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WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH
FRACTIONAL PRESSURE IN SOBOLEV SPACES

XUHUAN ZHOU, WEILIANG XIAO

Abstract. We prove the existence of a non-negative solution for a linear
degenerate diffusion transport equation from which we derive the existence

and uniqueness of the solution for the fractional porous medium equation in

Sobolev spaces Hα with nonnegative initial data, α > d
2

+ 1. We also correct

a mistake in our previous paper [14].

1. Introduction

We consider the porous medium type equation

∂tu = ∇ · (u∇p), p = (−∆)−su, 0 < s < 1, u(x, 0) ≥ 0, (1.1)

where x ∈ Rn, n ≥ 2, and t > 0 and the fractional Laplacian (−4)s/2 := Λs is
given by the psuedo differential operator with symbol |ξ|s, that is:

(−4)s/2f = Λsf = F−1|ξ|sFf.
Using the Riesz potential, one can also define this operator as

(−4)s/2f(x) = Λsf(x) = cn,s

∫
Rn

f(x)− f(y)
|y|n+s

dy.

This model is based on Darcy’s law with pressure, p, is given by an inverse
fractional Laplacian operator. It was first introduced by Caffarelli and Vázquez [4],
in which they proved the existence of a weak solution when u0 is a bounded function
with exponential decay at infinity. For α = n

n+2−2s , Caffarelli, Soria and Vázquez
[3] proved that the bounded nonnegative solutions are Cα continuous in a strip of
space-time for s 6= 1/2. And same conclusion for the index s = 1/2 was proved by
Caffarelli and Vázquez in [5]. [7, 6, 13] give a detailed description of the large-time
asymptotic behaviour of the solutions of (1.1). [2, 12] consider degenerate cases
and show the existence and properties of self-similar solutions. Allen, Caffarelli
and Vasseur [1] study the equation with fractional time derivative, and proved the
Hölder continuity for its weak solutions.

In this paper, we study the existence and uniqueness of solutions of (1.1) in
Sobolev spaces. Unlike considering the existence of weak solution in L∞ or con-
structing approximate solutions of linear transport systems, we solve equation (1.1)
by constructing solutions to a linear degenerate diffusion transport systems. The
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well-posedness and properties of the linear degenerate diffusion transport are inter-
esting results by themselves and lead us to proving that for s ∈ [ 12 , 1), α > d

2 + 1,
u0 ∈ Hα(Rn) nonnegative, and some T0 > 0, the equation (1.1) in Rn × [0, T0] has
a unique solutions. Besides, using the methods and results in this paper, we correct
a mistake in our previous paper [14].

2. Preliminaries

Define ρ ∈ C∞c (Rn) by

ρ(x) =

{
c0 exp(− 1

1−|x|2 ), |x| < 1,

0, |x| ≥ 1,

where c0 is selected such that
∫
ρ(x)dx = 1. Let Jε be defined by

Jεu = ρε ∗ u = ε−nρ(
·
ε
) ∗ u.

This operator satisfies the following properties.

Proposition 2.1. (1) ΛsJεu = JεΛsu, s ∈ R.
(2) For all u ∈ Lp(Rn), v ∈ Hα(Rn), with 1

p + 1
q = 1,

∫
(Jεf)g =

∫
f(Jεg).

(3) For all u ∈ Hα(Rn),

lim
ε→0
‖Jεu− u‖Hα = 0, lim

ε→0
‖Jεu− u‖Hα−1 ≤ C‖u‖Hα .

(4) For all u ∈ Hα(Rn), s ∈ R, k ∈ Z ∪ {0}, then

‖Jεu‖Hα+k ≤ Cαk
εk
‖u‖Hα , ‖JεDku‖L∞ ≤

Ck

ε
n
2 +k
‖u‖Hα

The following propositions can be found in [8, 9].

Proposition 2.2. Suppose that s > 0 and 1 < p < ∞. If f, g ∈ S, the Schwartz
class, then we have

‖Λs(fg)− fΛsg‖Lp ≤ c‖∇f‖Lp1‖g‖Ḣs−1,p2 + c‖g‖Lp4‖f‖Ḣs,p3 ,
‖Λs(fg)‖Lp ≤ c‖f‖Lp1 ‖g‖Ḣs,p2 + c‖g‖Lp4‖f‖Ḣs,p3

with p2, p3 ∈ (1,+∞) such that 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Proposition 2.3. If 0 ≤ s ≤ 2, f ∈ S(Rn), then

2f(x)Λsf(x) ≥ Λsf2(x) for all x ∈ Rn.

Proposition 2.4. Let α1 and α2 be two real numbers such that α1 <
n
2 , α2 <

n
2

and α1 + α2 > 0. Then there exists a constant C = Cα1,α2 ≥ 0 such that for all
f ∈ Ḣα1 and g ∈ Ḣα2 ,

‖fg‖Ḣα ≤ C‖f‖Ḣα1 ‖g‖Ḣα2 ,

where α = α1 + α2 − n
2 .
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3. Main results

Theorem 3.1. If s ∈ [1/2, 1], T > 0, α > n
2 + 1, u0 ∈ Hα(Rn), v ≥ 0 and

v ∈ C([0, T ];Hα(Rn)), then the linear initial-value problem

∂tu = ∇u · ∇(−∆)−sv − v(−∆)1−su,

u(x, 0) = u0.
(3.1)

has a unique solution u ∈ C1([0, T ];Hα(Rn)). If the initial data u0 ≥ 0, then
u ≥ 0, (x, t) ∈ Rn × [0, T ].

Proof. For any ε > 0, we consider the linear problem

∂tu
ε = Fε(uε) = Jε(∇Jεuε · ∇(−∆)−sv)− Jε(v(−∆)1−sJεuε),

uε(x, 0) = u0.
(3.2)

By Propositions 2.1 and 2.2 and by s ≥ 1
2 we can estimate

‖Fε(uε1)− Fε(uε2)‖Hα

= ‖Jε(∇Jε(uε1 − uε2) · ∇(−∆)−sv)− Jε(v(−∆)1−sJε(uε1 − uε2)‖Hα
≤ C(ε, ‖v‖Hα)‖uε1 − uε2‖Hα .

Using Picard iterations, for any α > n
2 + 1, ε > 0, there exists a Tε = Tε(u∗) > 0,

problem (3.2) has a unique solution uε ∈ C1([0, Tε);Hα). By Propositions 2.1 and
2.3,

1
2
d

dt
‖uε‖2L2 =

∫
∇Jεuε · ∇(−∆)−svJεuε −

∫
v(−∆)1−sJεuεJεuε

≤ 1
2

∫
∇|Jεuε|2 · ∇(−∆)−sv − 1

2

∫
v(−∆)1−s|Jεuε|2

≤ 1
2

∫
|Jεuε|2(−∆)1−sv − 1

2

∫
|Jεuε|2(−∆)1−sv = 0.

Moreover, for any α > 0,
1
2
d

dt
‖Λαuε‖2L2

=
∫

Λα(∇Jεuε · ∇(−∆)−sv)JεΛαuε −
∫

Λα(v(−∆)1−sJεuε)ΛαJεuε

≤ C‖[Λα,∇(−∆)−sv]∇Jεuε‖L2‖Λαuε‖L2 +
∫
∇(−∆)−svΛα∇JεuεΛαJεuε

+ C‖[Λα, v](−∆)1−sJεuε‖L2‖Λαuε‖L2 −
∫
vΛα(−∆)1−sJεuεΛαJεuε.

By Proposition 2.2 and Sobolev embeddings,

‖[Λα,∇(−∆)−sv]∇Jεuε‖L2

≤ C‖(−∆)1−sv‖L∞‖Λα−1∇Jεuε‖L2 + ‖∇(−∆)−sv‖Ḣα‖∇Jεu
ε‖L∞

≤ C‖v‖Hα‖uε‖Hα ,

‖[Λα, v](−∆)1−sJεuε‖L2

≤ C‖∇v‖L∞‖(−∆)1−sJεuε‖Ḣα−1 + ‖v‖Ḣα‖(−∆)1−sJεuε‖L∞
≤ C‖v‖Hα‖uε‖Hα .
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By Proposition 2.3,∫
∇(−∆)−svΛα∇JεuεΛαJεuε −

∫
vΛα(−∆)1−sJεuεΛαJεuε

≤ 1
2

∫
∇(−∆)−sv∇(ΛαJεuε)2 −

1
2

∫
v(−∆)1−s(ΛαJεuε)2

≤ C‖v‖Hα‖uε‖2Hα .

Combining the above estimates,

d

dt
‖uε(·, t)‖Hα ≤ C‖v‖Hα‖uε‖Hα .

By Gronwall’s inequality,

‖uε(·, t)‖Hα ≤ ‖u0‖Hα exp(C sup
0≤t≤T

‖v‖Hα).

Such the solution uε exists on [0, T ]. Similarly,

d

dt
‖uε(·, t)‖Hα−1 ≤ C‖v‖Hα‖uε‖Hα ≤ C(‖v‖Hα , ‖u0‖Hα , T ).

By Aubin compactness theorem [11], there is a subsequence of {u 1
n }n≥1 that con-

vergence strongly to u in C([0, T ];Hα). If α > d
2 + 1, Hα ↪→ C1, so u is a solution

of (3.3).
If u and ũ are two solutions of problem (3.3), then w = u− ũ satisfies

∂tw = ∇w · ∇(−∆)−sv − v(−∆)1−sw,

w(x, 0) = 0.

Similarly, we get d
dt‖w‖L2 ≤ 0 and d

dt‖w‖Ḣα ≤ ‖v‖Hα‖w‖Hα , i.e, d
dt‖w‖Hα ≤

‖v‖Hα‖w‖Hα . By Gronwall’s inequality, u(x, t) = 0, (x, t) ∈ Rn × [0, T ].
Since u0 ≥ 0 then if there exists a first time t0 where for some point x0 we

have u(x0, t0) = 0, then (x0, t0) will correspond to a minimum point and therefore
∇u(x0, t0) = 0, and

(−∆)1−su(x) = c

∫
u(x)− u(y)
|y|n+2−2s

dy ≤ 0.

Hence ut|(x0,t0) ≥ 0. So u(x, t) ≥ 0 for all (x, t) ∈ Rn × [0, T ]. �

Theorem 3.2. Let n ≥ 2, s ∈ [ 12 , 1), α > d
2 + 1, u0 ∈ Hα(Rn), and u0 ≥ 0. Then

there the linear initial value problem

∂tu = ∇ · (u∇(−∆)−su),

u(x, 0) = u0.

has a unique solution u ∈ C1([0, T0], Hα(Rn)). If the initial data u0 ≥ 0, then
u ≥ 0, (x, t) ∈ Rn × [0, T0].

Proof. Set u1 = u0. Note that ∂tu = ∇ · (u∇(−∆)−su) = ∇u · ∇(−∆)−su −
u(−∆)1−su, and let {un} be the sequence defined by

∂tu
n+1 = ∇un+1 · ∇(−∆)−sun − un(−∆)1−su(n+1),

un+1(x, 0) = u0.
(3.3)
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By Theorem 3.1, u2 ∈ C([0, T );Hα), for all T <∞, satisfies u2 ≥ 0 and

sup
0≤t≤T

‖u2‖Hα ≤ ‖u0‖Hα exp(C‖u1‖HαT ).

If exp(2C‖u1‖HαT0) ≤ 2, for example T0 = ln 2
2C(1+‖u0‖Hα ) , we have

sup
0≤t≤T0

‖u2‖Hα ≤ 2‖u0‖Hα .

By the standard induction argument, if un ∈ C([0, T0];Hα), un ≥ 0 is a solution of
(3.3) with ‖un‖Hα ≤ 2‖u0‖Hα . By Theorem 3.1 un+1 ∈ C([0, T0];Hα) , un+1 ≥ 0
and

sup
0≤t≤T0

‖un+1‖Hα ≤ ‖u0‖Hα exp(C‖un‖HαT0) ≤ 2‖u0‖Hα ,

d

dt
‖un+1‖Hα−1 ≤ C‖un‖Hα‖un+1‖Hα ≤ C‖u0‖2Hα .

By Aubin compactness theorem [11], there is a subsequence of un that convergence
strongly to u in C([0, T ];Hα). If u ≥ 0, ũ ≥ 0 are two solutions of problem (3.3),
then w = u− ũ satisfies

∂tw = ∇ · (w∇(−∆)−su) +∇ · (ũ∇(−∆)−sw),

w(x, 0) = 0.

By Proposition 2.2,
1
2
d

dt
‖w‖2L2 =

∫
w∇ · (w∇(−∆)−su) +

∫
w∇ũ · ∇(−∆)−sw −

∫
wũ(−∆)1−sw

=: I1 + I2 + I3.

Note that

I1 =
∫
w∇w · ∇(−∆)−su =

1
2

∫
∇w2 · ∇(−∆)−su

=
1
2

∫
w2(−∆)1−su ≤ C‖u‖Hα‖w‖2L2 ,

I3 ≤ −
1
2

∫
ũ(−∆)1−sw2 =

∫
−1

2
(−∆)1−sũ · w2 ≤ C‖u‖Hα‖w‖2L2 .

When s > 1/2,

I2 ≤ C‖w‖L2‖∇u · ∇(−∆)−sw‖L2

≤ C‖w‖L2‖∇u‖
Ḣ
n
2 +1−2s‖∇(−∆)−sw‖Ḣ2s−1 ≤ C‖u‖Hα‖w‖2L2 .

When s = 1/2, the above estimates are still valid. Combining the above esti-
mates we have d

dt‖w‖L2 ≤ C‖w‖L2‖u‖Hα . By Gronwall’s inequality we can deduce
w(x, t) = 0 on [0, T0]. �

4. Correction

In [14], trying to establish the well-posedness of (1.1) in Besov spaces the authors
incurred in a mistake in page 9 when estimating the term J ′4 in equation [14, (4.5)].
To correct the mistake, we modify our proof the following way.

[14, Theorem 1.1] Let n ≥ 2, s ∈ [ 12 , 1], α > n + 1. If the initial data u0 ∈
Bα1,∞, then there exists T = T (‖u0‖Bα1,∞) such that (1.1) has a unique solution in
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[0, T ]×Rn. Such a solution belongs to C1([0, T ];Bα+2s−2
1,∞ )∩L∞([0, T ];Bβ1,∞), with

β ∈ [α+ 2s− 2, α].

Proof. First we construct the approximate equation

u
(n+1)
t = ∇u(n+1) · ∇(−4)−su(n)

ε − u(n)
ε (−4)1−su(n+1);

u(n+1)(0) = σε ∗ u0, u(1) = σε ∗ u0.
(4.1)

By the argument in section 2, there exists a sequence u(n) that solves the linear
systems (4.1). Assuming that u0 ≥ 0, we prove that u(n+1) ≥ 0. Inspired by [4],
we assume that x0 is a point of minimum of u(n+1) at time t = t0. This indicates
that ∇u(n+1)(x0) = 0, and

(−4)1−su(n+1)(x0) = c

∫
u(x0)− u(y)
|y|n+2(1−s) dy ≤ 0.

Thus we deduce that ∂
∂tu

(n+1)
∣∣
t=t0

≥ 0, and by induction we have u(n+1) ≥ 0.
Arguing as in [14], taking 4j on (4.1), we obtain

∂t4ju(n+1) =
∑

[4j , ∂i(−4)−su(n)
ε ]∂iun+1 +

∑
∂i(−4)−su(n)

ε 4j(∂iu(n+1))

− [4j , u(n)
ε ](−4)1−su(n+1) − u(n)

ε 4j(−4)1−su(n+1).

Multiplying both sides by 4ju(n+1)

|4ju(n+1)| , and integrating over Rd, then denote the
corresponding part in the right side by J ′1, J

′
2, J
′
3, J
′
4, respectively. We obtain the

estimates,

J ′1 ≤ C2−jα‖u(n+1)‖Bα1,∞‖u
(n)‖Bα+1−2s

1,∞

J ′2 ≤ C2−jα‖u(n+1)‖Bα1,∞‖u
(n)‖Bα+1−2s

1,∞

J ′3 ≤ C2−jα‖u(n)‖Bα1,∞‖u
(n+1)‖Bα+1−2s

1,∞
.

The estimate for the term J ′4 is now replaced by

J ′4 =−
∫
u(n)4j(−4)1−su(n+1) 4ju(n+1)

|4ju(n+1)|

≤ −
∫
u(n)(−4)1−s|4ju(n+1)|

≤ −
∫

(−4)1−su(n)|4u(n+1)|

≤ 2−jα‖un‖Br+2−2s
1,∞

‖u(n+1)‖Bα1,∞ .

Here r > d is any real number. The first inequality uses the following pointwise
estimate.

Proposition 4.1 ([10]). If 0 ≤ α ≤ 2, p ≥ 1, then

p|f(x)|p−2f(x)Λαf(x) ≥ Λα|f(x)|p.
for any f ∈ S(Rd)

Taking r such that r + 2− 2s < α, e.g. set r = α− 1, we conclude
d

dt
‖u(n+1)‖Bα1,,∞ ≤ ‖u

(n)‖Bα1,,∞‖u
(n+1)‖Bα1,,∞ .
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The other parts of the proof need no modification. �
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