EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SCHRÖDINGER-POISSON SYSTEMS

DA-BIN WANG, HUA-FEI XIE, WEN GUAN

Communicated by Claudianor O. Alves

$$
\begin{aligned}
& \text { ABSTRACT. In this article, by using variational method, we study the existence } \\
& \text { of a positive ground state solution for the Schrödinger-Poisson system } \\
& \qquad-\Delta u+V(x) u+K(x) \phi u=f(x, u), \quad x \in \mathbb{R}^{3}, \\
& \qquad-\Delta \phi=K(x) u^{2}, \quad x \in \mathbb{R}^{3}, \\
& \text { where } V(x), K(x) \text { and } f(x, u) \text { are asymptotically periodic functions in } x \text { at } \\
& \text { infinity. }
\end{aligned}
$$

1. Introduction and statement of results

For past decades, much attention has been paid to the nonlinear SchrödingerPoisson system

$$
\begin{align*}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi+ & U(x) \Psi+\phi(x) \Psi-|\Psi|^{q-1} \Psi, \quad x \in \mathbb{R}^{3}, t \in \mathbb{R} \tag{1.1}\\
& -\Delta \phi=|\Psi|^{2}, \quad x \in \mathbb{R}^{3}
\end{align*}
$$

where \hbar is the Planck constant. Equation (1.1) derived from quantum mechanics. For this equation, the existence of stationary wave solutions is often sought, that is, the following form of solution

$$
\Psi(x, t)=e^{i t} u(x), x \in \mathbb{R}^{3}, \quad t \in \mathbb{R}
$$

Therefore, the existence of the standing wave solution of the equation (1.1) is equivalent to finding the solution of the following system $\left(m=\frac{1}{2}, \hbar=1, V(x)=\right.$ $U(x)+1)$

$$
\begin{gather*}
-\Delta u+V(x) u+\phi u=|u|^{q-1} u, \quad x \in \mathbb{R}^{3} \\
-\Delta \phi=u^{2}, \quad x \in \mathbb{R}^{3} . \tag{1.2}
\end{gather*}
$$

As far as we know, the first result on Schrödinger-Poisson system was obtained in [6]. Thereafter, using the variational method, there is a series of work to discuss the existence, non existence, radially symmetric solutions, non-radially symmetric

[^0]solutions and ground state to Schrödinger-Poisson system (1.2) (1, 3, 4, 5, 6, 8, 9 , 10, 11, 12, 15, 16, 17, 19, 20, 21, 32, 33, 37, 40, 41, 44, 45, 47, 48, 49,

To the best of our knowledge, Azzollini and Pomponio [5] firstly obtained the ground state solution to the Schrödinger-Poisson system (1.2). The conclusion they got was that if V is a positive constant and $2<q<5$, or V is non-constant, possibly unbounded below and $3<q<5$, system $\sqrt{1.2}$ has a ground state solution.

Alves, Souto and Soares [1] studied Schrödinger-Poisson system

$$
\begin{gather*}
-\Delta u+V(x) u+\phi u=f(u), \quad x \in \mathbb{R}^{3} \\
-\Delta \phi=u^{2}, \quad x \in \mathbb{R}^{3} \tag{1.3}
\end{gather*}
$$

where V is bounded locally Hölder continuous and satisfies:
(1) $V(x) \geq \alpha>0, x \in \mathbb{R}^{3}$;
(2) $\lim _{|x| \rightarrow \infty}\left|V(x)-V_{0}(x)\right|=0$, where V_{0} satisfy $V_{0}(x)=V_{0}(x+y)$ for all $x \in \mathbb{R}^{3}$ and all $y \in \mathbb{Z}^{3}$;
(3) $V(x) \leq V_{0}(x)$ for all $x \in \mathbb{R}^{3}$, and there exists an open set $\Omega \subset \mathbb{R}^{3}$ with $m(\Omega)>0$ such that $V(x)<V_{0}(x)$ for all $x \in \Omega$.
Alves et al. studied the ground state solutions to system 1.3 in case the asymptotically periodic condition under conditions (1)-(3).

In case $p \in(3,5)$, Cerami and Vaira [9] studied the existence of positive solutions for the following non-autonomous Schrödinger-Poisson system

$$
\begin{gather*}
-\Delta u+u+K(x) \phi(x) u=a(x)|u|^{p-1} u, \quad x \in \mathbb{R}^{3}, \\
-\Delta \phi=K(x) u^{2}, \quad x \in \mathbb{R}^{3} \tag{1.4}
\end{gather*}
$$

where a, K are nonnegative functions such that $\lim _{|x| \rightarrow \infty} a(x)=a_{\infty}>0$, and $\lim _{|x| \rightarrow \infty} K(x)=0$.

Zhang, Xu and Zhang [48] considered existence of positive ground state solution for the Schrödinger-Poisson system

$$
\begin{gather*}
-\Delta u+V(x) u+K(x) \phi u=f(x, u), \quad x \in \mathbb{R}^{3} \\
-\Delta \phi=K(x) u^{2}, \quad x \in \mathbb{R}^{3} \tag{1.5}
\end{gather*}
$$

In their paper, V and K satisfy:

- $V, K \in L^{\infty}\left(\mathbb{R}^{3}\right), \inf _{\mathbb{R}^{3}} V>0, \inf _{\mathbb{R}^{3}} K>0$, and $V-V_{p}, K-K_{p} \in \mathcal{F}$, where V_{p} and K_{p} satisfy $V_{p}(x+z)=V_{p}(x), K_{p}(x+z)=K_{p}(x)$ for all $x \in \mathbb{R}^{3}$ and $z \in \mathbb{Z}^{3}$, here $\mathcal{F}=\left\{g \in L^{\infty}\left(\mathbb{R}^{3}\right): \forall \varepsilon>0\right\}$, the set $\left\{x \in \mathbb{R}^{3}:|g(x)| \geq\right.$ $\varepsilon\}$ has finite Lebesgue measure $\}$.
On the other hand, when $K=0$ the Schrödinger-Poisson system 1.5 becomes the standard Schrödinger equation (replace \mathbb{R}^{3} with \mathbb{R}^{N})

$$
\begin{equation*}
-\Delta u+V(x) u=f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.6}
\end{equation*}
$$

The Schrödinger equation (1.6) has been widely investigated by many authors, see [2, 7, 13, 14, 18, 23, 29, 24, 34, 35, 36, 42, 43, 46] and reference their. Especially, in [23, 29, 34, 42, 43], they studied the nontrivial solution and ground state solution for problem 1.6 in which V or f satisfy the asymptotically periodic condition. In the other context about asymptotically periodic condition, we refer the reader to [22, 25, 26, 39] and reference their.

Motivated by above results, in this paper we study positive ground state solutions to system 1.5 under reformative condition about asymptotically periodic case of V, K and f at infinity.

To state our main results, we assume that:
(A1) $V, V_{p} \in L^{\infty}\left(\mathbb{R}^{3}\right), 0 \leq V(x) \leq V_{p}(x)$ and $V(x)-V_{p}(x) \in A_{0}$, where $A_{0}:=$ $\left\{k(x):\right.$ for any $\varepsilon>0, m\left\{x \in B_{1}(y):|k(x)| \geq \varepsilon\right\} \rightarrow 0$ as $\left.|y| \rightarrow \infty\right\}$ and V_{p} satisfies $V_{0}:=\inf _{x \in \mathbb{R}^{3}} V_{p}>0$ and $V_{p}(x+z)=V_{p}(x)$ for all $x \in \mathbb{R}^{3}$ and $z \in \mathbb{Z}^{3} . K, K_{p} \in L^{\infty}\left(\mathbb{R}^{3}\right), 0<K(x) \leq K_{p}(x), K(x)-K_{p}(x) \in A_{0}$ and K_{p} satisfies $K_{0}:=\inf _{x \in \mathbb{R}^{3}} K_{p}>0$ and $K_{p}(x+z)=K_{p}(x)$ for all $x \in \mathbb{R}^{3}$ and $z \in \mathbb{Z}^{3} ;$
and $f \in C\left(\mathbb{R}^{3} \times \mathbb{R}^{+}, \mathbb{R}\right)$ satisfies
(A2) $\lim _{s \rightarrow 0^{+}} \frac{f(x, s)}{s}=0$ uniformly for $x \in \mathbb{R}^{3}$,
(A3) $\lim _{s \rightarrow+\infty} \frac{f(x, s)}{s^{5}}=0$ uniformly for $x \in \mathbb{R}^{3}$,
(A4) $\frac{f(x, s)}{s^{3}}$ is nondecreasing on $(0,+\infty)$,
(A5) there exists $f_{p} \in C\left(\mathbb{R}^{3} \times \mathbb{R}^{+}, \mathbb{R}\right)$ such that
(i) $f(x, s) \geq f_{p}(x, s)$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}^{+}$and $f(x, s)-f_{p}(x, s) \in A$, where $A:=\left\{h(x, s):\right.$ for any $\varepsilon>0, m\left\{x \in B_{1}(y):|h(x, s)| \geq \varepsilon\right\} \rightarrow$ 0as $|y| \rightarrow \infty$ uniformly for $|s|$ bounded $\}$,
(ii) $f_{p}(x+z, s)=f_{p}(x, s)$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}^{+}$and $z \in \mathbb{Z}^{3}$,
(iii) $\frac{f_{p}(x, s)}{s^{3}}$ is nondecreasing on $(0,+\infty)$,
(iv) $\lim _{s \rightarrow+\infty} \frac{F_{p}(x, s)}{s^{4}}=+\infty$ uniformly for $x \in \mathbb{R}^{3}$, where $F_{p}(x, s)=\int_{0}^{s} f_{p}(x, t) d t$.
Remark 1.1. (i) Functional sets A_{0} in (A1) and A in (A5) were introduced by [29] in which Liu, Liao and Tang studied positive ground state solution to Schrödinger equation 1.6.
(ii) Since $\mathcal{F} \subset A_{0}$, our assumptions on V and K are weaker than in 48. Furthermore, in our paper $V(x) \geq 0$ but in 48 they assumed $V(x)>0$.
(iii) In [48, to obtain the positive ground state to system 1.5 , they firstly consider the periodic system

$$
\begin{gather*}
-\Delta u+V_{p}(x) u+K_{p}(x) \phi u=f_{p}(x, u) \quad x \in \mathbb{R}^{3} \\
-\Delta \phi=K_{p}(x) u^{2} \quad x \in \mathbb{R}^{3} \tag{1.7}
\end{gather*}
$$

Then a solution of system $\sqrt{1.5}$ was obtained by applying inequality between the energy of periodic system 1.7) and that of system (1.5). In this paper, we do not using methods that of 48 and we proof the Theorem 1.2 directly.

Since we are looking for a positive solution, we may assume that $f(x, s)=$ $f_{p}(x, s)=0$ for all $(x, s) \in\left(\mathbb{R}^{3} \times \mathbb{R}^{-}\right)$. The next theorems are the main results of the present paper.

Theorem 1.2. Suppose that (A1)-(A5) are satisfied. Then system 1.5 has a positive ground state solution.

Theorem 1.3. Suppose that $V(x) \equiv V_{p}(x), K(x) \equiv K_{p}(x)$ satisfy (A1), and $f(x, s) \equiv f_{p}(x, s)$ satisfies (A2)-(A5). Then system 1.5) has a positive ground state solution.

2. Variational framework and preliminary Results

The letter C and C_{i} will be repeatedly used to denote various positive constants whose exact values are irrelevant. $B_{R}(z)$ denotes the open ball centered at z with
radius R. We denote the standard norm of L^{p} by $|u|_{p}=\left(\int_{\mathbb{R}^{3}}|u|^{p} d x\right)^{1 / p}$ and $|u|_{\infty}=$ ess $\sup _{x \in \mathbb{R}^{3}}|u|$.

The Sobolev space $H^{1}\left(\mathbb{R}^{3}\right)$ is endowed with the norm

$$
\|u\|_{H}^{2}:=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

The space $D^{1,2}\left(\mathbb{R}^{3}\right)$ is endowed with the standard norm

$$
\|u\|_{D^{1,2}}^{2}:=\int_{\mathbb{R}^{3}}|\nabla u|^{2} d x
$$

Let $E:=\left\{u \in L^{6}\left(\mathbb{R}^{3}\right):|\nabla u| \in L^{2}\left(\mathbb{R}^{3}\right)\right.$ and $\left.\int_{\mathbb{R}^{3}} V(x) u^{2} d x<\infty\right\}$ be the Sobolev space endowed with the norm

$$
\|u\|^{2}:=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x
$$

Lemma 2.1. 29] Suppose (A1) holds. Then there exists two positive constants C_{1} and C_{2} such that $C_{1}\|u\|_{H}^{2} \leq\|u\| \leq C_{2}\|u\|_{H}^{2}$ for all $u \in E$. Moreover, $E \hookrightarrow L^{p}\left(\mathbb{R}^{3}\right)$ for any $p \in[2,6]$ is continuous.

System 1.5 can be transformed into a Schrödinger equation with a nonlocal term. In fact, for all $u \in E$ (then $u \in H^{1}\left(\mathbb{R}^{3}\right)$), considering the linear functional L_{u} defined in $D^{1,2}\left(\mathbb{R}^{3}\right)$ by

$$
L_{u}(v)=\int_{\mathbb{R}^{3}} K(x) u^{2} v d x
$$

According to the Hölder inequality and lemma 2.1), one has that

$$
\begin{equation*}
\left|L_{u}(v)\right| \leq|K|_{\infty}|u|_{12 / 5}^{2}|v|_{6} \leq C\|u\|^{2}\|v\|_{D^{1,2}} \tag{2.1}
\end{equation*}
$$

So, by the Lax-Milgram theorem exists an unique $\phi_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ such that

$$
\int_{\mathbb{R}^{3}} \nabla \phi_{u} \cdot \nabla v d x=\left(\phi_{u}, v\right)_{D^{1,2}}=L_{u}(v)=\int_{\mathbb{R}^{3}} K(x) u^{2} v d x
$$

for any $v \in D^{1,2}\left(\mathbb{R}^{3}\right)$ and $\left\|\phi_{u}\right\|_{D^{1,2}} \leq C\|u\|^{2}$. Namely, ϕ_{u} is the unique solution of

$$
-\Delta \phi=K(x) u^{2}, x \in \mathbb{R}^{3}
$$

Moreover, ϕ_{u} can be expressed as

$$
\phi_{u}=C \int_{\mathbb{R}^{3}} \frac{K(y) u^{2}(y)}{|x-y|} d y
$$

Substituting ϕ_{u} into the system 1.5 , we obtain

$$
\begin{equation*}
-\Delta u+V(x) u+K(x) \phi_{u} u=f(x, u), \quad x \in \mathbb{R}^{3} \tag{2.2}
\end{equation*}
$$

By (2.1), we get

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x\right| \leq C\|u\|^{4} \tag{2.3}
\end{equation*}
$$

So the energy functional $I: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ corresponding to 2.2 is given by

$$
I(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V(x) u^{2}\right) d x+\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\int_{\mathbb{R}^{3}} F(x, u) d x
$$

where $F(x, s)=\int_{0}^{s} f(x, t) d t$.

Moreover, under our condition, I belongs to C^{1}, so the Fréchet derivative of I is

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\mathbb{R}^{3}}(\nabla u \cdot \nabla v+V(x) u v) d x+\int_{\mathbb{R}^{3}} K(x) \phi_{u} u v d x-\int_{\mathbb{R}^{3}} f(x, u) v d x
$$

and $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of system 1.5 if and only if $u \in$ $H^{1}\left(\mathbb{R}^{3}\right)$ is a critical point of I and $\phi=\phi_{u}$.

For all $u \in E$, let $\tilde{\phi}_{u} \in D^{1,2}\left(\mathbb{R}^{3}\right)$ is unique solution of the following equation

$$
-\Delta \phi=K_{p}(x) u^{2}, x \in \mathbb{R}^{3}
$$

Moreover, $\widetilde{\phi}_{u}$ can be expressed as

$$
\widetilde{\phi}_{u}=C \int_{\mathbb{R}^{3}} \frac{K_{p}(y) u^{2}(y)}{|x-y|} d y
$$

Let

$$
I_{p}(u)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+V_{p}(x) u^{2}\right) d x+\frac{1}{4} \int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u} u^{2} d x-\int_{\mathbb{R}^{3}} F_{p}(x, u) d x
$$

where $F_{p}(x, s)=\int_{0}^{s} f_{p}(x, t) d t$. Then I_{p} is the energy functional corresponding to the equation

$$
\begin{equation*}
-\Delta u+V_{p}(x) u+K_{p}(x) \widetilde{\phi}_{u} u=f_{p}(x, u), \quad x \in \mathbb{R}^{3} \tag{2.4}
\end{equation*}
$$

It is easy to see that $(u, \phi) \in H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$ is a solution of periodic system 1.7) if and only if $u \in H^{1}\left(\mathbb{R}^{3}\right)$ is a critical point of I_{p} and $\phi=\widetilde{\phi}_{u}$.

Lemma 2.2. Suppose (A1) holds. Then

$$
\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u(\cdot+z)} u^{2}(\cdot+z) d x=\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u} u^{2} d x, \quad \forall z \in \mathbb{Z}^{3}, u \in E
$$

Lemma 2.3. Suppose that (A2), (A4), (A5) hold. Then
(i) $\frac{1}{4} f(x, s) s \geq F(x, s) \geq 0$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$,
(ii) $\frac{1}{4} f_{p}(x, s) s \geq F_{p}(x, s) \geq 0$ for all $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$.

The proof of the above lemma is similar to that in [31], so we omitted here.
Lemma 2.4. Operator I^{\prime} is weakly sequentially continuous. Namely if $u_{n} \rightharpoonup u$ in $E, I^{\prime}\left(u_{n}\right) \rightharpoonup I^{\prime}(u)$ in E^{-1}.

The proof of the above lemma is similar to that of in 48, so we omitted here.
Lemma 2.5 ([29]). Suppose that (A2), (A3), (A5)(i) hold. Assume that $\left\{u_{n}\right\}$ is bounded in E and $u_{n} \rightarrow 0$ in $L_{\mathrm{loc}}^{s}\left(\mathbb{R}^{3}\right)$, for any $s \in[2,6)$. Then up to a subsequence, one has

$$
\int_{\mathbb{R}^{3}}\left(F\left(x, u_{n}\right)-F_{p}\left(x, u_{n}\right)\right) d x=o_{n}(1) .
$$

Lemma 2.6 ([29]). Suppose that (A1), (A2), (A3) (A5)(i) hold. Assume that $\left\{u_{n}\right\}$ is bounded in E and $\left|z_{n}\right| \rightarrow \infty$. Then any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, one has

$$
\begin{gathered}
\int_{\mathbb{R}^{3}}\left(V_{p}(x)-V(x)\right) u_{n} \varphi\left(\cdot-z_{n}\right) d x=o_{n}(1), \\
\int_{\mathbb{R}^{3}}\left(f\left(x, u_{n}\right)-f_{p}\left(x, u_{n}\right)\right) \varphi\left(\cdot-z_{n}\right) d x=o_{n}(1) .
\end{gathered}
$$

Lemma 2.7. Suppose that (A1), (A2), (A3), (A5)(i) hold. Assume that $u_{n} \rightharpoonup 0$ in E. Then up to a subsequence, one has

$$
\int_{\mathbb{R}^{3}}\left(K(x) \phi_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)-K_{p}(x) \widetilde{\phi}_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x=o_{n}(1)
$$

where $\left|z_{n}\right| \rightarrow \infty$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$.
Proof. Set $h(x):=K(x)-K_{p}(x)$. By (A1), we have $h(x) \in A_{0}$. Then for any $\varepsilon>0$, there exists $R_{\varepsilon}>0$ such that

$$
m\left\{x \in B_{1}(y):|h(x)| \geq \varepsilon\right\}<\varepsilon, \quad \text { for any }|y| \geq R_{\varepsilon}
$$

We cover \mathbb{R}^{3} by balls $B_{1}\left(y_{i}\right), i \in \mathbb{N}$. In such a way that each point of \mathbb{R}^{3} is contained in at most $N+1$ balls. Without any loss of generality, we suppose that $\left|y_{i}\right|<R_{\varepsilon}, i=1,2, \ldots, n_{\varepsilon}$ and $\left|y_{i}\right| \geq R_{\varepsilon}, i=n_{\varepsilon}+1, n_{\varepsilon}+2, n_{\varepsilon}+3, \ldots,+\infty$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left(K(x) \phi_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)-K_{p}(x) \tilde{\phi}_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x \\
& =\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y h(x) u_{n}^{2}(x) d x \\
& \quad+\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}^{2}(y)}{|x-y|} d y h(x) u_{n}(x) \varphi\left(x-z_{n}\right) d x \\
& \quad+\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{h(y) u_{n}^{2}(y)}{|x-y|} d y h(x) u_{n}(x) \varphi\left(x-z_{n}\right) d x \\
& :=E_{1}+E_{2}+E_{3}
\end{aligned}
$$

As in [48, we define

$$
\begin{aligned}
H(x): & =\int_{\mathbb{R}^{3}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y \\
= & \int_{\{y:|x-y| \leq 1\}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y \\
& +\int_{\{y:|x-y|>1\}} \frac{K_{p}(y) u_{n}(y) \varphi\left(y-z_{n}\right)}{|x-y|} d y .
\end{aligned}
$$

By the Hölder inequality and the Sobolev embedding, we have

$$
\begin{aligned}
|H(x)| \leq & \left|K_{p}\right|_{\infty}\left|u_{n}\right|_{3}|\varphi|_{6}\left(\int_{\{y:|x-y| \leq 1\}} \frac{1}{|x-y|^{2}} d y\right)^{1 / 2} \\
& +\left|K_{p}\right|_{\infty}\left|u_{n}\right|_{2}|\varphi|_{4}\left(\int_{\{y:|x-y|>1\}} \frac{1}{|x-y|^{4}} d y\right)^{1 / 4} \\
\leq & C\left(\int_{\{z:|z| \leq 1\}} \frac{1}{|z|^{2}} d z\right)^{1 / 2}+C\left(\int_{\{z:|z|>1\}} \frac{1}{|z|^{4}} d z\right)^{1 / 4}
\end{aligned}
$$

So, $\sup _{x \in \mathbb{R}^{3}}|H(x)|<\infty$. Then, we obtain

$$
\begin{aligned}
E_{1} & =\int_{\mathbb{R}^{3}} H(x) h(x) u_{n}^{2}(x) d x \\
& \leq \int_{\{x:|h(x)| \geq \varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x+\int_{\{x:|h(x)|<\varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& :=Q_{1}+Q_{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{1}= \int_{\{x:|h(x)| \geq \varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
&= \int_{\left\{x:|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
&+\int_{\left\{x:|h(x)| \geq \varepsilon,|x| \leq R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
&+2 \sup _{x \in \mathbb{R}^{3}}\left|H(x) \| K_{p}\right|_{\infty} \int_{B_{R_{\varepsilon}+1}}\left|u_{n}(x)\right|^{2} d x \\
& Q_{11}= Q_{11}+Q_{12} \\
& \sum_{n_{\varepsilon}+1} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq 2 \sup _{x \in \mathbb{R}^{3}}\left|H(x) \| K_{p}\right|_{\infty} \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|u_{n}^{2}(x)\right| d x \\
& \leq C \sum_{n_{\varepsilon}+1}^{\infty}\left(m\left\{x \in B_{1}(y):|h(x)| \geq \varepsilon\right\}\right)^{2 / 3} \\
& \times\left(\int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left|u_{n}^{6}(x)\right| d x\right)^{1 / 3} \\
& \leq C_{1} \varepsilon^{2 / 3} \sum_{n_{\varepsilon}+1}^{\infty} \int_{\left\{x \in B_{1}\left(y_{i}\right):|h(x)| \geq \varepsilon,|x|>R_{\varepsilon}+1\right\}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \\
& \leq C_{1}(N+1) \varepsilon^{2 / 3} \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \leq C_{2} \varepsilon^{2 / 3} .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we obtain $Q_{11} \rightarrow 0$.
Since $u_{n} \rightharpoonup 0$, one has that $Q_{12} \rightarrow 0$. So, $Q_{1}=Q_{11}+Q_{12} \rightarrow 0$.

$$
\begin{aligned}
Q_{2} & =\int_{\{x:|h(x)|<\varepsilon\}}\left|H(x) h(x) u_{n}^{2}(x)\right| d x \\
& \leq \varepsilon \sup _{x \in \mathbb{R}^{3}}|H(x)| \int_{\mathbb{R}^{3}}\left|u_{n}^{2}(x)\right| d x \leq C \varepsilon .
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$, we have $Q_{2} \rightarrow 0$. Therefore, from the above fact we get that $E_{1} \rightarrow 0$. In the same way, we can prove $E_{2} \rightarrow 0$ and $E_{3} \rightarrow 0$.

We define $\mathcal{N}:=\left\{u \in E \backslash\{0\}:\left(I^{\prime}(u), u\right)=0\right\}$. Then \mathcal{N} is a Nehari type associate to I, and set $c:=\operatorname{in} f_{u \in \mathcal{N}} I$. Let $F:=\left\{u \in E: u^{+} \neq 0\right\}$, where $u^{ \pm}=\max \{ \pm u, 0\}$. In fact

$$
\mathcal{N}=\left\{u \in F:\left(I^{\prime}(u), u\right)=0\right\} .
$$

Lemma 2.8. Suppose that (A1)-(A5) hold. For any $u \in F$, there is a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}$. Moreover, the maximum of $I(t u)$ for $t \geq 0$ is achieved.

Proof. Define $g(t):=I(t u), t \geq 0$. Using (A2), (A3) and (A5), we can prove that $g(0)=0, g(t)>0$ for t small and $g(t)<0$ for t large. In fact, by (A2) and (A3), for all $\varepsilon>0$ there exists a $C_{\varepsilon}>0$ such that

$$
|f(x, s)| \leq \varepsilon|s|+C_{\varepsilon}|s|^{5}, \quad|F(x, s)| \leq \frac{\varepsilon}{2}|s|^{2}+\frac{C_{\varepsilon}}{6}|s|^{6}, \quad s \in \mathbb{R}
$$

Then

$$
\begin{aligned}
g(t) & =\frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\int_{\mathbb{R}^{3}} F(x, t u) d x \\
& =\frac{t^{2}}{2}\|u\|^{2}+\frac{t^{4}}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\int_{\mathbb{R}^{3}} F(x, t u) d x \\
& \geq \frac{t^{2}}{2}\|u\|^{2}-\varepsilon t^{2} \int_{\mathbb{R}^{3}}|u|^{2} d x-C_{\varepsilon} t^{6} \int_{\mathbb{R}^{3}}|u|^{6} d x \\
& \geq \frac{t^{2}}{2}\|u\|^{2}-C \varepsilon t^{2}\|u\|^{2}-C_{\varepsilon} t^{6}\|u\|^{6} .
\end{aligned}
$$

Hence, $g(0)=0, g(t)>0$ for t small.
Set $\Omega:=\left\{x \in \mathbb{R}^{3}: u(x)>0\right\}$, by using Fatou lemma and (A5), we have

$$
\liminf _{t \rightarrow+\infty} \int_{\Omega} \frac{F(x, t u)}{(t u)^{4}} u^{4} d x \geq \liminf _{t \rightarrow+\infty} \int_{\Omega} \frac{F_{p}(x, t u)}{(t u)^{4}} u^{4} d x=+\infty
$$

Hence

$$
\begin{aligned}
& \limsup _{t \rightarrow+\infty} \frac{g(t)}{t^{4}} \\
& =\limsup _{t \rightarrow+\infty} \frac{1}{2 t^{2}}\|u\|^{4}+\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\liminf _{t \rightarrow+\infty} \int_{\mathbb{R}^{3}} \frac{F(x, t u)}{t^{4}} d x \\
& =\limsup _{t \rightarrow+\infty} \frac{1}{2 t^{2}}\|u\|^{4}+\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x-\liminf _{t \rightarrow+\infty} \int_{\Omega} \frac{F(x, t u)}{(t u)^{4}} u^{4} d x=-\infty
\end{aligned}
$$

which deduces $g(t) \rightarrow-\infty$ as $t \rightarrow+\infty$. Therefore, there exists a t_{u} such that $I\left(t_{u} u\right)=\max _{t>0} I(t u)$ and $t_{u} u \in \mathcal{N}$. Suppose that there exist $t_{u}^{\prime}>t_{u}>0$ such that $t_{u}^{\prime} u, t_{u} u \in \mathcal{N}$. Then, We have

$$
\frac{1}{\left(t_{u}^{\prime}\right)^{2}}\|u\|^{2}+\int_{\mathbb{R}^{3}} K(x) \phi_{u} u^{2} d x=\int_{\mathbb{R}^{3}} \frac{f\left(x, t_{u}^{\prime} u\right) u^{4}}{\left(t_{u}^{\prime} u\right)^{3}} d x
$$

and this identity is also true if t_{u}^{\prime} is replaced by t_{u}. Therefore,

$$
\left(\frac{1}{\left(t_{u}^{\prime}\right)^{2}}-\frac{1}{\left(t_{u}\right)^{2}}\right)\|u\|^{2}=\int_{\mathbb{R}^{3}}\left(\frac{f\left(x, t_{u}^{\prime} u\right)}{\left(t_{u}^{\prime} u\right)^{3}}-\frac{f\left(x, t_{u} u\right)}{\left(t_{u} u\right)^{3}}\right) u^{4} d x
$$

which is absurd in view of (A4) and $t_{u}^{\prime}>t_{u}>0$.
Remark 2.9. As in [36, 46, we have

$$
c=\inf _{u \in \mathcal{N}} I(u)=\inf _{u \in F} \max _{t>0} I(t u)=\inf _{\gamma(t) \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))>0
$$

where

$$
\Gamma:=\{\gamma \in C([0,1], E): \gamma(0)=0, I(\gamma(1))<0\}
$$

Lemma 2.10. Suppose that (A1), (A2)-(A5) hold. Then there exists a nonnegative and bounded sequence $\left\{u_{n}\right\} \in E$ such that

$$
I\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0
$$

Proof. From the proof of Lemma 2.8, it is easy to see that I satisfies the mountain pass geometry. By [38], there exists an $\left\{u_{n}\right\}$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left(1+\left\|u_{n}\right\|\right)\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0$. By Lemma 2.3), we have

$$
\begin{aligned}
c & =I(u)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o_{n}(1) \\
& =\frac{1}{4}\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x+o_{n}(1) \\
& \geq \frac{1}{4}\left\|u_{n}\right\|^{2}+o_{n}(1) .
\end{aligned}
$$

Therefore, $\left\{u_{n}\right\}$ is bounded. Moreover, we have

$$
\left\langle I^{\prime}\left(u_{n}\right), u_{n}^{-}\right\rangle=\left\|u_{n}^{-}\right\|^{2}+\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}}\left(u_{n}^{-}\right)^{2} d x=o_{n}(1)
$$

Then $\left\|u_{n}^{-}\right\|^{2}=o(1)$ and $\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}^{-}}\left(u_{n}^{-}\right)^{2}=o(1)$. Therefore, we can infer that $I\left(u_{n}^{+}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}^{+}\right)\right\|_{E^{-1}} \rightarrow 0$. Hence, we may always assume that $\left\{u_{n}\right\}$ is nonnegative and the prove is fished.

Lemma 2.11. Suppose that (A1)-(A5) hold. If $u \in \mathcal{N}$ and $I(u)=c$, then u is a solution of system (1.5).

Proof. The proof is similar to that of [29, 30]. Suppose by contradiction, that u is not a solution of system (1.5). Hence, there exists $\varphi \in E$ such that

$$
\left\langle I^{\prime}(u), \varphi\right\rangle<-1
$$

Choose $\varepsilon \in(0,1)$ small enough such that for all $|t-1| \leq \varepsilon$ and $|\sigma| \leq \varepsilon$,

$$
\left\langle I^{\prime}(t u+\sigma \varphi), \varphi\right\rangle \leq-\frac{1}{2}
$$

Let $\zeta(t) \in[0,1]$ satisfies $\zeta(t)=1$ for $|t-1| \leq \frac{\varepsilon}{2}$ and $\zeta(t)=0$ for $|t-1| \geq \varepsilon$. for all $t>0$, let $\gamma(t)$ be a curve such that $\gamma(t)=t u$ for $|t-1| \geq \varepsilon$ and $\gamma(t)=t u+\varepsilon \zeta(t) \varphi$ for $|t-1|<\varepsilon$. Obviously, $\gamma(t)$ is a continuous curve, furthermore, $\|\gamma(t)\|>0$ for $|t-1|<\varepsilon$ in which ε small enough. Next we will prove $I(\gamma(t))<c$, for all $t>0$. In fact, if $|t-1| \geq \varepsilon, I(\gamma(t))=I(t u)<I(u)=c$. If $|t-1|<\varepsilon$, for all $\sigma \in[0, \varepsilon]$, we define $A: \sigma \mapsto I(t u+\sigma \zeta(t) \varphi)$. Obviously, $A \in C^{1}$. By the mean value therm, there exists $\bar{\sigma} \in(0, \varepsilon)$ such that

$$
I(t u+\varepsilon \zeta(t) \varphi)=I(t u)+\left\langle I^{\prime}(t u+\bar{\sigma} \zeta(t) \varphi), \varepsilon \zeta(t) \varphi\right\rangle \leq I(t u)-\frac{\varepsilon}{2} \zeta(t)<c .
$$

Set $\nu(u):=\left\langle I^{\prime}(u), u\right\rangle$, then $\nu(\gamma(1-\varepsilon))=\nu((1-\varepsilon) u)>0$ and $\nu(\gamma(1+\varepsilon))=$ $\nu((1+\varepsilon) u)<0$. According to the continuity of $t \rightarrow \nu(\gamma(t))$, there exists $t^{\prime} \in$ $(1-\varepsilon, 1+\varepsilon)$ such that $\nu\left(\gamma\left(t^{\prime}\right)\right)=0$. Thus $\gamma\left(t^{\prime}\right) \in \mathcal{N}$ and $I\left(\gamma\left(t^{\prime}\right)\right)<c$, which is a contradiction.

Define

$$
\mathcal{N}_{p}=\left\{u \in F \backslash\{0\}:\left\langle I_{p}^{\prime}(u), u\right\rangle=0\right\} \text { and } c_{p}=\inf _{u \in \mathcal{N}_{p}}
$$

In fact, $c_{p}=\inf _{u \in F} \max _{t>0} I_{p}(t u)$.
Remark 2.12. For any $u \in F$, by Lemma 2.8, there exists $t_{u}>0$ such that $t_{u} u \in \mathcal{N}$ and then $I\left(t_{u} u\right) \geq c$. Using $V(x) \leq V_{p}(x)$ and $F(x, s) \geq F_{p}(x, s)$, we have $c \leq I\left(t_{u} u\right) \leq I_{p}\left(t_{u} u\right) \leq \max _{t>0} I_{p}(t u)$. Then we obtain $c \leq c_{p}$.

3. Proof of main results

Proof. According to Lemma 2.10, there exist a nonnegative and bounded sequence $\left\{u_{n}\right\} \in E$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{-1}} \rightarrow 0$. Then there exists $u \in E$ such that, up to a subsequence, $u_{n} \rightharpoonup u$ in $E, u_{n} \rightarrow u$ in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{3}\right)$ and $u_{n}(x) \rightarrow u(x)$ a.e. in \mathbb{R}^{3}. By lemma 2.4, we have that

$$
0=\left\langle I^{\prime}\left(u_{n}\right), v\right\rangle+o_{n}(1)=\left\langle I^{\prime}(u), v\right\rangle, \forall v \in E,
$$

that is u is a solution of system (1.5). We next distinguish the following two case to prove system $\sqrt{1.5}$ have a nonnegative ground state solution.

Case 1: $u \neq 0$. Then $I(u) \geq c$. By Lemma 2.3 and the Fatou lemma, we obtain

$$
\begin{aligned}
c & =\liminf _{n \rightarrow \infty}\left(I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \\
& =\liminf _{n \rightarrow \infty}\left(\frac{1}{4}\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x\right) \\
& \geq \frac{1}{4}\|u\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f(x, u) u-F(x, u)\right) d x \\
& =I(u)-\frac{1}{4}\left\langle I^{\prime}(u), u\right\rangle=I(u) .
\end{aligned}
$$

Therefore, $I(u)=c$ and $I^{\prime}(u)=0$.
Case 2: $u=0$. Let

$$
\beta:=\limsup _{n \rightarrow \infty} \sup _{z \in \mathbb{R}^{3}} \int_{B_{1}(z)} u_{n}^{2} d x .
$$

If $\beta=0$, by using the Lions lemma [27, 28, we have $u_{n} \rightarrow 0$ in $L^{q}\left(\mathbb{R}^{3}\right)$ for all $q \in(2,6)$. From the conditions of (A2) and (A3), for all $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that $\frac{1}{2} f(x, u) u-F(x, u) \leq \varepsilon\left(|u|^{2}+|u|^{6}\right)+C_{\varepsilon}|u|^{\alpha}$ for any $(x, s) \in \mathbb{R}^{3} \times \mathbb{R}$ and $\alpha \in(2,6)$. Let ε small enough, we have that

$$
\begin{aligned}
c & =I\left(u_{n}\right)-\frac{1}{2}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o_{n}(1) \\
& =-\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n}^{2} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{2} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x+o_{n}(1) \\
& \leq-\frac{1}{4} \int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n}^{2} d x+\int_{\mathbb{R}^{3}}\left(\varepsilon\left(\left|u_{n}\right|^{2}+\left|u_{n}\right|^{6}\right)+C_{\varepsilon}\left|u_{n}\right|^{\alpha}\right) d x+o_{n}(1) \leq 0
\end{aligned}
$$

which is a contradiction with $c>0$. So $\beta>0$. Up to a subsequence, there exists $R>0$ and $\left\{z_{n}\right\} \subset \mathbb{Z}^{3}$ such that

$$
\int_{B_{R}} u_{n}\left(x+z_{n}\right)^{2} d x=\int_{B_{R}\left(z_{n}\right)} u_{n}^{2} d x>\frac{\beta}{2} .
$$

Set $w_{n}:=u_{n}\left(x+z_{n}\right)$. Hence, there exists a nonnegative function $w \in E$ such that, up to a subsequence, $w_{n} \rightharpoonup w$ in $E, w_{n} \rightarrow w$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$ and $w_{n}(x) \rightarrow w(x)$ a.e. in \mathbb{R}^{3}. Obviously, $w \neq 0$. If $\left\{z_{n}\right\}$ is bounded, $\exists R^{\prime}$ such that

$$
\int_{B_{R^{\prime}}(0)} u_{n}^{2} d x \geq \int_{B_{R}\left(z_{n}\right)} u_{n}^{2} d x \geq \frac{\beta}{2}
$$

which contradicts with the fact $u_{n} \rightarrow 0$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{3}\right)$. Hence $\left\{z_{n}\right\}$ is unbounded. Up to a subsequence, we have $z_{n} \rightarrow \infty$. For all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, by Lemmas 2.6 and 2.7 , we have

$$
0=\left\langle I^{\prime}\left(u_{n}, \varphi\left(\cdot-z_{n}\right)\right)\right\rangle+o_{n}(1)
$$

$$
\begin{aligned}
= & \int_{\mathbb{R}^{3}}\left(\nabla u_{n} \cdot \nabla \varphi\left(\cdot-z_{n}\right) d x+V(x) u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x+\int_{\mathbb{R}^{3}} K(x) \phi_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right) d x \\
& -\int_{\mathbb{R}^{3}} f\left(x, u_{n}\right) \varphi\left(\cdot-z_{n}\right) d x+o_{n}(1) \\
= & \int_{\mathbb{R}^{3}}\left(\nabla u_{n} \cdot \nabla \varphi\left(\cdot-z_{n}\right)+V_{p}(x) u_{n} \varphi\left(\cdot-z_{n}\right)\right) d x+\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{u_{n}} u_{n} \varphi\left(\cdot-z_{n}\right) d x \\
& -\int_{\mathbb{R}^{3}} f_{p}\left(x, u_{n}\right) \varphi\left(\cdot-z_{n}\right) d x+o_{n}(1) \\
= & \int_{\mathbb{R}^{3}}\left(\nabla w_{n} \cdot \nabla \varphi+V_{p}(x) w_{n} \varphi\right) d x+\int_{\mathbb{R}^{3}} K_{p}(x) \widetilde{\phi}_{w_{n}} w_{n} \varphi d x \\
& -\int_{\mathbb{R}^{3}} f_{p}\left(x, w_{n}\right) \varphi d x+o_{n}(1) \\
= & \left\langle I_{p}^{\prime}(w), \varphi\right\rangle
\end{aligned}
$$

that is, w is a solution of periodic system (1.7). By Lemma 2.3), Lemma 2.5. (A5) and Fatou lemma, we have

$$
\begin{aligned}
c & =I\left(u_{n}\right)-\frac{1}{4}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+o_{n}(1) \\
& =\frac{1}{4}\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) d x+o_{n}(1) \\
& \geq \frac{1}{4}\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}\left(x, u_{n}\right) u_{n}-F_{p}\left(x, u_{n}\right)\right) d x+o_{n}(1) \\
& =\frac{1}{4}\left\|w_{n}\right\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}\left(x, w_{n}\right) w_{n}-F_{p}\left(x, w_{n}\right)\right) d x+o_{n}(1) \\
& \geq \frac{1}{4}\|w\|^{2}+\int_{\mathbb{R}^{3}}\left(\frac{1}{4} f_{p}(x, w) w-F_{p}(x, w)\right) d x+o_{n}(1) \\
& =I_{p}(w)-\frac{1}{4}\left\langle I_{p}^{\prime}(w), w\right\rangle \\
& =I_{p}(w) \geq c_{p} .
\end{aligned}
$$

Using Remark 2.12), $I_{p}(w)=c_{p}=c$. By the properties of c and \mathcal{N}, there exits $t_{w}>0$ such that $t_{w} w \in \mathcal{N}$. Thus, we obtain $c \leq I\left(t_{w} w\right) \leq I_{p}\left(t_{w} w\right) \leq I_{p}(w)=c$. So c is achieved by $t_{w} w$. By Lemma 2.11. we have $I^{\prime}\left(t_{w} w\right)=0$. Therefore, $u=t_{w} w$ is a nonnegative ground state solution for system 1.5. Similar to that of discussed in [48, by the maximum principle discussed, $u>0$.
Acknowledgements. The author thanks the anonymous referees and the editors for their helpful comments and suggestions. This research was supported by the Natural Science Foundation of China (11561043).

References

[1] C. O. Alves, M. A. S. Souto, S. H. M. Soares; Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584-592.
[2] A. Ambrosetti, M. Badiale, S. Cingolani; Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.
[3] A. Ambrosetti, D. Ruiz; Multiple bound states for the Schrödinger-Poisson equation, Commun. Contemp. Math., 10 (2008), 1-14.
[4] A. Azzollini; Concentration and compactness in nonlinear Schrödinger-Poisson systemwith a general nonlinearity, J. Differential Equations, 249 (2010), 1746-1765.
[5] A. Azzollini, A. Pomponio; Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.
[6] V. Benci, D. Fortunato; An eigenvalue problem for the Schrödinger-Maxwell equations, Topological Methods in Nonlinear Analysis, 11 (1998), 283-293.
[7] H. Berestycki, P. L. Lions; Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Analysis, 82 (1983), 347-375.
[8] G. M. Coclite; A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Communications on Applied Nonlinear Analysis, 7 (2003), 417-423.
[9] G. Cerami, G. Vaira; Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.
[10] T. D'Aprile, D. Mugnai; Solitary waves for nonlinear Klein-Gordon-Maxwell and SchrödingerMaxwell equations, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 134 (2004), 893-906.
[11] T. D'Aprile, D. Mugnai; Non-existence results for the coupled Klein-Gordon-Maxwell equations, Advanced Nonlinear Studies, 4 (2004), 307-322.
[12] T. D'Aprile, J. Wei; On bound states concentrating on spheres for the Maxwell- Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.
[13] M. del Pino, P. Felmer; Semi-classical states of nonlinear Schrödinger equations: A variational reduction method, Math. Ann., 324 (2002), 1-32.
[14] Y. Ding, F. Lin; Solutions of perturbed Schrödinger equations with critical nonlinearity, Calculus Var. Partial Differ. Equ., 30 (2007), 231-249.
[15] L. R. Huang, E. M. Rocha, J. Q. Chen; Two positive solutions of a class of SchrödingerPoisson system with indefinite nonlinearity, J. Differential Equations, 255 (2013), 2463-2483.
[16] X. He, W. Zou; Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702.
[17] W. Huang, X. H. Tang; Ground-state solutions for asymptotically cubic Schrödinger-Maxwell equations, Mediterr. J. Math., 13 (2016), 3469-3481.
[18] L. Jeanjean, K. Tanaka; Singularly perturbed elliptic problems with superlinear or asympotically linear nonlinearities, Calculus Var. Partial Differ. Equ., 21 (2004), 287-318.
[19] Y. Jiang, H. Zhou; Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.
[20] G. Li, S. Peng, C. Wang; Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 52 (2011), 053505.
[21] G. Li, S. Peng, S. Yan; Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.
[22] G. Li, A. Szulkin; An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4(2002), 763-776.
[23] X. Y. Lin, X. H. Tang; An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comp. Math. Appl., 70 (2015), 726-736.
[24] Y. Li, Z. Q. Wang, J. Zeng; Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. NonLinéaire, 23 (2006), 829-837.
[25] Haendel F. Lins, Elves A. B. Silva; Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Analysis, 71 (2009), 2890-2905.
[26] Haendel F. Lins, Elves A. B. Silva; Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Analysis, 72 (2010), 2935-2949.
[27] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré. NonLinéaire, 1-4 (1984), 109-145.
[28] P. L. Lions; The concentration-compactness principle in the calculus of variations, The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. NonLinéaire, 1-4 (1984), 223-283.
[29] J. Liu, J. Liao, C. L. Tang; A positive ground state solution for a class of asymptotically periodic Schrödinger equations, Comp. Math. Appl., 71 (2016), 965-976.
[30] J. Q. Liu, Y. Q. Wang, Z. Q. Wang; Solutions for Quasilinear Schrödinger Equations via the Nehari Method, Communications in Partial Differential Equations, 29 (2004), 879-901.
[31] S. Liu; On superlinear problems without the Ambrosetti Rabinowitz condition, Nonlinear Analysis, 73 (2010), 788-795.
[32] Z. Liu, Z. Q. Wang, J. Zhang; Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Annali di Matematica, 195 (2016), 775-794.
[33] Z. Liu, S. Guo, Y. Fang; Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth, J. Math. Phys., 56 (2015), 041505.
[34] R. de Marchi; Schrödinger equations with asymptotically periodic terms, Proceedings of the Royal Society of Edinburgh, (145) 2015, 745-757.
[35] P. H. Rabinowitz; Minimax theorems in critical point theory with applications to differential equations, In: CBMS. Regional Conf. Ser. in Math. 65, RI, Amer. Math. Soc. (1986).
[36] P. H. Rabinowitz; On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
[37] D. Ruiz; The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
[38] M. Schechter; A variation of the mountain pass lemma and applications, J. Lond. Math. Soc., 44 (1991), 491-502.
[39] E. A. B. Silva, G. F. Vieira; Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calculus Var. Partial Differ. Equ., 39 (2010), 1-33.
[40] J. Sun, S. Ma; Ground state solutions for some Schrödinger-Poisson systems with periodic potentials, J. Differential Equations, 260 (2016), 2119-2149.
[41] J. Sun, T. F. Wu, Z. Feng; Multiplicity of positive solutions for a nonlinear SchrödingerPoisson system, J. Differential Equations, 260 (2016), 586-627
[42] X. H. Tang; Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98 (2015), 104-116.
[43] X. H. Tang; Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Science China Mathematics, 58(2015), 715-728.
[44] G. Vaira, Gound states for Schrödinger-Poisson type systems, Ricerche di Matematica, (60)2011, 263-297.
[45] J. Wang, J. Xu, F. Zhang, X. Chen; Existence of multi-bump solutions for a semilinear Schrödinger-Poisson system, Nonlinearity, 26(2013), 1377-1399.
[46] M. Willem; Minimax Theorems, Birkhäuser, Bosten, 1996.
[47] M. Yang, F. Zhao, Y. Ding; On the existence of solutions for Schrödinger-Maxwell systems in \mathbb{R}^{3}, Rocky Mountain J. Math., 42(2012), 1655-1674.
[48] H. Zhang, J. Xu, F. Zhang; Positive ground states for asymptotically periodic SchrödingerPoisson systems, Math. Meth. Appl. Sci., 36(2013), 427-439.
[49] L. Zhao, F. Zhao; On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346(2008), 155-169.

Da-Bin Wang (CORRESponding author)
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: wangdb96@163.com
Hua-Fei Xie
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: xiehuafeilz@163.com
Wen Guan
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: mathguanw@163.com

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J60, 35J65.
 Key words and phrases. Schrödinger-Poisson systems; ground state solution; variational methods.
 (C)2017 Texas State University.

 Submitted March 22, 2017. Published September 22, 2017.

