1−α−µ21)z dz

+
1
µ22

e(µ21− α
1−α )t sinµ22t

∫
(µ21 cosµ22z − µ22 sinµ22z

− µ1 cosµ22z) (αgm(z) + (1− α)g′m(z)) e(
α

1−α−µ21)z dz
]
.

Case ∆m = 0. We have have 2 sub-cases:
(a) Three real roots, two of which are equal, third one is different (µ1 = µ2, µ3):

Tm(t) = C1e
(µ1− α

1−α )t + C2te
(µ1− α

1−α )t + C3e
(µ3− α

1−α )t

+
1

(µ2
1 − 2µ1µ3 + µ3)

[
e(µ1− α

1−α )t

∫
(µ3z − 1− µ1z)(αgm(z)

+ (1− α)g′m(z))e(
α

1−α−µ1)z dz

+ te(µ1− α
1−α )t(µ1 − µ3)

∫
(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ1)z dz

+ e(µ3− α
1−α )t

∫
(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ3)z dz

]
;

(4.4)
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(b) all 3 real roots are the same (µ1 = µ2 = µ3):

Tm(t) = C1e
(µ1− α

1−α )t + C2te
(µ1− α

1−α )t + C3t
2e(µ1− α

1−α )t

+
1
2
e(µ1− α

1−α )t

∫
z2(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ1)z dz

− te(µ1− α
1−α )t

∫
z(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ1)z dz

+
1
2
t2e(µ1− α

1−α )t

∫
(αgm(z) + (1− α)g′m(z))e(

α
1−α−µ1)z dz.

(4.5)

Here Cj (j = 1, 3) are any constants, which will be defined using initial conditions.

4.2. Convergence part. We consider the case ∆m > 0 in details. Found solution
we satisfy to the initial conditions (3.5). Without losing generality, we assume that
C̃i = 0 (i = 0, 2). Regarding the Cj we will get the following algebraic system of
equations

C1 + C2 + C3 = −d1,

C1(µ1 −
α

1− α
) + C2(µ2 −

α

1− α
) + C3(µ3 −

α

1− α
) = −d2,

C1(µ1 −
α

1− α
)2 + C2(µ2 −

α

1− α
)2 + C3(µ3 −

α

1− α
)2 = −d3,

where

d1

=
1

(µ2µ2
3 − µ2

2µ3 − µ1µ2
3 + µ2

1µ3 + µ1µ2
2 − µ2

1µ2)

[
(µ3 − µ2)

∫ t (
αgm(z)

+ (1− α)g′m(z)
)
dz
∣∣
t=0

+ (µ1 − µ3)
∫ t (

αgm(z) + (1− α)g′m(z)
)
dz
∣∣
t=0

+ (µ2 − µ1)
∫ t (

αgm(z) + (1− α)g′m(z)
)
dz
∣∣
t=0

]
,

(4.6)

d2 =
1

(µ2µ2
3 − µ2

2µ3 − µ1µ2
3 + µ2

1µ3 + µ1µ2
2 − µ2

1µ2)

× [(µ1 −
α

1− α
)(µ3 − µ2)

∫ t (
αgm(z) + (1− α)g′m(z)

)
dz
∣∣
t=0

+ (µ3 − µ2)(αgm(0) + (1− α)g′m(0))

+ (µ2 −
α

1− α
)(µ1 − µ3)

∫ t (
αgm(z) + (1− α)g′m(z)

)
dz
∣∣
t=0

+ (µ1 − µ3)(αgm(0) + (1− α)g′m(0)) + (µ3 −
α

1− α
)(µ2 − µ1)

×
∫ t (

αgm(z) + (1− α)g′m(z)
)
dz
∣∣
t=0

+ (µ2 − µ1)(αgm(0) + (1− α)g′m(0))
]
,

(4.7)
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d3 =
1

(µ2µ2
3 − µ2

2µ3 − µ1µ2
3 + µ2

1µ3 + µ1µ2
2 − µ2

1µ2)

×
[
(µ1 −

α

1− α
)2(µ3 − µ2)

∫ t (
αgm(z) + (1− α)g′m(z)

)
dz
∣∣
t=0

+ (µ1 −
α

1− α
)(µ3 − µ2)(αgm(0) + (1− α)g′m(0))

+ (µ3 − µ2)(αg′m(0) + (1− α)g′′m(0)) + (µ2 −
α

1− α
)2(µ1 − µ3)

×
∫ t

(αgm(z) + (1− α)g′m(z)) dz
∣∣
t=0

+ (µ2 −
α

1− α
)(µ1 − µ3)

× (αgm(0) + (1− α)g′m(0)) + (µ1 − µ3)(αg′m(0) + (1− α)g′′m(0))

+ (µ3 −
α

1− α
)2(µ2 − µ1)

∫ t

(αgm(z) + (1− α)g′m(z)) dz
∣∣
t=0

+ (µ3 −
α

1− α
)(µ2 − µ1)(αgm(0) + (1− α)g′m(0))

+ (µ2 − µ1)(αg′m(0) + (1− α)g′′m(0))
]
.

(4.8)

Solving this system, we get

C1 = −d1 −
−d2(µ1 − α

1−α ) + d3

(µ2 − α
1−α )(µ1 − α

1−α )− (µ2 − α
1−α )2

−
(
− d1(µ1 −

α

1− α
)(µ2 −

α

1− α
)− d2(µ2 −

α

1− α
) + d2(µ1 −

α

1− α
)− d3

)
÷
([
µ1µ2 − µ2µ3 − µ3µ1 − µ2

3 − 2(
α

1− α
)2
][

(µ2 −
α

1− α
)(µ1 −

α

1− α
)

− (µ2 −
α

1− α
)2
])

−
−d1(µ1 − α

1−α )(µ2 − α
1−α ) + d2(µ2 − α

1−α ) + d2(µ1 − α
1−α )− d3

µ1µ2 − µ2µ3 − µ3µ1 − µ2
3 − 2( α

1−α )2

C2 =
−d2(µ1 − α

1−α ) + d3

((µ2 − α
1−α )(µ1 − α

1−α )− (µ2 − α
1−α )2)

−
(

(−d1)(µ1 −
α

1− α
)(µ2 −

α

1− α
) + d2(µ2 −

α

1− α
) + d2(µ1 −

α

1− α
)− d3

)
÷
([
µ1µ2 − µ2µ3 − µ3µ1 − µ2

3 − 2(
α

1− α
)2
][

(µ2 −
α

1− α
)(µ1 −

α

1− α
)

− (µ2 −
α

1− α
)2
])

C3 =
(−d1)(µ1 − α

1−α )(µ2 − α
1−α ) + d2(µ2 − α

1−α ) + d2(µ1 − α
1−α )− d3

µ1µ2 − µ2µ3 − µ3µ1 − µ2
3 − 2( α

1−α )2

In general, we can write

|Cj | ≤M1|d1|+M2|d2|+M3|d3|.
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Hence, we need the following estimations in order to provide convergence of used
series:

|d1| ≤
1

(mπ)4

∣∣∣M4

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ1)z dz
∣∣
t=0

+M5

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ2)z dz
∣∣
t=0

+M6

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ3)z dz
∣∣
t=0

∣∣∣
≤ 1

(mπ)4
M7

|d2| ≤
1

(mπ)4

∣∣∣M8e
(µ1− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ1)z dz
∣∣
t=0

+M9e
(µ2− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ2)z dz
∣∣
t=0

+M10e
(µ3− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ3)z dz
∣∣
t=0

+M11(αf4,0(z) + (1− α)f4,1(z))
∣∣∣

≤ 1
(mπ)4

M12

|d3| ≤
1

(mπ)4

∣∣∣M13e
(µ1− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ1)z dz|t=0

+M14e
(µ2− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ2)z dz
∣∣
t=0

+M15e
(µ3− α

1−α )t

∫ t

(αf4,0(z) + (1− α)f4,1(z))e(
α

1−α−µ3)z dz
∣∣
t=0

+M16(αf4,0(z) + (1− α)f4,1(z)) +M17(αf4,1(z) + (1− α)f4,2(z))
∣∣∣

≤ 1
(mπ)4

M18

Here Mi (i = 1, 18) are positive constants,

fm(t) =
∫ 1

0

f(t, x) sinmπxdx =
1

(mπ)4
f4,0(t),

f ′m(t) =
1

(mπ)4

∫ 1

0

∂

∂t

( ∂4

∂x4
f(t, x)

)
sinmπxdx =

1
(mπ)4

f4,1(t),

f ′′m(t) =
1

(mπ)4

∫ 1

0

∂

∂2t

( ∂4

∂x4
f(t, x)

)
sinmπxdx =

1
(mπ)4

f4,2(t),

f4,0(t) =
∫ 1

0

∂4f(t, x)
∂x4

sinmπxdx,

f4,1(t) =
∫ 1

0

∂5f(t, x)
∂t∂x4

sinmπxdx,
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f4,2(t) =
∫ 1

0

∂6f(t, x)
∂t2∂x4

sinmπxdx.

We note that for above-given estimations, we need to impose the following condi-
tions to the given function f(t, x):

∂f

∂t
|t=0 = 0,

∂2f

∂t2
|t=0 = 0,

∂3f

∂t3
|t=0 = 0,

f(t, 1) = f(t, 0) = 0,
∂2f(t, 1)
∂x2

=
∂2f(t, 0)
∂x2

= 0.
(4.9)

Based on estimations (4.6)-(4.8), we obtain

|Cj | ≤
M19

(mπ)4

and considering (4.3), finally we get

|Tm| ≤
M20

(mπ)4
.

Taking (3.4) into account, on can easily deduce that

|u(t, x)| ≤ M21

(mπ)4
, |uxx(t, x)| ≤ M22

(mπ)2
.

The required estimate

|CFDα
0tu(t, x)| ≤ M23

(mπ)4

can be deduced easily, as well.

Theorem 4.1. If f(t, x) ∈ C2(Ω), ∂3f(t,x)
∂t3 ∈ C(Ω) and ∂3f(t,x)

∂t3 is continuous up to

t = 0, ∂6f(t,x)
∂t2∂x4 ∈ L1(0, 1) together with (4.9), then problem (3.1)-(3.3), when k = 2

has a unique solution represented by (3.4), where Tm(t) are defined by (4.3)-(4.5)
depending on the sign of ∆m.

Remark 4.2. Similar result can be obtained for general case, as well. For this,
one needs to differentiate (3.9) once by t and write explicit form of (k+ 1)th order
ordinary DE.

Remark 4.3. We note that used algorithm allows us to investigate fractional
spectral problems such as

CFD
α+1
0t T (t) + µT (t) = 0,

T (0) = 0, T (1) = 0,

reducing it to the second order usual spectral problem.
Using above-given algorithm, we obtain the following second order spectral prob-

lem

T̄ ′′(t) + (µ− 2α
1− α

)T̄ ′(t) + (
α

1− α
)2T̄ (t) = 0

T̄ (0) = 0, T̄ (1) = 0,
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eigenvalues and corresponding eigenfunctions of which have a form

µn =
2α

1− α
± 2
√

(
α

1− α
)2 − (nπ)2, n ∈ N,

T̄n(t) = e
µn− 2α

1−α
2 sinnπx, n ∈ N.

Remark 4.4. We can apply this approach for studying the more general equation
k∑

n=0

λn(t, x) · CFDα+n
0t u(t, x)− CFD

α+1
0t u(t, x) = f(t, x),

where λn(t, x) might have singularity as well.

Remark 4.5. We are able to consider another kind of fractional derivative without
singularity with αth order (0 < α < 1) such

Dα
0tT (t) = G(α)

∫ t

0

T ′(s)K(t, s, α)ds,

involving it in the fractional DE

λ1D
α
0tT (t) + λ2T (t) = f(t).

In this case, our kernel should satisfy to the condition

∂K(t, s, α)
∂s

∂K(s, t, α)
∂t

=
[
λ1G(α)K(s, s, α) + λ2

][
λ1G(α)K(t, t, α) + λ2

]
.
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