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ON A REACTION-DIFFUSION SYSTEM ASSOCIATED WITH
BRAIN LACTATE KINETICS
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Communicated by Marco Squassina

Abstract. Our aim in this article is to study properties of a reaction-diffusion
system which is related with brain lactate kinetics, when spatial diffusion is

taken into account. In particular, we prove the existence and uniqueness of

nonnegative solutions and obtain linear stability results. We also derive L∞-
bounds on the solutions. These results give insights on the therapeutic man-

agement of glioma.

1. Introduction

Glioma (also called glial tumors) appear to be the most frequent primary brain
tumors. In particular, the so-called grade-II low-grade glioma take a significant
place, as they inevitably evolve to anaplastic transformation, with a very poor
prognosis. We can note that delay and kinetics of this transformation are highly
variable and the occurrence of commutation into anaplastic glioma is a decisive
factor. The prediction of this moment constitutes a challenge and is a deciding fac-
tor for therapeutic management. Though currently unpredictable by clinical data
and morphological medical imaging, some data concerning glioma metabolism are
accessible noninvasively by magnetic resonance imaging. Furthermore, we can ob-
tain metabolite concentrations, such as creatine and lactate, by means of magnetic
resonance spectroscopy. A major challenge is to explain the variations of magnetic
resonance data observed during the transformation of low grade glioma and suggest
new therapies. We refer the interested readers to [7] and the references therein for
more details.

In view of this, the system of ODE’s
du

dt
+ κ(

u

k + u
− v

k′ + v
) = J, κ, k, k′, J > 0, (1.1)

ε
dv

dt
+ Fv + κ(

v

k′ + v
− u

k + u
) = FL, ε, F, L > 0, (1.2)

where ε is a small parameter, was proposed and studied as a model for brain lac-
tate kinetics (see [5, 7, 8, 9]). In this context, u = u(t) and v = v(t) correspond
to the lactate concentrations in an interstitial (i.e., extra-cellular) domain and in

2010 Mathematics Subject Classification. 35K57, 35K67, 35B45.
Key words and phrases. Brain lactate kinetics; spatial diffusion; reaction-diffusion system;
well-posedness; regularity; linear stability.
c©2017 Texas State University.

Submitted November 18, 2016. Published January 19, 2017.

1



2 R. GUILLEVIN, A. MIRANVILLE, A. PERRILLAT-MERCEROT EJDE-2017/23

a capillary domain, respectively. Furthermore, the nonlinear term κ( u
k+u −

v
k′+v )

stands for a co-transport through the brain-blood boundary (see [10]). Finally, J
and F are forcing and input terms, respectively, assumed frozen. In particular, the
model has a unique stationary point which is asymptotically stable. This is consis-
tent with clinical observations which suggest that, within a short time scale from
minutes to days, metabolite concentrations within the tumor are nearly constant.
Furthermore, as discussed in [7], a therapeutic perspective of such a result is to
have the stationary point outside the viability domain, where cell necrosis occurs.

Now, it is reasonable to expect that the lactate concentrations vary according
to the position in the brain, meaning that, in view of more precise models, one
should consider a PDE’s system. Furthermore, spatial diffusion, meaning that
the lactates spread (note that there is a flux into different compartments), should
also be taken into account. This suggests reaction-diffusion models to describe the
lactate kinetics.

The simplest possible corresponding PDE’s (reaction-diffusion) system, account-
ing for spatial diffusion, reads (see also [12])

∂u

∂t
− α∆u+ κ(

u

k + u
− v

k′ + v
) = J, α > 0, (1.3)

ε
∂v

∂t
− β∆v + Fv + κ(

v

k′ + v
− u

k + u
) = FL, β > 0, (1.4)

where u = u(x, t) and v = v(x, t), which we consider in a bounded and regular
domain Ω of RN , N = 1, 2 or 3, together with Neumann boundary conditions,

∂u

∂ν
=
∂v

∂ν
= 0 on Γ,

where Γ = ∂Ω and ν is the unit outer normal vector.
Actually, more precise models should also account for the geometry, i.e., the

different compartments (interstitial, capillary). In the simplified model (1.3)-(1.4),
even if, initially, meaning in the initial conditions, the two compartments are sepa-
rated, u and v diffuse in each of them: the total lactate concentration should thus
be seen as the sum u + v. Finally, although we kept here, at first approximation,
the same nonlinear terms as in (1.1)-(1.2), this should be further investigated in
view of more realistic PDE’s models; this paper can thus be seen as a first step
to understand the mathematical difficulties related with reaction-diffusion systems
with such nonlinearities/such a coupling. We will address more elaborate models
elsewhere.

A first step, to validate the model, is to show that it still satisfies the impor-
tant (in view of therapeutic management) properties of the ODE’s system. More
precisely, two major issues are the boundedness of the lactate concentrations (re-
lated with the viability domain of the glial tumors) and the stability of the unique
(spatially homogeneous in the case of the PDE’s system) steady state (related with
therapeutic protocols).

The mathematical analysis of (1.3)-(1.4) (and, in particular, the well-posedness)
appears to be challenging, due to the coupling terms, especially for negative initial
data (though biologically irrelevant, this makes sense from a mathematical point of
view).
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In [13], the well-posedness of the following singular reaction-diffusion equation
was studied:

∂u

∂t
−∆u+ Fu+ κ

u

k + u
= f(x, t), F ≥ 0, (1.5)

corresponding to the case where either u or v is known in (1.3) and (1.4); we can
also think of (1.5) as an equation in each compartment, assuming that the lactate
concentration is known in the other one.

In this paper, we prove the existence and uniqueness of regular nonnegative so-
lutions to (1.3)-(1.4), for nonnegative initial data. We also derive L∞-bounds on
these solutions. We then study the linear stability of the unique spatially homoge-
neous steady state. We can note that this spatially homogeneous equilibrium is the
same as the unique equilibirum for (1.1)-(1.2), meaning that (1.3)-(1.4) contains
important and relevant features of the original ODE’s model.

Notation. We denote by ((·, ·)) the usual L2-scalar product, with associated norm
‖ · ‖. More generally, ‖ · ‖X denotes the norm on the Banach space X.

Throughout the paper, the same letters c and c′ denote (generally positive)
constants which may vary from line to line.

2. Existence, uniqueness and regularity of nonnegative solutions

We consider the initial and boundary value problem
∂u

∂t
− α∆u+ κ(

k′

k′ + v
− k

k + u
) = J, (2.1)

ε
∂v

∂t
− β∆v + Fv + κ(

k

k + u
− k′

k′ + v
) = FL, (2.2)

∂u

∂ν
=
∂v

∂ν
= 0 on Γ, (2.3)

u|t=0 = u0, v|t=0 = v0. (2.4)

Note that (2.1)-(2.2) are equivalent to (1.3)-(1.4). We assume that

(u0, v0) ∈ (H3(Ω) ∩H2
N(Ω))2, u0 ≥ 0, v0 ≥ 0 a.e. x, (2.5)

where
H2

N(Ω) = {w ∈ H2(Ω) :
∂w

∂ν
= 0 on Γ}.

Theorem 2.1. We assume that (2.5) holds. Then, (2.1)-(2.4) possesses a unique
solution (u, v) such that

u ≥ 0, v ≥ 0 a.e. (x, t) (2.6)

and, for all T > 0,

(u, v) ∈ L∞(0, T ; (H3(Ω) ∩H2
N(Ω))2) ∩ L2(0, T ;H4(Ω)2),

(
∂u

∂t
,
∂v

∂t
) ∈ L∞(0, T ;H1(Ω)2) ∩ L2(0, T ;H2(Ω)2).

Proof. (a) Uniqueness: Let (u1, v1) and (u2, v2) be two such solutions to (2.1)-
(2.3) with initial data (u0,1, v0,1) and (u0,2, v0,2), respectively. We set (u, v) =
(u1 − u2, v1 − v2) and (u0, v0) = (u0,1 − u0,2, v0,1 − v0,2) and have

∂u

∂t
− α∆u+ κ(

ku

(k + u1)(k + u2)
− k′v

(k′ + v1)(k′ + v2)
) = 0, (2.7)
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ε
∂v

∂t
− β∆v + Fv + κ(

k′v

(k′ + v1)(k′ + v2)
− ku

(k + u1)(k + u2)
) = 0, (2.8)

∂u

∂ν
=
∂v

∂ν
= 0 on Γ, (2.9)

u|t=0 = u0, v|t=0 = v0. (2.10)

We multiply (2.7) by u and (2.8) by v and integrate over Ω and by parts. Summing
the two resulting equalities, we easily obtain, noting that ui ≥ 0, vi ≥ 0 a.e. (x, t),
i = 1, 2, so that

0 ≤ k

(k + u1)(k + u2)
≤ 1
k
, 0 ≤ k′

(k′ + v1)(k′ + v2)
≤ 1
k′

a.e. (x, t),

the differential inequality
1
2
d

dt
(‖u‖2 + ε‖v‖2) ≤ κ(

1
k

+
1
k′

)|((u, v))|.

This yields
d

dt
(‖u‖2 + ε‖v‖2) ≤ c(‖u‖2 + ε‖v‖2), (2.11)

whence, owing to Gronwall’s lemma,

‖u1(t)− u2(t)‖2 + ε‖v1(t)− v2(t)‖2

≤ ect(‖u0,1 − u0,2‖2 + ε(‖v0,1 − v0,2‖2), t ≥ 0.
(2.12)

This yields the uniqueness, as well as the continuous dependence with respect to
the initial data in the L2-norm.
(b) Regularity estimates: We assume that (2.1)-(2.4) possesses a solution (u, v)
such that (2.6) is satisfied and the estimates below are justified.

We multiply (2.1) by u and (2.2) by v and find, summing the two resulting
equalities,

1
2
d

dt
(‖u‖2 + ε‖v‖2) + α‖∇u‖2 + β‖∇v‖2 ≤ (J + κ)

∫
Ω

u dx+ (FL+ κ)
∫

Ω

v dx,

which yields
d

dt
(‖u‖2 + ε‖v‖2) + c(‖∇u‖2 + ‖∇v‖2) ≤ c′(‖u‖2 + ε‖v‖2) + c′′, c > 0, (2.13)

whence estimates on u and v in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)), for all T > 0.

Remark 2.2. Multiplying (2.2) by v gives
ε

2
d

dt
‖v‖2 + β‖∇v‖2 + F‖v‖2 ≤ c‖v‖,

which yields

ε
d

dt
‖v‖2 + F‖v‖2 ≤ c,

whence, owing to Gronwall’s lemma,

‖v(t)‖2 ≤ e−Fε t‖v0‖2 + c, t ≥ 0,

so that the estimate on v in L2(Ω) is global in time and even dissipative (in the
sense that it is independent of time and bounded sets of initial data, at least for
large times). We can also note that this estimate only depends on the initial datum
for v.
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Next, we multiply (2.1) by −∆u and (2.2) by −∆v and have, summing the two
resulting equalities,

1
2
d

dt
(‖∇u‖2 + ε‖∇v‖2) + α‖∆u‖2 + β‖∆v‖2 ≤ c(‖∆u‖+ ‖∆v‖),

owing again to (2.6), which yields

d

dt
(‖∇u‖2 + ε‖∇v‖2) + c(‖∆u‖2 + ‖∆v‖2) ≤ c′, c > 0, (2.14)

and we obtain estimates on u and v in L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)), for
all T > 0.

We then differentiate (2.1) and (2.2) with respect to time to have

∂

∂t

∂u

∂t
− α∆

∂u

∂t
+ κ(

k

(k + u)2

∂u

∂t
− k′

(k′ + v)2

∂v

∂t
) = 0, (2.15)

ε
∂

∂t

∂v

∂t
− β∆

∂v

∂t
+ F

∂v

∂t
+ κ(

k′

(k′ + v)2

∂v

∂t
− k

(k + u)2

∂u

∂t
) = 0, (2.16)

∂

∂ν

∂u

∂t
=

∂

∂ν

∂v

∂t
= 0 on Γ, (2.17)

where the initial data
∂u

∂t
(0) = J + α∆u0 + κ(

k

k + u0
− k′

k′ + v0
), (2.18)

∂v

∂t
(0) =

1
ε

(FL+ β∆v0 − Fv0 + κ(
k′

k′ + v0
− k

k + u0
)) (2.19)

belong to H1(Ω).
We multiply (2.15) by ∂u

∂t and (2.16) by ∂v
∂t and obtain, summing the two resulting

equalities and owing once more to (2.6),

d

dt
(‖∂u
∂t
‖2 +ε‖∂v

∂t
‖2)+c(‖∇∂u

∂t
‖2 +‖∇∂v

∂t
‖2) ≤ c′(‖∂u

∂t
‖2 +ε‖∂v

∂t
‖2), c > 0, (2.20)

whence estimates on ∂u
∂t and ∂v

∂t in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)), for all
T > 0.

We also multiply (2.15) by −∆∂u
∂t and (2.16) by −∆∂v

∂t and find

d

dt
(‖∇∂u

∂t
‖2 + ε‖∇∂v

∂t
‖2) + c(‖∆∂u

∂t
‖2 + ‖∆∂v

∂t
‖2)

≤ c′(‖∂u
∂t
‖+ ‖∂v

∂t
‖)(‖∆∂u

∂t
‖+ ‖∆∂v

∂t
‖),

which yields

d

dt
(‖∇∂u

∂t
‖2 + ε‖∇∂v

∂t
‖2) + c(‖∆∂u

∂t
‖2 + ‖∆∂v

∂t
‖2) ≤ c′(‖∂u

∂t
‖2 + ‖∂v

∂t
‖2), (2.21)

with c > 0, whence estimates on ∂u
∂t and ∂v

∂t in L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)),
for all T > 0. We now rewrite (2.1)-(2.2) as an elliptic system, for t > 0 fixed,

−α∆u = g(x, t),
∂u

∂ν
= 0 on Γ, (2.22)

−β∆v = h(x, t),
∂v

∂ν
= 0 on Γ, (2.23)
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where

g = J − ∂u

∂t
− κ(

k′

k′ + v
− k

k + u
), (2.24)

h = FL− ε∂v
∂t
− Fv − κ(

k

k + u
− k′

k′ + v
) (2.25)

belong to L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)), ∀T > 0. Indeed, note that

∂

∂xi

1
k + u

= − 1
(k + u)2

∂u

∂xi
,

∂

∂xi

1
k′ + v

= − 1
(k′ + v)2

∂v

∂xi
, i = 1, . . . , n.

It thus follows from standard elliptic regularity results (see, e.g., [1] and [2]) that
(u, v) ∈ L∞(0, T ;H2(Ω)2) ∩ L2(0, T ;H3(Ω)2), for all T > 0. This, in turn, yields
that g and h belong to L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)), for all T > 0. Indeed,
note that

∂2

∂xi∂xj

1
k + u

=
2

(k + u)3

∂u

∂xi

∂u

∂xj
− 1

(k + u)2

∂2u

∂xi∂xj
, i, j = 1, . . . , n,

and

‖ ∂2

∂xi∂xj

1
k + u

‖ ≤ c(‖ ∂u
∂xi

∂u

∂xj
‖+ ‖ ∂2u

∂xi∂xj
‖)

≤ c(‖ ∂u
∂xi
‖L4(Ω)‖

∂u

∂xj
‖L4(Ω) + ‖ ∂2u

∂xi∂xj
‖)

≤ c(‖u‖2H2(Ω) + 1),

where i, j = 1, . . . , n, owing to the continuous embedding H1(Ω) ⊂ L4(Ω). We
proceed in a similar way for v. Again, standard elliptic regularity results yield that
(u, v) ∈ L∞(0, T ;H3(Ω)2) ∩ L2(0, T ;H4(Ω)2), for all T > 0.

(c) Existence of nonnegative solutions: We consider the initial and boundary
value problem

∂u

∂t
− α∆u+ κ(

u

k + |u|
− v

k′ + |v|
) = J, (2.26)

ε
∂v

∂t
− β∆v + Fv + κ(

v

k′ + |v|
− u

k + |u|
) = FL, (2.27)

∂u

∂ν
=
∂v

∂ν
= 0 on Γ, (2.28)

u|t=0 = u0, v|t=0 = v0. (2.29)

Noting that f(s) = s
c+|s| , c > 0 given, is of class C1, where f ′(s) = c

(c+|s|)2 is
bounded on R, so that f is also Lipschitz continuous, we can prove the existence
and uniqueness of the weak (i.e., variational) solution to (2.26)-(2.29) (we refer the
interested reader to, e.g., [11], [14] and [15] for developments on reaction-diffusion
equations and systems). Furthermore, this solution satisfies regularity estimates
which are similar to those derived above and is thus strong (i.e., it satisfies (2.26)-
(2.29) a.e. (x, t)). This, together with the existence of a solution, can be done by
considering a standard Galerkin scheme, taking a spectral basis associated with the
spectrum of the minus Laplace operator, with Neumann boundary conditions, as
Galerkin basis.
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We then multiply (2.26) by −u−, where u− = min(0,−u), and have

1
2
d

dt
‖u−‖2 + α‖∇u−‖2 + κ

∫
Ω

|u−|2

k + |u|
dx+ κ

∫
Ω

vu−

k′ + |v|
dx ≤ 0. (2.30)

Noting that v = v+ − v−, where v+ = max(0, v), and u− and v+ are nonnegative,
it follows that

d

dt
‖u−‖2 ≤ 2κ

∫
Ω

v−u−

k′ + |v|
dx, (2.31)

whence
d

dt
‖u−‖2 ≤ c(‖u−‖2 + ε‖v−‖2). (2.32)

Similarly, multiplying (2.27) by −v−, we obtain

ε
d

dt
‖v−‖2 ≤ c(‖u−‖2 + ε‖v−‖2). (2.33)

Summing (2.32) and (2.33), we find

d

dt
(‖u−‖2 + ε‖v−‖2) ≤ c(‖u−‖2 + ε‖v−‖2). (2.34)

Gronwall’s lemma finally yields

‖u−(t)‖2 + ε‖v−(t)‖2 ≤ ect(‖u−0 ‖2 + ε‖v−0 ‖2), (2.35)

whence u− = v− = 0 (recall that u0 ≥ 0 and v0 ≥ 0 a.e. x) and u ≥ 0 and v ≥ 0 a.e.
(x, t). This means that (u, v) is solution to (2.1)-(2.4) and the regularity estimates
derived above are now fully justified. �

Remark 2.3. (i) Actually, the biologically relevant quadrant {u ≥ 0, v ≥ 0} is an
invariant region (see [14]) for both systems (2.1)-(2.2) and (2.26)-(2.27), meaning
that solutions starting from this region cannot leave it. We chose however to give
a proof of the nonnegativity of the solutions, also having in mind more elaborate
models which we will study in forthcoming papers.
(ii) We now assume that

u0 ≥ −δ1 and v0 ≥ −δ2 a.e. x, (2.36)

where δ1 and δ2 are positive (and are intended to be small). We then consider the
modified initial and boundary value problem

∂u

∂t
− α∆u+ κ(

u

k − δ1 + |u+ δ1|
− v

k′ − δ2 + |v + δ2|
) = J, (2.37)

ε
∂v

∂t
− β∆v + Fv + κ(

v

k′ − δ2 + |v + δ2|
− u

k − δ1 + |u+ δ1|
) = FL, (2.38)

∂u

∂ν
=
∂v

∂ν
= 0 on Γ, (2.39)

u|t=0 = u0, v|t=0 = v0, (2.40)

where δ1 and δ2 are chosen such that k − δ1 > 0 and k′ − δ2 > 0. The existence
and uniqueness of the solution to (2.37)-(2.40) is straightforward. Next, we set
ũ = u+ δ1 and ṽ = v + δ2. These functions are solutions to

∂ũ

∂t
− α∆ũ+ κ(

ũ

k − δ1 + |ũ|
− ṽ

k′ − δ2 + |ṽ|
) = J̃ , (2.41)



8 R. GUILLEVIN, A. MIRANVILLE, A. PERRILLAT-MERCEROT EJDE-2017/23

ε
∂ṽ

∂t
− β∆ṽ + F ṽ + κ(

ṽ

k′ − δ2 + |ṽ|
− ũ

k − δ1 + |ũ|
) = F̃ , (2.42)

∂ũ

∂ν
=
∂ṽ

∂ν
= 0 on Γ, (2.43)

ũ|t=0 = u0 + δ1, ṽ|t=0 = v0 + δ2, (2.44)

where

J̃ = J + κ(
δ1

k − δ1 + |ũ|
− δ2
k′ − δ2 + |ṽ|

),

F̃ = F (L+ δ2)− κ(
δ1

k − δ1 + |ũ|
− δ2
k′ − δ2 + |ṽ|

).

Choosing δ1 and δ2 such that J̃ ≥ 0 and F̃ ≥ 0 (in particular, these hold when δ1
and δ2 are small enough) and noting that ũ(0) ≥ 0 and ṽ(0) ≥ 0 a.e. x, we can
prove, as in the proof of Theorem 2.1, that ũ(x, t) ≥ 0 and ṽ(x, t) ≥ 0 a.e. (x, t),
so that (u, v) is solution to (2.1)-(2.3) (here, the quadrant {u ≥ −δ1, v ≥ −δ2} is
an invariant region). For general negative initial data however, the existence of a
global in time solution is much more involved.

Theorem 2.4. Under the assumptions of Theorem 2.1, the solution (u, v) to (2.1)-
(2.4) such that (2.6) holds satisfies

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + (J + κ)t, t ≥ 0,

‖v(t)‖L∞(Ω) ≤ e−
F
ε t‖v0‖L∞(Ω) +

FL+ κ

F
, t ≥ 0.

Proof. We note that, owing to (2.6),

∂u

∂t
− α∆u ≤ J + κ, (2.45)

ε
∂v

∂t
− β∆v + Fv ≤ FL+ κ. (2.46)

We multiply (2.45) by um+1, m ∈ N, and have

1
m+ 2

d

dt
‖u‖m+2

Lm+2(Ω) + α(m+ 1)
∫

Ω

um|∇u|2 dx ≤ (J + κ)
∫

Ω

um+1 dx,

which yields

‖u‖m+1
Lm+2(Ω)

d

dt
‖u‖Lm+2(Ω) ≤ (J + κ)Vol(Ω)

1
m+2 ‖u‖m+1

Lm+2(Ω). (2.47)

Therefore, ‖u(t)‖Lm+2(Ω) = 0 or ‖u(t)‖Lm+2(Ω) > 0 and

d

dt
‖u‖Lm+2(Ω) ≤ (J + κ)Vol(Ω)

1
m+2 . (2.48)

In the later case (note that it follows from the regularity given in Theorem 2.1 that
u is continuous, both in space and time), for t > 0 given, either ‖u(s)‖Lm+2(Ω) > 0,
for all s ∈ (0, t], in which case

‖u(t)‖Lm+2(Ω) ≤ ‖u0‖Lm+2(Ω) + (J + κ)Vol(Ω)
1

m+2 t, (2.49)

or there exists t0 ∈ (0, t] such that ‖u(t0)‖Lm+2(Ω) = 0 and ‖u(s)‖Lm+2(Ω) > 0, for
all s ∈ (t0, t], in which case

‖u(t)‖Lm+2(Ω) ≤ (J + κ)Vol(Ω)
1

m+2 (t− t0),
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so that (2.49) again holds. Noting that (2.49) also holds when ‖u(t)‖Lm+2(Ω) = 0,
we obtain, passing to the limit m→ +∞ (see, e.g., [3]),

‖u(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + (J + κ)t, t ≥ 0. (2.50)

Proceeding in a similar way for (2.46), we find

ε
d

dt
‖v‖Lm+2(Ω) + F‖v‖Lm+2(Ω) ≤ (FL+ κ)Vol(Ω)

1
m+2 . (2.51)

Employing Gronwall’s lemma, we deduce from (2.51) that

‖v(t)‖Lm+2(Ω) ≤ e−
F
ε t‖v0‖Lm+2(Ω) +

FL+ κ

F
Vol(Ω)

1
m+2 , t ≥ 0. (2.52)

Passing to the limit m→ +∞, we finally have

‖v(t)‖L∞(Ω) ≤ e−
F
ε t‖v0‖L∞(Ω) +

FL+ κ

F
, t ≥ 0, (2.53)

which completes the proof. �

Remark 2.5. (i) In particular, from (2.53) (which is a dissipative estimate) it
follows that if ‖v0‖L∞(Ω) ≤ R and δ > 0 is given, then there exists t0 = t0(R, δ) > 0
such that

‖v(t)‖L∞(Ω) ≤
FL+ κ

F
+ δ, t ≥ t0. (2.54)

Let now M be such that F (L−M) + κ ≤ 0, i.e., M ≥ FL+κ
F , and v0 be such that

0 ≤ v0 ≤M a.e. x. Setting ṽ = v −M , we obtain

ε
∂ṽ

∂t
− β∆ṽ + F ṽ ≤ 0, (2.55)

∂ṽ

∂ν
= 0 on Γ, (2.56)

where ṽ(0) ≤ 0. Multiplying (2.55) by ṽ+, we easily find

d

dt
‖ṽ+‖2 ≤ 0,

whence ṽ+ = 0 and 0 ≤ v ≤ M a.e. (x, t) (compare with (2.54)), meaning that
the capillary lactate concentration is uniformly bounded (or ultimately uniformly
bounded in (2.54)). Now, we have not been able to derive a similar upper bound on
the interstitial lactate concentration u. We can note that, in the biological model,
outside a bounded viability domain, cell necrosis occurs (see [7]), meaning that one
expects viable trajectories to be uniformly bounded.
(ii) Multiplying (1.3) by u+ k, integrating over Ω and by parts, we obtain

dE

dt
+ α‖∇u‖2 + κ‖u‖L1(Ω) = ((J +

κv

k′ + v
, u+ k)),

where

E =
1
2
‖u‖2 + k‖u‖L1(Ω).

Noting that v is uniformly bounded (we assume that, say, 0 ≤ v0 ≤ FL+κ
F ), we

take, for κ, J , F and L given small enough and k′ large enough such that

J +
κv

k′ + v
< κ.
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We thus deduce that
dE

dt
+ α‖∇u‖2 + c‖u‖L1(Ω) ≤ c′, c > 0,

which yields, noting that

α‖∇u‖2 + c‖u‖L1(Ω) ≥ c′(‖∇u‖+ ‖u‖L1(Ω))− c′′

≥ c′(‖u‖+ ‖u‖L1(Ω))− c′′,

the differential inequality

dE

dt
+ c
√
E ≤ c′, c > 0. (2.57)

Set E∗ = (c′/c)2, where c and c′ are the same constants as in (2.57), so that

dE∗

dt
+ c
√
E∗ = c′.

It then follows from comparison arguments that

E(t) ≤ max(E(0), E∗), t ≥ 0, (2.58)

and we finally deduce that the L2-norm of u is uniformly bounded.

We finally have

Theorem 2.6. We further assume that J ≥ κ, FL ≥ κ and u0 > 0 and v0 > 0
a.e. x. Let (u, v) be the solution to (2.1)-(2.4) such that (2.6) holds. Then, u > 0
and v > 0 a.e. (x, t) and

u(x, t) ≥ 1
‖ 1
u0
‖L∞(Ω)

, v(x, t) ≥ e−
F
ε t

‖ 1
v0
‖L∞(Ω)

a.e. (x, t).

Proof. We first note that from (2.1)-(2.2) it follows that

∂u

∂t
− α∆u ≥ J − κ, (2.59)

ε
∂v

∂t
− β∆v + Fv ≥ FL− κ. (2.60)

Multiplying (2.59) by − 1
u , we have

d

dt

∫
Ω

ln
1
u
dx ≤ 0,

whence ∫
Ω

ln
1
u(t)

dx ≤
∫

Ω

ln
1
u0

dx, t ≥ 0,

and u(x, t) > 0 a.e. (x, t). We proceed in a similar way to prove that v(x, t) > 0
a.e. (x, t).

Next, we multiply (2.59) by − 1
um+1 , m ∈ N, and find that

1
m

d

dt
‖ 1
u
‖mLm(Ω) + α(m+ 1)

∫
Ω

|∇u|2

um+2
dx ≤ 0,

whence

‖ 1
u(t)
‖Lm(Ω) ≤ ‖

1
u0
‖Lm(Ω), t ≥ 0. (2.61)
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Passing to the limit m→ +∞, we deduce that

‖ 1
u(t)
‖L∞(Ω) ≤ ‖

1
u0
‖L∞(Ω), t ≥ 0. (2.62)

Multiplying (2.60) by − 1
vm+1 , m ∈ N, we have

ε

m

d

dt
‖1
v
‖mLm(Ω) ≤ F‖

1
v
‖mLm(Ω),

which yields

ε
d

dt
‖1
v
‖Lm(Ω) ≤ F‖

1
v
‖Lm(Ω), (2.63)

whence, employing Gronwall’s lemma,

‖ 1
v(t)
‖Lm(Ω) ≤ ‖

1
v0
‖Lm(Ω)e

F
ε t, t ≥ 0. (2.64)

Passing to the limit m→ +∞, we deduce that

‖ 1
v(t)
‖L∞(Ω) ≤ ‖

1
v0
‖L∞(Ω)e

F
ε t, t ≥ 0, (2.65)

which completes the proof. �

Remark 2.7. Proceeding as in the proof of Theorem 2.1 (see also Remark 2.3,
(ii)), we can prove that, if

u0 ≥ δ1 and v0 ≥ δ2 a.e. x,

where δ1 and δ2 are positive and small enough, then

u(x, t) ≥ δ1 and v(x, t) ≥ δ2 a.e. (x, t).

Remark 2.8. It is interesting to note that, as far as the L∞-estimates are con-
cerned, the system behaves as if it were uncoupled.

3. A stability result

As shown in [5, 7, 8, 9], (2.1)-(2.3) possesses a unique spatially homogeneous
stationary solution (u, v) = (u, v) given by

v = L+
J

F
> 0, (3.1)

u =
k(Jκ + v

k′+v )

1− (Jκ + v
k′+v )

. (3.2)

Note that u is not necessarily positive. We thus assume in what follows that

u > 0. (3.3)

The linearized (around (u, v)) system reads

∂U

∂t
− α∆U + κ(

k

(k + u)2
U − k′

(k′ + v)2
V ) = 0, (3.4)

ε
∂V

∂t
− β∆V + FV + κ(

k′

(k′ + v)2
V − k

(k + u)2
U) = 0, (3.5)

∂U

∂ν
=
∂V

∂ν
= 0 on Γ, (3.6)

U |t=0 = U0, V |t=0 = V0. (3.7)



12 R. GUILLEVIN, A. MIRANVILLE, A. PERRILLAT-MERCEROT EJDE-2017/23

Noting that (3.4)-(3.5) is a linear system, it is not difficult to prove the following
result.

Theorem 3.1. We assume that (U0, V0) ∈ L2(Ω)2. Then (3.4)-(3.7) possesses a
unique weak solution (U, V ) such that, for all T > 0,

(U, V ) ∈ L∞(0, T ;L2(Ω)2) ∩ L2(0, T ;H1(Ω)2).

If we further assume that (U0, V0) ∈ H1(Ω)2, then, for all T > 0,

(U, V ) ∈ L∞(0, T ;H1(Ω)2) ∩ L2(0, T ;H2(Ω)2).

Finally, if (U0, V0) ∈ H2
N(Ω)2, then, for all T > 0,

(U, V ) ∈ L∞(0, T ;H2
N(Ω)2) ∩ L2(0, T ;H3(Ω)2)

and the solution is strong.

Remark 3.2. It is easy to prove that, if U0 ≥ 0 and V0 ≥ 0 a.e. x, then U ≥ 0
and V ≥ 0 a.e. (x, t).

Theorem 3.3. The stationary solution (u, v) is linearly stable in L2(Ω)2.

Proof. We multiply (3.4) by k
(k+u)2U and (3.5) by k′

(k′+v)2V and obtain, summing
the two resulting equalities,

1
2
d

dt
(

k

(k + u)2
‖U‖2 + ε

k′

(k′ + v)2
‖V ‖2)

+
αk

(k + u)2
‖∇U‖2 +

βk′

(k′ + v)2
‖∇V ‖2 +

Fk′

(k′ + v)2
‖V ‖2

+ κ(
k2

(k + u)4
‖U‖2 +

k′
2

(k′ + v)4
‖V ‖2 − 2kk′

(k + u)2(k′ + v)2

∫
Ω

UV dx) = 0.

(3.8)

Noting that

k2

(k + u)4
‖U‖2 +

k′
2

(k′ + v)4
‖V ‖2 − 2kk′

(k + u)2(k′ + v)2

∫
Ω

UV dx

=
∫

Ω

( k

(k + u)2
U − k′

(k′ + v)2
V
)2
dx ≥ 0,

we deduce from (3.8) that

d

dt
(

k

(k + u)2
‖U‖2 + ε

k′

(k′ + v)2
‖V ‖2) ≤ 0, (3.9)

whence
k

(k + u)2
‖U(t)‖2 + ε

k′

(k′ + v)2
‖V (t)‖2 ≤ k

(k + u)2
‖U0‖2 + ε

k′

(k′ + v)2
‖V0‖2 (3.10)

and the result follows. �

Remark 3.4. Similarly, multiplying (3.4) by− k
(k+u)2 ∆U and (3.5) by− k′

(k′+v)2 ∆V ,
we obtain the linear stability of the stationary solution (u, v) in H1(Ω)2.

Actually, we can do better and prove the following result.

Theorem 3.5. The stationary solution (u, v) is linearly exponentially stable, in the
sense that all eigenvalues s ∈ C associated with the linear system (3.4)-(3.6) satisfy
Re(s) ≤ −ξ, for a given ξ > 0, Re denoting the real part.
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Proof. We look for solutions of the form

U(x, t) = Û(x)est, V (x, t) = V̂ (x)e
s
ε t, (3.11)

for s ∈ C. Inserting this into (3.4)-(3.6), we have

−α∆Û + sÛ + κ(
k

(k + u)2 Û −
k′

(k′ + v)2 V̂ ) = 0, (3.12)

−β∆V̂ + (s+ F )V̂ + κ(
k′

(k′ + v)2 V̂ −
k

(k + u)2 Û) = 0, (3.13)

∂Û

∂ν
=
∂V̂

∂ν
= 0 on Γ. (3.14)

Summing (3.12) and (3.13), we obtain

−∆(αÛ + βV̂ ) +
s+ F

β
(αÛ + βV̂ ) + (s− α(s+ F )

β
)Û = 0, (3.15)

∂

∂ν
(αÛ + βV̂ ) = 0 on Γ, (3.16)

so that

V̂ =
αF + (α− β)s

β2
(−∆ +

s+ F

β
I)−1Û − α

β
Û. (3.17)

Inserting this into (3.12), we find

− α∆Û + δÛ − γ(−∆ +
s+ F

β
I)−1Û = 0, (3.18)

where

δ = s+
κk

(k + u)2 +
κk′α

β(k′ + v)2 ,

γ =
κk′(αF + (α− β)s)

β2(k′ + v)2 .

This yields

α∆2Û − (
α(s+ F )

β
+ δ)∆Û + (

δ(s+ F )
β

− γ)Û = 0, (3.19)

where, in view of (3.14) and (3.18),

∂Û

∂ν
=
∂∆Û
∂ν

= 0 on Γ. (3.20)

We further note that, setting

k1 =
κk

(k + u)2 , k2 =
κk′

(k′ + v)2 ,

we have
α(s+ F )

β
+ δ = (1 +

α

β
)s+ k1 +

αk2

β
+
αF

β
, (3.21)

δ(s+ F )
β

− γ =
1
β

(s2 + (k1 + k2 + F )s+ k1F ). (3.22)

Thus to study the stability of (u, v), we need to study the eigenvalues/eigenvectors
of problem (3.19)-(3.20).
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We first assume that s ∈ R. Then, when s ≥ 0, noting that α(s+F )
β + δ > 0 and

δ(s+F )
β − γ > 0, we easily prove that the only solution to (3.19)-(3.20) is the trivial

one, Û ≡ 0. Furthermore, (3.19)-(3.20) can have nontrivial solutions only when

s ∈
[
− b+

√
θ

2
,−b−

√
θ

2
]
, −b−

√
θ

2
< 0,

where

θ = (k1 + k2 + F )2 − 4k1F = (k1 − F )2 + k2
2 + 2k1k2 + 2k2F > 0

and b = k1 + k2 + F , or
α(s+ F )

β
+ δ ≤ 0,

i.e.,

s ≤ − 1
1 + α

β

(
αF

β
+ k1 +

αk2

β
) < 0.

Therefore, necessarily,

s ≤ max
(
− b−

√
θ

2
,− 1

1 + α
β

(
αF

β
+ k1 +

αk2

β
)
)
< 0. (3.23)

We now assume that s ∈ C\R. Setting s = ζ + iη, η ∈ R\{0}, we obtain,
multiplying (3.19) by the conjugate of Û , integrating over Ω and by parts and
taking the imaginary part,

η(1 +
α

β
)‖|∇Û |‖2 +

η(k1 + k2 + F ) + 2ζη
β

‖|Û |‖2 = 0. (3.24)

Therefore, when ζ ≥ 0, then, necessarily, Û ≡ 0. Furthermore, (3.24) can have
nontrivial solutions only when

ζ ≤ −k1 + k2 + F

2
< 0, (3.25)

which completes the proof. �

Remark 3.6. (i) In [5, 7, 8, 9], it was proved that (u, v) is a node for the linearized
system associated with (1.1)-(1.2), meaning that it is linearly exponentially stable.

(ii) As mentioned in the introduction, a therapeutic perspective of such a result
is to have the (spatially homogeneous) steady state outside the viability domain,
where cell necrosis occurs (see [7]).

(iii) An important question is whether there are other (not spatially homoge-
neous) equilibria. This will be addressed elsewhere.

4. Concluding remarks

Possible extensions of our results are the following ones.
(i) We can consider a time dependent electrical stimulus F = F (t), where F is

continuous and satisfies

0 < F1 ≤ F (t) ≤ F2, t ≥ 0.

In particular, these assumptions are satisfied by the continuous piecewise linear
stimulus considered in experiments (see [6]), where F (0) = F0 > 0, F (t) = F1t,
t ∈ [t0, t1], F1 > 0, and F (t) = F0, t ≥ tf . In that case, the well-posedness and
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some regularity results (here, we cannot differentiate the equations with respect to
time) obtained in this paper still hold, with minor modifications.

(ii) We can also consider a forcing term J = J(x, t, u) (such a forcing term
accounts for the interactions with a third intracellular compartment (which includes
both neurons and astrocytes)) such that J is continuous on R × R+ × R, of class
C1 with respect to t, 0 ≤ J(x, t, s) ≤ J1, |∂J∂t (x, t, s)| ≤ J2, (x, t, s) ∈ R × R+ × R,
and J is Lipschitz continuous with respect to s, uniformly in x and t,

|J(x, t, s1)− J(x, t, s2)| ≤ c|s1 − s2|, x ∈ R, t ∈ R+, s1, s2 ∈ R.

In that case, the well-posedness and regularity results obtained in this paper still
hold, with minor modifications.

(iii) An interesting problem is to study the limit as ε goes to 0 in (1.4). This will
be addressed elsewhere.

(iv) A more general ODE’s model for brain lactate kinetics reads

du

dt
+ κ1(

u

k + u
− p

kn + p
) + κ2(

u

k + u
− q

ka + q
) + κ(

u

k + u
− v

k′ + v
) = J0,

dp

dt
+ κ1(

p

kn + p
− u

k + u
) = J1,

dq

dt
+ κ2(

q

ka + q
− u

k + u
) + κa(

q

ka + q
− v

k′ + v
) = J2,

ε
dv

dt
+ Fv + κ(

v

k′ + v
− u

k + u
) + κa(

v

k′ + v
− q

ka + q
) = FL,

where all the constants are nonnegative. In this model, the intracellular compart-
ment splits into neurons and astrocytes. It also includes transports through cell
membranes and a direct transport from capillary to intracellular astrocytes. We
refer the reader to [4] for more details. It would also be interesting to construct
and study corresponding PDE’s models.
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SP2MI, Equipe DACTIM-MIS, Boulevard Marie et Pierre Curie - Téléport 2, F-86962

Chasseneuil Futuroscope Cedex, France

E-mail address: alain.miranville@math.univ-poitiers.fr
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