BLOW UP OF SOLUTIONS FOR VISCOELASTIC WAVE EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY

ERHAN PIŞKIN, AYŞE FIDAN

Communicated by Mokhtar Kirane

$$
\begin{aligned}
& \text { Abstract. In this article we consider the nonlinear Viscoelastic wave equa- } \\
& \text { tions of Kirchhoff type } \\
& \qquad u_{t t}-M\left(\|\nabla u\|^{2}\right) \Delta u+\int_{0}^{t} g_{1}(t-\tau) \Delta u(\tau) d \tau+u_{t}=(p+1)|v|^{q+1}|u|^{p-1} u, \\
& \quad v_{t t}-M\left(\|\nabla v\|^{2}\right) \Delta v+\int_{0}^{t} g_{2}(t-\tau) \Delta v(\tau) d \tau+v_{t}=(q+1)|u|^{p+1}|v|^{q-1} v
\end{aligned}
$$

with initial conditions and Dirichlet boundary conditions. We proved the global nonexistence of solutions by applying a lemma by Levine, and the concavity method.

1. Introduction

In this article we consider the initial boundary value problem

$$
\begin{gathered}
u_{t t}-M\left(\|\nabla u\|^{2}\right) \Delta u+\int_{0}^{t} g_{1}(t-\tau) \Delta u(\tau) d \tau+u_{t}=(p+1)|v|^{q+1}|u|^{p-1} u, \\
\quad(x, t) \in \Omega \times(0, T), \\
v_{t t}-M\left(\|\nabla v\|^{2}\right) \Delta v+\int_{0}^{t} g_{2}(t-\tau) \Delta v(\tau) d \tau+v_{t}=(q+1)|u|^{p+1}|v|^{q-1} v, \\
\quad(x, t) \in \Omega \times(0, T), \\
u(x, t)=v(x, t)=0, \quad(x, t) \in \partial \Omega \times(0, T), \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega, \\
v(x, 0)=v_{0}(x), \quad v_{t}(x, 0)=v_{1}(x), \quad x \in \Omega,
\end{gathered}
$$

where Ω is a bounded domain with a smooth boundary $\partial \Omega$ in $R^{n}(n=1,2,3)$, $p>1, q>1$ and $M(s)$ is a nonnegative C^{1} function such as

$$
M(s)=a+b s^{\gamma}, \quad s \geq 0
$$

for $s \geq 0, a>0, b \geq 0, a+b \geq 0, \gamma>0$. The function $g_{i}: R^{+} \rightarrow R^{+}$represents the kernel of the memory term and is a given positive function to be specified later.

[^0]The single viscoelastic wave equation of Kirchhoff type of the form

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|^{2}\right) \Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+h\left(u_{t}\right)=|u|^{q-1} u \tag{1.2}
\end{equation*}
$$

has been extensively studied and many results concerning nonexistence have been proved. See in this regard [9, 5]. When $M \equiv 1$, the equation (1.2) reduces to

$$
\begin{equation*}
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+h\left(u_{t}\right)=|u|^{q-1} u \tag{1.3}
\end{equation*}
$$

The existence, and blow up in finite time of solution for 1.3 were established (see [10, 12, 13, 18] and references therein).

For the case $M \equiv 1$, system (1.1) reduces to

$$
\begin{align*}
& u_{t t}-\Delta u+\int_{0}^{t} g_{1}(t-\tau) \Delta u(\tau) d \tau+u_{t}=f_{1}(u, v) \tag{1.4}\\
& v_{t t}-\Delta v+\int_{0}^{t} g_{2}(t-\tau) \Delta v(\tau) d \tau+v_{t}=f_{1}(u, v)
\end{align*}
$$

Han and Wang [2] obtained the existence and nonexistence of the solution of problem (1.4). Messaoudi and Said Houari (14) considered problem (1.4) and improved the blow up result in [2, for positive initial energy, using the same techniques as in (3). Ma et al. 11] studied the blow up of the solution of the problem (1.4) with arbitrary positive initial energy. For more information about 1.4 , see references [4, 6, 7, 16, 17.

In this article, we consider problem (1.4) and prove the blow up result by a concavity method with arbitrary positive initial energy.

This paper is organized as follows. In section 2, we present some lemmas. In section 3, we show the blow up of solutions.

2. Preliminaries

In this section, we introduce some notation, assumptions and lemmas which will be needed in this paper. Let $\|\cdot\|$ and $\|\cdot\|_{p}$ denote the usual $L^{2}(\Omega)$ norm and $L^{p}(\Omega)$ norm, respectively.

To state and prove our main results, we make the following assumptions:
(A1) $g_{i} \in C^{1}[0, \infty](i=1,2)$ is a non-negative and non-increasing differentiable function satisfying

$$
1-\int_{0}^{\infty} g_{i}(s) d s=l_{i}>0, \quad i=1,2
$$

(A2) $g_{i}(t) \geq 0, g_{i}^{\prime}(t) \leq 0$, for all $t \geq 0, i=1,2$.
(A3) The function $e^{1 / 2} g(t)$ is of positive type in the following sense:

$$
\int_{0}^{t} v(s) \int_{0}^{s} e^{(s-\tau) / 2} g_{i}(s-\tau) v(\tau) d \tau d s \geq 0, \quad \forall v \in C^{1}[0, \infty) \text { and } \forall t>0
$$

To obtain the blow up result, we need the following lemma which repeats the same one of [9] with slight modification, we will omit it.
Lemma 2.1. There exists positive constants m_{i} and $s \geq 0, a>0, b \geq 0, \gamma>0$ such that

$$
\begin{equation*}
\frac{p+q+2}{2} \bar{M}(s)-\left[M(s)+\frac{p+q+2}{2} \int_{0}^{\infty} g_{i}(\tau) d \tau\right] s \geq m_{i} s, \quad \forall s \geq 0 \tag{2.1}
\end{equation*}
$$

where

$$
\bar{M}(s)=\int_{0}^{s} M(\tau) d \tau
$$

Lemma 2.2 ([15]). For any $g \in C^{1}$ and $\phi \in H^{1}(0, T)$ we have

$$
\begin{align*}
& \int_{\Omega} \int_{0}^{t} g(t-\tau) \Delta \phi(\tau) \phi^{\prime}(t) d \tau d x \tag{2.2}\\
& =-\frac{1}{2}\left(g^{\prime} \circ \nabla \phi\right)(t)+\frac{1}{2} g(t)\|\nabla \phi\|^{2}+\frac{1}{2} \frac{d}{d t}\left[(g \circ \nabla \phi)(t)-\int_{0}^{t} g(\tau)\|\nabla \phi\|^{2} d \tau\right]
\end{align*}
$$

Lemma 2.3 (Sobolev-Poincaré inequality [1]). Let p be a number with $2 \leq p<\infty$ $(n=1,2)$ or $2 \leq p \leq 2 n /(n-2)(n \geq 3)$, then there is a constant $C_{*}=C_{*}(\Omega, p)$ such that

$$
\|u\|_{p} \leq C_{*}\|\nabla u\|, \quad \forall u \in H_{0}^{1}(\Omega)
$$

Lemma 2.4 ([8). Suppose that $F(t)$ is a twice continuously differentiable positive function satisfying

$$
F^{\prime \prime}(t) F(t)-(1+\alpha)\left[F^{\prime}(t)\right]^{2} \geq 0, \quad \forall t \geq 0
$$

where $\alpha>0$. If $F(0)>0$ and $F^{\prime}(0)>0$. Then there exists a positive constant $T^{*} \leq \frac{F(0)}{\alpha F^{\prime}(0)}$ such that $\lim _{t \rightarrow T^{*}} F(t)=\infty$.

3. Blow up of solution

In this section, we shall discuss the global nonexistence of the problem 1.1). Let us first introduce the functionals

$$
\begin{align*}
J(t)= & \frac{1}{2} \int_{0}^{t} g_{1}(\tau) d \tau\|\nabla u\|^{2}+\frac{1}{2} \int_{0}^{t} g_{2}(\tau) d \tau\|\nabla v\|^{2} \tag{3.1}\\
& +\frac{1}{2}\left[\left(g_{1} \circ \nabla u\right)(t)+\left(g_{2} \circ \nabla v\right)(t)\right]-\int_{\Omega}|u|^{p+1}|v|^{q+1} d x
\end{align*}
$$

and

$$
\begin{align*}
I(t)= & M\left(\|\nabla u(t)\|^{2}\right)\|\nabla u\|^{2}+M\left(\|\nabla v(t)\|^{2}\right)\|\nabla v\|^{2} \\
& -(p+q+2) \int_{\Omega}|u|^{p+1}|v|^{q+1} d x \tag{3.2}
\end{align*}
$$

We also define the energy function

$$
\begin{align*}
E(t)= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\frac{1}{2}\left[\bar{M}\left(\|\nabla u(t)\|_{2}^{2}\right)+\frac{1}{2} \bar{M}\left(\|\nabla v(t)\|_{2}^{2}\right)\right] \\
& -\frac{1}{2} \int_{0}^{t} g_{1}(\tau) d \tau\|\nabla u\|^{2}-\frac{1}{2} \int_{0}^{t} g_{2}(\tau) d \tau\|\nabla v\|^{2} \tag{3.3}\\
& +\frac{1}{2}\left[\left(g_{1} \circ \nabla u\right)(t)+\left(g_{2} \circ \nabla v\right)(t)\right]-\int_{\Omega}|u|^{p+1}|v|^{q+1} d x
\end{align*}
$$

where

$$
(\phi \circ \psi)(t)=\int_{0}^{t} \phi(t-\tau) \int_{\Omega}|\psi(t)-\psi(\tau)|^{2} d x d \tau=\int_{0}^{t} \phi(t-\tau)\|[\psi(t)-\psi(\tau)]\|^{2} d \tau
$$

Finally, we define

$$
\begin{equation*}
W=\left\{(u, v):(u, v) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega), I(u, v)>0\right\} \cup\{(0,0)\} \tag{3.4}
\end{equation*}
$$

The next lemma shows that our energy functional (3.3) is a nonincreasing function along the solution of the problem 1.1 .

Lemma 3.1. $E(t)$ is a non-creasing function for $t \geq 0$, that is

$$
\begin{equation*}
E^{\prime}(t) \leq-\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\frac{1}{2}\left[\left(g_{1}^{\prime} \circ \nabla u\right)(t)+\left(g_{2}^{\prime} \circ \nabla v\right)(t)\right] \leq 0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E(t) \leq E(0)-\int_{0}^{t}\left(\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right) d \tau \tag{3.6}
\end{equation*}
$$

Proof. Multiplying the first equation of 1.1 by u_{t} and the second equation by v_{t}, integrating over Ω, and using (2.2) and assumption (A1)-(A2), we obtain (3.5).

Lemma 3.2 ([18]). Assume that g_{i} satisfies assumptions (A1), (A2) and $H(t)$ is a function that is twice continuously differentiable, satisfying

$$
\begin{align*}
& H^{\prime \prime}(t)+H^{\prime}(t) \\
& >2 \int_{0}^{t} g(t-\tau) \int_{\Omega}[\nabla u(\tau, x) \nabla u(t, x)+\nabla u(\tau, x) \nabla u(t, x)] d x d \tau \tag{3.7}\\
& H(0)>0, \quad H^{\prime}(0)>0
\end{align*}
$$

for every $t \in\left[0, T_{0}\right)$ and $(u(x, t), v(x, t))$ is the solution of problem 1.1). Then the function $H(t)$ is strictly increasing on $\left[0, T_{0}\right)$.
Lemma 3.3. Assume $\left(u_{0}, v_{0}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right),\left(u_{1}, v_{1}\right) \in$ $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ and satisfy

$$
\begin{equation*}
\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x \geq 0 \tag{3.8}
\end{equation*}
$$

If the local solution $(u(t), v(t))$ of (1.1) satisfies

$$
I(u(t), v(t))<0
$$

then $H(t)=\|u(t, \cdot)\|_{2}^{2}+\|v(t)\|_{2}^{2}$ is strictly increasing on $[0, T)$.
Proof. Since

$$
\begin{aligned}
I(t)= & M\left(\|\nabla u(t)\|^{2}\right)\|\nabla u\|^{2}+M\left(\|\nabla v(t)\|^{2}\right)\|\nabla v\|^{2} \\
& -(p+q+2) \int_{\Omega}|u|^{p+1}|v|^{q+1} d x<0,
\end{aligned}
$$

and $(u(t), v(t))$ is the local solution of problem 1.1), by a simple computation, we have

$$
\begin{gather*}
H(t)=\|u(t, \cdot)\|_{2}^{2}+\|v(t, \cdot)\|_{2}^{2}=\int_{\Omega}|u(t)|^{2} d x+\int_{\Omega}|v(t)|^{2} d x \tag{3.9}\\
\frac{1}{2} \frac{d}{d t} H(t)=\int_{\Omega} u u_{t} d x+\int_{\Omega} v v_{t} d x \tag{3.10}\\
\frac{1}{2} \frac{d^{2}}{d t^{2}} H(t) \\
=\int_{\Omega}\left|u_{t}\right|^{2} d x+\int_{\Omega} u u_{t t} d x+\int_{\Omega}\left|v_{t}\right|^{2} d x+\int_{\Omega} v v_{t t} d x \\
=\int_{\Omega}\left|u_{t}\right|^{2} d x+\int_{\Omega}\left|v_{t}\right|^{2} d x+\int_{\Omega} u M\left(\|\nabla u\|^{2}\right) \Delta u d x \\
-\int_{\Omega} u \int_{0}^{t} g_{1}(t-\tau) \Delta u(\tau) d \tau d x-\int_{\Omega} u u_{t} d x+\int_{\Omega} u(p+1)|v|^{q+1}|u|^{p-1} u d x
\end{gather*}
$$

$$
\begin{aligned}
& +\int_{\Omega} v M\left(\|\nabla v\|^{2}\right) \Delta v d x-\int_{\Omega} v \int_{0}^{t} g_{2}(t-\tau) \Delta v(\tau) d \tau d x \\
& -\int_{\Omega} v v_{t} d x+\int_{\Omega} v(q+1)|u|^{p+1}|v|^{q-1} v d x \\
\geq & \int_{\Omega} M\left(\|\nabla u\|^{2}\right) u \Delta u d x-\int_{\Omega} \int_{0}^{t} g_{1}(t-\tau) u \Delta u(\tau) d \tau d x \\
& -\int_{\Omega} u u_{t} d x+\int_{\Omega}(p+1)|v|^{q+1}|u|^{p-1} u d x \\
& +\int_{\Omega} M\left(\|\nabla v\|^{2}\right) v \Delta v d x-\int_{\Omega} \int_{0}^{t} g_{2}(t-\tau) v \Delta v(\tau) d \tau d x \\
& -\int_{\Omega} v v_{t} d x+\int_{\Omega}(q+1)|u|^{p+1}|v|^{q-1} v d x \\
> & -\int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+\int_{0}^{t} g_{1}(t-\tau) \int_{\Omega} \nabla u(\tau) \nabla u(t) d x d \tau \\
& +\int_{0}^{t} g_{2}(t-\tau) \int_{\Omega} \nabla v(\tau) \nabla v(t) d x d \tau \\
= & -\frac{1}{2} \frac{d H}{d t}+\int_{0}^{t} g_{1}(t-\tau) \int_{\Omega} \nabla u(\tau) \nabla u(t) d x d \tau \\
& +\int_{0}^{t} g_{2}(t-\tau) \int_{\Omega} \nabla v(\tau) \nabla v(t) d x d \tau
\end{aligned}
$$

which yields

$$
\begin{aligned}
& \frac{1}{2} \frac{d^{2} H}{d t^{2}}+\frac{1}{2} \frac{d H}{d t} \\
& >\int_{0}^{t} g_{1}(t-\tau) \int_{\Omega} \nabla u(\tau) \nabla u(t) d x d \tau+\int_{0}^{t} g_{2}(t-\tau) \int_{\Omega} \nabla v(\tau) \nabla v(t) d x d \tau
\end{aligned}
$$

Therefore, by (3.7), the proof is complete.
Theorem 3.4. Under (A1)-(A3) hold, and the initial data

$$
\begin{gathered}
\left(u_{0}, v_{0}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \\
\left(u_{1}, v_{1}\right) \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{gathered}
$$

satisfy

$$
\begin{gather*}
E(0)>0 \tag{3.11}\\
I\left(u_{0}, v_{0}\right)<0 \tag{3.12}\\
\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x \geq 0 \tag{3.13}\\
\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2} \geq \frac{(p+q+2) \eta}{\min \left\{m_{1}, m_{2}\right\}} E(0) \tag{3.14}
\end{gather*}
$$

Then the solution of problem (1.1) blows up in finite $T<\infty$.
Lemma 3.5. If $\left(u_{0}, v_{0}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)$ and $\left(u_{1}, v_{1}\right) \in$ $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ satisfy the assumptions in Theorem 3.4, then the solution (u, v) of
the problem (1.1) satisfies

$$
\begin{gather*}
I(u(t, x), v(t, x))<0 \tag{3.15}\\
\|u(t)\|^{2}+\|v(t)\|^{2} \geq \frac{(p+q+2) \eta}{\min \left\{m_{1}, m_{2}\right\}} E(0) \tag{3.16}
\end{gather*}
$$

for every $t \in[0, T)$.
Proof. We will prove this lemma by a contradiction argument. First we assume that 3.15 is not true over $[0, T)$, so, that there exists a time $t_{1}>0$ such that

$$
\begin{equation*}
t_{1}=\min \{t \in(0, T): I(u, v)=0\} . \tag{3.17}
\end{equation*}
$$

Since $I(u, v)<0$ on $\left[0, t_{1}\right)$, by Lemma 3.3, we see that $H(t)=\|u(t, \cdot)\|_{2}^{2}+\|v(t, \cdot)\|_{2}^{2}$ is strictly increasing over $\left[0, t_{1}\right)$, which implies

$$
H(t)=\|u(t, \cdot)\|_{2}^{2}+\|v(t, \cdot)\|_{2}^{2}>\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}>\frac{(p+q+2) \eta}{\min \left\{m_{1}, m_{2}\right\}} E(0)
$$

It is obvious that $H(t)=\|u(t, \cdot)\|_{2}^{2}+\|v(t, \cdot)\|_{2}^{2}$ is continuous on $\left[0, t_{1}\right)$. Thus we obtain the inequality

$$
\begin{equation*}
H\left(t_{1}\right)=\left\|u\left(t_{1}, .\right)\right\|_{2}^{2}+\left\|v\left(t_{1}, .\right)\right\|_{2}^{2} \geq \frac{(p+q+2) \eta}{\min \left\{m_{1}, m_{2}\right\}} E(0) \tag{3.18}
\end{equation*}
$$

On the other hand, by 3.17 we have

$$
\begin{aligned}
E(0) \geq & E\left(t_{1}\right)+\int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau \\
= & \frac{1}{2}\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+\frac{1}{2}\left[\bar{M}\left(\|\nabla u\|^{2}\right)+\bar{M}\left(\|\nabla v\|^{2}\right)\right] \\
& -\frac{1}{2}\left(\int_{0}^{t} g_{1}(\tau)\left\|\nabla u\left(t_{1}\right)\right\|^{2} d \tau+\int_{0}^{t} g_{2}(\tau)\left\|\nabla v\left(t_{1}\right)\right\|^{2} d \tau\right) \\
& +\frac{1}{2}\left(\left(g_{1} \circ \nabla u\right)\left(t_{1}\right)+\left(g_{2} \circ \nabla v\right)\left(t_{1}\right)\right) \\
& -\int_{\Omega}|u|^{p+1}|v|^{q+1} d x+\int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau \\
\geq & \frac{1}{2}\left[\bar{M}\left(\|\nabla u\|^{2}\right)+\bar{M}\left(\|\nabla v\|^{2}\right)\right] \\
& -\frac{1}{2}\left(\int_{0}^{t} g_{1}(\tau)\left\|\nabla u\left(t_{1}\right)\right\|^{2} d \tau+\int_{0}^{t} g_{2}(\tau)\left\|\nabla v\left(t_{1}\right)\right\|^{2} d \tau\right)-\int_{\Omega}|u|^{p+1}|v|^{q+1} d x
\end{aligned}
$$

Combining this inequality and (3.18), we have

$$
\begin{aligned}
& (p+q+2) E(0) \\
& \geq \frac{p+q+2}{2} \bar{M}\left(\left\|\nabla u\left(t_{1}\right)\right\|^{2}\right)+\frac{p+q+2}{2} \bar{M}\left(\left\|\nabla v\left(t_{1}\right)\right\|^{2}\right) \\
& \quad-\frac{p+q+2}{2}\left(\int_{0}^{t} g_{1}(\tau)\left\|\nabla u\left(t_{1}\right)\right\|^{2} d \tau+\int_{0}^{t} g_{2}(\tau)\left\|\nabla v\left(t_{1}\right)\right\|^{2} d \tau\right) \\
& \quad-M\left(\left\|\nabla u\left(t_{1}\right)\right\|^{2}\right)\left\|\nabla u\left(t_{1}\right)\right\|^{2}-M\left(\left\|\nabla v\left(t_{1}\right)\right\|^{2}\right)\left\|\nabla v\left(t_{1}\right)\right\|^{2}
\end{aligned}
$$

By (2.1), we get

$$
(p+q+2) E(0)
$$

$$
\begin{aligned}
\geq & \frac{p+q+2}{2} \bar{M}\left(\left\|\nabla u\left(t_{1}\right)\right\|^{2}\right) \\
& -\left[M\left(\left\|\nabla u\left(t_{1}\right)\right\|^{2}\right)+\frac{p+q+2}{2} \int_{0}^{t} g_{1}(\tau) d \tau\right]\left\|\nabla u\left(t_{1}\right)\right\|^{2} \\
& +\frac{p+q+2}{2} \bar{M}\left(\left\|\nabla v\left(t_{1}\right)\right\|^{2}\right) \\
& -\left[M\left(\left\|\nabla v\left(t_{1}\right)\right\|^{2}\right)+\frac{p+q+2}{2} \int_{0}^{t} g_{2}(\tau) d \tau\right]\left\|\nabla v\left(t_{1}\right)\right\|^{2} \\
\geq & m_{1}\left\|\nabla u\left(t_{1}\right)\right\|^{2}+m_{2}\left\|\nabla v\left(t_{1}\right)\right\|^{2} \\
\geq & \min \left\{m_{1}, m_{2}\right\}\left[\left\|\nabla u\left(t_{1}\right)\right\|^{2}+\left\|\nabla v\left(t_{1}\right)\right\|^{2}\right] .
\end{aligned}
$$

Thus, by the Poincaré inequality, we have

$$
\begin{gathered}
(p+q+2) E(0) \geq \min \left\{m_{1}, m_{2}\right\} \frac{1}{\eta}\left[\left\|u\left(t_{1}\right)\right\|^{2}+\left\|v\left(t_{1}\right)\right\|^{2}\right] \\
H\left(t_{1}\right)=\left\|u\left(t_{1}\right)\right\|^{2}+\left\|v\left(t_{1}\right)\right\|^{2} \leq \frac{(p+q+2) \eta}{\min \left\{m_{1}, m_{2}\right\}} E(0)
\end{gathered}
$$

for every $t \in[0, T)$. The proof is complete.

4. Proof of Theorem 3.4

To prove our main result, we adopt the concavity method introduced by Levine and define the auxiliary function

$$
\begin{align*}
F(t)= & \|u(t)\|^{2}+\|v(t)\|^{2}+\int_{0}^{t}\left(\|u(\tau)\|^{2}+\|v(\tau)\|^{2}\right) d \tau \tag{4.1}\\
& +\left(t_{2}-t\right)\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}\right)+\beta\left(t_{3}+t\right)^{2}
\end{align*}
$$

where t_{2}, t_{3} and β are positive constants, which will be determined later.
By direct computations, we obtain

$$
\begin{align*}
F^{\prime}(t)= & 2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) d \tau+2 \int_{0}^{t} \int_{\Omega}\left(u u_{\tau}+v v_{\tau}\right) d x d \tau-\left\|u_{0}\right\|^{2}-\left\|v_{0}\right\|^{2} \\
& -\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}\right)+2 \beta\left(t_{3}+t\right) \tag{4.2}\\
= & 2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+2 \int_{0}^{t} \int_{\Omega}\left(u u_{\tau}+v v_{\tau}\right) d x d \tau+2 \beta\left(t_{3}+t\right)
\end{align*}
$$

and

$$
\begin{aligned}
& F^{\prime \prime}(t) \\
&= 2 \int_{\Omega}\left(u_{t}^{2}+v_{t}^{2}\right) d x+2 \int_{\Omega}\left(u u_{t t}+v v_{t t}\right) d x+2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+2 \beta \\
&= 2\left\|u_{t}\right\|^{2}+2\left\|v_{t}\right\|^{2}+2 \int_{\Omega} M\left(\|\nabla u\|^{2}\right) u \Delta u d x-2 \int_{0}^{t} g_{1}(t-\tau) \int_{\Omega} u \Delta u(\tau) d x d \tau \\
&-2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+2(p+1) \int_{\Omega}|v|^{q+1}|u|^{p+1} d x+2 \int_{\Omega} M\left(\|\nabla v\|^{2}\right) v \Delta v d x \\
&-2 \int_{0}^{t} g_{2}(t-\tau) \int_{\Omega} v \Delta v(\tau) d x d \tau+2(q+1) \int_{\Omega}|u|^{p+1}|v|^{q+1} d x \\
&+2 \int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+2 \beta
\end{aligned}
$$

By Young and Poincare inequalities, (3.6, (3.14, Lemma 3.3, we obtain

$$
\begin{aligned}
& F^{\prime \prime}(t) \\
& \geq(p+q+4)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+2 \min \left\{m_{1}, m_{2}\right\}\left[\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}\right] \\
&+2(p+q+2)\left(-E(0)+\int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau\right)+2 \beta \\
&=(p+q+4)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+2 \min \left\{m_{1}, m_{2}\right\}\left[\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}\right] \\
&-2(p+q+2) E(0)+2(p+q+2) \int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau+2 \beta \\
& \geq(p+q+4)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+2 \min \left\{m_{1}, m_{2}\right\} \frac{1}{\eta}\left(\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}\right) \\
&-2(p+q+2) E(0)+2(p+q+2) \int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau+2 \beta \\
& \geq(p+q+4)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+2 \min \left\{m_{1}, m_{2}\right\} \frac{1}{\eta}\left(\|\nabla u(t)\|^{2}+\|\nabla v(t)\|^{2}\right) \\
&-2(p+q+2) E(0)+2(p+q+2) \int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau+2 \beta \geq 0
\end{aligned}
$$

which means that $F^{\prime \prime}(t)>0$ for every $t \in(0, T)$. Since $F^{\prime}(t) \geq 0$ and $F(t) \geq 0$, thus we obtain that $F^{\prime}(t)$ and $F(t)$ are strictly increasing on $[0, T)$.

Thus, we can choose β to satisfy

$$
\begin{equation*}
\min \left\{m_{1}, m_{2}\right\}\left(\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}\right)-(p+q+2) \eta E(0)>\beta(p+q+2) \tag{4.3}
\end{equation*}
$$

consequently,

$$
\begin{align*}
F^{\prime \prime}(t) \geq & (p+q+4)\left(\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}\right)+2(p+q+2) \int_{0}^{t}\left[\left\|u_{\tau}\right\|^{2}+\left\|v_{\tau}\right\|^{2}\right] d \tau \tag{4.4}\\
& +(p+q+4) \beta
\end{align*}
$$

As far as β is fixed, we select t_{3} large enough satisfying

$$
\begin{equation*}
\frac{p+q}{2}\left(\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x+\beta t_{3}\right)>\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2} . \tag{4.5}
\end{equation*}
$$

From 4.1, 4.2 and 4.5, we now choose

$$
t_{2}>\frac{\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}}{\frac{p+q}{2}\left(\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x+\beta t_{3}\right)},
$$

which ensures that

$$
\begin{equation*}
t_{2}>\frac{\left\|u_{0}\right\|^{2}+\left\|v_{0}\right\|^{2}}{\frac{p+q}{2}\left(\int_{\Omega}\left(u_{0} u_{1}+v_{0} v_{1}\right) d x+\beta t_{3}\right)}=\frac{4}{p+q} \frac{F(0)}{F^{\prime}(0)} \tag{4.6}
\end{equation*}
$$

Now let

$$
\begin{gathered}
A=\|u(t)\|^{2}+\|v(t)\|^{2}+\int_{0}^{t}\left[\|u(\tau)\|^{2}+\|v(\tau)\|^{2}\right] d \tau+\beta\left(t_{3}+t\right)^{2} \\
B=\frac{1}{2} F^{\prime}(t)=\int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+\int_{0}^{t} \int_{\Omega}\left(u u_{\tau}+v v_{\tau}\right) d x d \tau+\beta\left(t_{3}+t\right) \\
C=\left\|u_{t}(t)\right\|^{2}+\left\|v_{t}(t)\right\|^{2}+\int_{0}^{t}\left[\left\|u_{\tau}(\tau)\right\|^{2}+\left\|v_{\tau}(\tau)\right\|^{2}\right] d \tau+\beta
\end{gathered}
$$

By (4.2) and a simple computation, for all $s \in R$, we have

$$
\begin{aligned}
A s^{2}-2 B s+C= & {\left[\|u(t)\|^{2}+\|v(t)\|^{2}+\int_{0}^{t}\left[\|u(\tau)\|^{2}+\|v(\tau)\|^{2}\right] d \tau+\beta\left(t_{3}+t\right)^{2}\right] s^{2} } \\
& -2\left[\int_{\Omega}\left(u u_{t}+v v_{t}\right) d x+\int_{0}^{t} \int_{\Omega}\left(u u_{\tau}+v v_{\tau}\right) d x d \tau+\beta\left(t_{3}+t\right)\right] s \\
& +\left\|u_{t}(t)\right\|^{2}+\left\|v_{t}(t)\right\|^{2}+\int_{0}^{t}\left[\left\|u_{\tau}(\tau)\right\|^{2}+\left\|v_{\tau}(\tau)\right\|^{2}\right] d \tau+\beta \\
= & \int_{\Omega}\left(s u(t)-u_{t}(t)\right)^{2} d x+\int_{\Omega}\left(s v(t)-v_{t}(t)\right)^{2} d x \\
& +\int_{0}^{t} \int_{\Omega}\left(s u(\tau)-u_{\tau}(\tau)\right)^{2} d x d \tau+\int_{0}^{t} \int_{\Omega}\left(s v(\tau)-v_{\tau}(\tau)\right)^{2} d x d \tau \\
& +\beta\left(s\left(t_{3}+t\right)-1\right)^{2} \geq 0
\end{aligned}
$$

which implies $B^{2}-A C \leq 0$. Since we assume that the solution (u, v) to problem (1.1) exists for every $t \in[0, T)$, we have

$$
F(t) F^{\prime \prime}(t)-\frac{(p+q+4)}{4}\left(F^{\prime}(t)\right)^{2} \geq 0
$$

Let $\alpha=\frac{p+q}{2}>0$. As $\frac{p+q+4}{4}>1$, we have

$$
F(t) F^{\prime \prime}(t)-(1+\alpha)\left(F^{\prime}(t)\right)^{2} \geq 0
$$

We see that

$$
\begin{gather*}
\left(F^{-\alpha}(t)\right)^{\prime}=-\alpha F^{-\alpha-1} F^{\prime}<0, \\
\left(F^{-\alpha}(t)\right)^{\prime \prime}=-\alpha(-\alpha-1) F^{-\alpha-2} F^{\prime} F^{\prime}-\alpha F^{-\alpha-1} F^{\prime \prime} \\
=\alpha(\alpha+1) F^{-\alpha-2}\left(F^{\prime}\right)^{2}-\alpha F^{-\alpha-1} F^{\prime \prime} \tag{4.7}\\
=-\alpha F^{-\alpha-2}\left[F^{\prime \prime} F-(1+\alpha)\left(F^{\prime}\right)^{2}\right]
\end{gather*}
$$

for every $t \in[0, T)$, which means that the function $F^{-\alpha}$ is concave. Obviously $F(0)>0$, then from 4.7) it follows that

$$
F^{-\alpha} \rightarrow 0, \quad \text { as } t \rightarrow T<\frac{4}{p+q} \frac{F(0)}{F^{\prime}(0)}
$$

Therefore, we see that there exist a finite time $T>0$ such that

$$
\lim _{t \rightarrow T^{-}}\left[\|u\|^{2}+\|v\|^{2}+\int_{0}^{t}\left(\left\|u_{\tau}(\tau, x)\right\|^{2}+\left\|v_{\tau}(\tau, x)\right\|^{2}\right) d \tau\right]=\infty
$$

The proof is complete.

References

[1] R. A. Adams, J. J. F. Fournier; Sobolev Spaces, Academic Press, 2003.
[2] X. Han, M. Wang; Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal., 7 (2009), 5427-5450.
[3] B. S. Houari; Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Diff. Integral Eqns., 23 (2010), 79-92.
[4] B. S. Houari, S. A. Messaoudi, A. Guesmia; General decay of solutions of a nonlinear system of viscoelastic wave equations, NoDEA- Nonlinear Diff., 18 (2011), 659-684.
[5] L. Jie, L. Fei; Blow-up of solution for an integro-differential equation with arbitrary positive initial energy, Boundary Value Problems, 2015 (2015) 96.
[6] M. Kafini, S. A. Messaoudi; A blow-up result in a system of nonlinear viscoelastic wave equations with arbitrary positive initial energy, Indagationes Mathematicae, 24 (2013), 602612.
[7] M. Kafini, S. A. Messaoudi; A blow-up result for a viscoelastic system in \mathbb{R}^{N}, Electron. J. Differential Equations, 2007 (2007), no. 113, 1-7.
[8] H. A. Levine; Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=A u+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.
[9] Gand Li, Linghui Hong, Wenjun Liu; Global nonexistence of solutions for viscoelastic wave equations of Kirchhoff type with high energy, J. Func. Spaces and Appl., 2012 Art. ID 530861, 15 pp.
[10] Y. Lu, L. Fei, G. Zhenhua; Lower bounds for blow up time of a nonlinear viscoelstic wave equation, Boundary Value Problems, 219 (2015), 1-6.
[11] J. Ma, C. Mu, R. Zeng; A blow up result for viscoelastic aquations with arbitrary positive initial energy, Boundary Value Problems, 2011 (2011) :6.
[12] S. A. Messaoudi; Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58-66.
[13] S. A. Messaoudi; Blow up of solutions with positive initial energy in a nonlinear viscoelastic wave equations, J. Math. Anal. Appl., 320 (2006), 902-915.
[14] S. A. Messaoudi, B. S. Houari; Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287.
[15] J. E. Munoz Rivera, M. Naso, E. Vuk; Asymptotic behavior of the energy for electromagnetic system with memory, Math. Methods Appl. Sci., 25 (2004), 819-841.
[16] E. Pişkin; Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms, Malaya J. Mat., 3(2), 168-174 (2015).
[17] E. Pişkin; A lower bound for the blow up time of a system of viscoelastic wave equations with nonlinear damping and source terms, J. Nonlinear Funct. Anal., 2017 (2017), 1-9.
[18] Y. Wang; A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy, Appl. Math. Lett., 22 (2009), 1394-1400.

Erhan Pişkin
Dicle University, Department of Mathematics, 21280 Diyarbakir, Turkey
E-mail address: episkin@dicle.edu.tr
Ayşe Fidan
Dicle University, Department of Mathematics, 21280 Diyarbakir, Turkey
E-mail address: afidanmat@gmail.com

[^0]: 2010 Mathematics Subject Classification. 35B44, 35L05, 35L53.
 Key words and phrases. Blow up; viscoelastic wave equation; arbitrary positive initial energy. (C) 2017 Texas State University.

 Submitted March 11, 2017. Published October 4, 2017.

