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Abstract. In this article, we study the problem

− div(K(x)∇u) = a(x)K(x)|u|q−2u+ b(x)K(x)|u|2
∗−2u, x ∈ RN ,

where 2∗ = 2N/(N − 2), N ≥ 3, 1 < q < 2, K(x) = exp(|x|α/4) with α ≥ 2.

Under some assumptions on the potentials a(x) and b(x), we obtain a pair

of sign-changing solutions of the problem via variational methods and certain
estimates.

1. Introduction

In this article, we consider the existence of sign-changing solutions for the prob-
lem

− div(K(x)∇u) = a(x)K(x)|u|q−2u+ b(x)K(x)|u|2
∗−2u, x ∈ RN , (1.1)

where 2∗ = 2N/(N − 2), N ≥ 3, 1 < q < 2, K(x) = exp(|x|α/4) with α ≥ 2.
Our motivations of studying the equation (1.1) relies on the fact that, for α =

q = 2, a(x) = (N − 2)/(N + 2) and b(x) ≡ 1, equation (1.1) occurs when one tries
to find self-similar solutions of the form

w(t, x) = t
2−N
N+2 u(xt−1/2)

for the evolution equation

wt −∆w = |w|4/(N−2)w on (0,∞)× RN .
See [8, 11] for a detailed description.

Equation (1.1) with q = 2, a(x) ≡ λ and b(x) ≡ 1, has been studied in [12, 13, 14,
15]. We also refer to the paper of Catrina et al. [3] where the authors considered the
case q = 2, a(x) = λ|x|α−2 and b(x) ≡ 1, and showed that the value of α affects the
critical dimension of the problem. Later on, Furtado et al. [9] studied the equation

− div
(
K(x)∇u

)
= λK(x)|x|β |u|q−2u+K(x)|u|2

∗−2u, x ∈ RN , (1.2)

where β = (α − 2) (2∗−q)
(2∗−2) . In that paper, by using Mountain Pass Theorem, the

authors obtained a positive solution if 2 < q < 2∗. Furthermore, they applied
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Linking Theorem to show that problem (1.2) when q = 2 has a nontrivial solution
for any λ ≥ λ1, where λ1 is the first positive eigenvalue of the linear problem

−div
(
K(x)∇u

)
= λK(x)|x|α−2u, x ∈ RN .

With the help of the result of [3], namely there is no positive solution of (1.2) for
q = 2 and λ ≥ λ1, then they can conclude that this nontrivial solution indeed is
a sign-changing solution. Recently, Furtado et al. [10] obtained two nonnegative
nontrivial solutions for (1.1) when the potential a(x) has small norm in a suitable
weighted Lebesgue space.

On the other hand, for similar problems in bounded domain, Ambrosetti et al.
[2] studied the semilinear problem

−∆u = λuq−1 + up−1 in Ω, u ∈ H1
0 (Ω)

where Ω ⊂ RN is bounded, N ≥ 3, λ > 0, 1 < q < 2 < p ≤ 2∗. They proved the
existence of at least two positive solutions if λ ∈ (0, λ0) for some positive λ0. We
also refer the interested readers to [1, 4, 6, 20] where equations with concave and
convex nonlinearity on bounded domains were considered.

Motivated by the works we described above, in present paper, we try to seek
more solutions of (1.1). Special concern is the existence of sign-changing solutions
of (1.1). This kind of problem is variational in nature. Indeed, let us denote by H
the Hilbert space obtained as the closure of C∞c (RN ) with respect to the norm

‖u‖ =
(∫

RN
K(x)|∇u|2dx

)1/2

.

We also define the weighted Lebesgue spaces

LsK(RN ) =
{
u measurable in RN : ‖u‖ss =

∫
RN

K(x)|u|sdx <∞
}
.

It is proven in [9] that the embedding H ↪→ LrK(RN ) is continuous for 2 ≤ r ≤ 2∗,
and compact for 2 ≤ r < 2∗. For any r > 1, we denote by r′ its conjugated
exponent, that is, the unique r′ > 1 so that 1/r+1/r′ = 1. Throughout this paper,
we always use the following assumptions:

(A1) a(x) > 0 and a(x) ∈ LσqK (RN ) ∩ C(RN ) for some (2/q) ≤ σ′q < (2∗/q);
(A2) b(x) > 0 and b(x) ∈ L∞(RN );
(A3) the set Ω+

b := {x ∈ RN : b(x) > 0} has an interior point;
(A4) there are x0 ∈ RN and δ > 0 such that Bδ(x0) ⊂ Ω+

b and

|b(x)|∞ − b(x) ≤M |x− x0|γ ,

for a.e. x ∈ Bδ(x0), with M > 0 and γ > N .
On H, we define the functional

I(u) =
1
2

∫
RN

K(x)|∇u|2dx− 1
q

∫
RN

K(x)a(x)|u|qdx− 1
2∗

∫
RN

K(x)b(x)|u|2
∗
dx.

By (A1), (A2) and the above embedding, we conclude that I is well defined and
I ∈ C1(H,R). Now, it is well known that there exists a one to one correspondence
between the critical points and the weak solutions of (1.1). Here, we say u ∈ H is
a weak solution of (1.1), if for any φ ∈ H, there holds∫

RN
K(x)

[
∇u∇φ− a(x)|u|q−2uφ− b(x)|u|2

∗−2uφ
]
dx = 0.
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Our main result is stated below.

Theorem 1.1. Assume that (A1)–(A4). If N ≥ 7 and (3N−2)/(2N−4) < q < 2,
then there exists M2 > 0, such that (1.1) has at least two nonnegative nontrivial
solutions and a pair of sign-changing solutions in H for ‖a(x)‖σq < M2 and α >
(N − 2)/2.

Since Furtado et al. [10] showed that (1.1) has at least two nonnegative nontrivial
solutions in H for ‖a‖σq < M1 with some M1 > 0, we will focus our attentions to
find out sign-changing solutions of (1.1). To this end, there are some difficulties.
Firstly, since the embedding H ↪→ L2∗

K (RN ) is not compact, the functional I sat-
isfies (PS) condition only locally. We prove that the energy level belongs to the
range where (PS) condition hold by choosing a suitable test function as in [3, 10].
Secondly, as pointed in [5], the Mountain Pass Theorem which was used in [9, 10]
is usually unable to prove the existence of sign-changing solutions. Moreover, the
Linking Theorem used in [9] can not be applied here becasue to 1 < q < 2. Instead
of the two above Theorems, we shall employ the separation argument for Nehari-
type set of the problem, which has been used in [5, 17, 18]. Thirdly, the potentials
a(x) and b(x) bring much difficulty to the above separation argument. To overcome
this difficulty, inspired by [16], we impose conditions (A1) and (A2) on the poten-
tials a(x) and b(x) respectively, which are stronger than the corresponding ones in
[10].

This article is organized as follows. In the next section, we give some notation
and preliminaries. Then we prove Theorem 1.1.

2. Preliminaries

Throughout this paper, E−1 denotes the dual space of a Banach space E. We
denote by | · |t, the norm of the standard Sobolev space Lt(RN ). D1,2(RN ) is the
closure of C∞0 (RN ) under the norm of

∫
RN |∇ · |

2dx. Br(x) is a ball centered at
x with radius r. → denotes strong convergence. ⇀ denotes weak convergence.
d, di will denote various positive constants whose exact values are not important.
Finally, we write

∫
u, ‖a‖σq and |b|∞ instead of

∫
RN u(x)dx, ‖a(x)‖σq and |b(x)|∞,

respectively.
For each r ∈ [2, 2∗], the existence of the embedding H ↪→ LrK(RN ) enables us to

define
Sr = inf

{∫
K(x)|∇u|2 : u ∈ H,

∫
K(x)|u|r = 1

}
. (2.1)

In particular, when r = 2∗, we only write S := S2∗ . It is worth pointing out that
this constant is equal to the best constant of the embedding D1,2(RN ) ↪→ L2∗(RN ),
see [3].

By the condition (A4), we can choose η > 0 small enough such that B2η(x0) ⊂
Bδ(x0) with x0 ∈ int(Ω+

b ) and δ > 0. Define a cutoff function ψ(x) satisfying
ψ(x) ≡ 1 in Bη(x0), ψ(x) ≡ 0 outside B2η(x0) and 0 ≤ ψ ≤ 1. Inspired by [3, 10],
we consider the function

uε(x) = K(x)−1/2ψ(x)
( 1
ε+ |x− x0|2

)(N−2)/2

,

and set

Uε(x) = K(x)−1/2
( 1
ε+ |x− x0|2

)(N−2)/2

, vε(x) =
uε(x)
‖uε‖2∗

.
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Without loss of generality, we assume that x0 = 0 from now on. To prove Theorem
1.1, we first give the next three Lemmas which will be useful later.

Lemma 2.1. For ε > 0 small,∫
uµε = O(1) if 0 < µ <

N

N − 2
, (2.2)∫

uµε = O
(
ε
N
2 −

N−2
2 µ| ln ε|

)
if µ =

N

N − 2
, (2.3)∫

uµε = O
(
ε
N
2 −

N−2
2 µ
)

if
N

N − 2
< µ < 2∗. (2.4)

Proof. Note that ∫
uµε ≤ d

∫
B2η(0)

dx

(ε+ |x|2)(N−2)µ/2

≤ d1

∫ 2η/
√
ε

0

εN/2ρN−1dρ

ε(N−2)µ/2(1 + |ρ|2)(N−2)µ/2
.

Since N − 1− (N − 2)µ > −1, when 0 < µ < N/(N − 2), we have∫
uµε ≤ d2

∫
B2η(0)

1

|x|(N−2)µ
= O(1).

Thus, (2.2) holds. The proofs of (2.3) and (2.4) are similar. �

Lemma 2.2. For ε > 0 small, we have∫
vµε =

∫
uµε

‖uε‖µ2∗

= O
(
ε(N−2)µ/4

)
if 0 < µ <

N

N − 2
, (2.5)

= O
(
ε
N
2 −

N−2
4 µ| ln ε|

)
if µ =

N

N − 2
, (2.6)

= O
(
ε
N
2 −

N−2
4 µ
)

if
N

N − 2
< µ < 2∗. (2.7)

Proof. According to [3],

‖uε‖2
∗

2∗ =
∫
K(x)|uε|2

∗
= ε−N/2A0 +O(1), if N > 2,

with
A0 =

∫
1

(1 + |x|2)N
, if N > 2,

from which it follows that

‖uε‖µ2∗ =
(
ε−N/2A0 +O(1)

)µ/2∗
= dε−(N−2)µ/4 +O

(
ε−

N
2 ( µ2∗−1)

)
.

This and (2.2) imply that for 0 < µ < N/(N − 2) and ε small enough∫
vµε =

∫
uµε

‖uε‖µ2∗

=
O(1)

dε−(N−2)µ/4 +O
(
ε
−N
2 ( µ2∗−1)

) = O
(
ε(N−2)µ/4

)
.
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Thus, (2.5) follows. Similar arguments arrive at (2.6) and (2.7). �

Lemma 2.3. Let w1 be a nonnegative nontrivial solution of (1.1). For 1 < q < 2
and ε > 0 small, then we have∫

K(x)a(x)vqε ≥ dε
N
2 −

N−2
4 q +O

(
ε

(N−2)q
4
)

if
N

N − 2
< q < 2, (2.8)∫

K(x)a(x)|w1|vq−1
ε = O

(
ε

(N−2)(q−1)
4

)
, (2.9)∫

K(x)a(x)|w1|q−1vε = O
(
ε
N−2

4
)
, (2.10)∫

K(x)a(x)|w1|q−2w1vε = O
(
ε
N−2

4
)
, (2.11)∫

K(x)b(x)|w1|2
∗−1vε = O

(
ε
N−2

4
)
, (2.12)∫

K(x)b(x)|w1|2
∗−2w1vε = O

(
ε
N−2

4
)
, (2.13)∫

K(x)b(x)|w1|v2∗−1
ε = O

(
ε
N−2

4
)
. (2.14)

Proof. We only prove part(i). The rest parts of the Lemma can be proved by a
similar argument. Using (A1), one has∫

K(x)a(x)|uε|q

=
∫
B2η(0)

K(x)a(x)K(x)−q/2ψq(x)
(ε+ |x|2)q(N−2)/2

≥ d1

∫
B2η(0)

ψq(x)
(ε+ |x|2)q(N−2)/2

= d1

(∫
B2η(0)

1
(ε+ |x|2)q(N−2)/2

+
∫
B2η(0)

ψq(x)− 1
(ε+ |x|2)q(N−2)/2

)
= d1

(
ε
N
2 −

(N−2)q
2

∫
B2η/

√
ε(0)

1
(1 + |x|2)q(N−2)/2

+
∫
B2η(0)

ψq(x)− 1
(ε+ |x|2)q(N−2)/2

)
= d2ε

N
2 −

(N−2)q
2 +O(1)

whenever q > N/(N − 2). Therefore,∫
K(x)a(x)|vε|q =

∫
K(x)a(x)|uε|q

‖uε‖q2∗

≥ d2ε
N
2 −

(N−2)q
2 +O(1)

d3ε−(N−2)q/4 +O
(
ε
−N
2 ( q2∗−1)

)
= dε

N
2 −

N−2
4 q +O

(
ε

(N−2)q
4
)
.

Hence, we obtain (2.8) holds. �

3. Existence of sign-changing solutions

Following Tarantello [18] and Chen [5], we first decompose the Nehari-type set
of the considered problem, then consider minimization problems of I on its proper
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subset. Set
Λ = {u ∈ H : 〈I ′(u), u〉 = 0}.

Consider the following three subsets of Λ:

Λ0 = {u ∈ Λ : (2− q)‖u‖2 − (2∗ − q)
∫
K(x)b(x)|u|2

∗
= 0},

Λ+ = {u ∈ Λ : (2− q)‖u‖2 − (2∗ − q)
∫
K(x)b(x)|u|2

∗
> 0},

Λ− = {u ∈ Λ : (2− q)‖u‖2 − (2∗ − q)
∫
K(x)b(x)|u|2

∗
< 0}.

Furthermore, if we denote

M =
( 2− q

2∗ − q

) 2−q
2∗−2

(2∗ − 2
2∗ − q

)
S
N
2 −

N
4 qS

q/2
qσ′q
|b|

q−2
2∗−2
∞ ,

we indeed get that for ‖a‖σq < M the following minimization problems:

c0 = inf
u∈Λ+

I(u) and c1 = inf
u∈Λ−

I(u)

attain their infimum at u0 and u1, respectively. Additionally, u0 and u1 are non-
negative nontrivial solutions of (1.1). Next, we start establishing the existence of
sign-changing solutions of (1.1).

3.1. Some lemmas. For every u ∈ H and u 6= 0, we set

tmax =
[ (2− q)‖u‖2

(2∗ − q)
∫
K(x)b(x)|u|2∗

] 1
2∗−2

.

Then we have the following result.

Lemma 3.1. Let ‖a‖σq < M . For every u ∈ H and u 6= 0, we have
(i) there exists a unique t+ = t+(u) > tmax > 0 such that t+u ∈ Λ− and

I(t+u) = maxt≥tmax I(tu).
(ii) there exists a unique 0 < t− = t−(u) < tmax such that t−u ∈ Λ+ and

I(t−u) = min0≤t≤t+ I(tu).

Proof. From direct computations, we have
∂I

∂t
(tu) = tq−1

(
t2−q‖u‖2 − t2

∗−q
∫
K(x)b(x)|u|2

∗
−
∫
K(x)a(x)|u|q

)
.

Let
ϕ(t) = t2−q‖u‖2 − t2

∗−q
∫
K(x)b(x)|u|2

∗
−
∫
K(x)a(x)|u|q.

By (A1), (A2) and easy calculations show that limt→0+ ϕ(t) = −
∫
K(x)a(x)|u|q <

0 and limt→+∞ ϕ(t) = −∞. In addition, ϕ(t) is concave and attains its maximum
at the point tmax. Also

ϕ(tmax) =
( 2− q

2∗ − q

) 2−q
2∗−2

(2∗ − 2
2∗ − q

)[ ‖u‖2(2∗−q)

(
∫
K(x)b(x)|u|2∗)(2−q)

]N−2
4

−
∫
K(x)a(x)|u|q.

From (A1), (A2) and (2.1), it is easily verified that

ϕ(tmax) ≥
( 2− q

2∗ − q

) 2−q
2∗−2

(2∗ − 2
2∗ − q

)
SN(2−q)/4‖u‖q|b|

q−2
2∗−2
∞ −

∫
K(x)a(x)|u|q
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≥
[( 2− q

2∗ − q

) 2−q
2∗−2

(2∗ − 2
2∗ − q

)
SN(2−q)/4|b|

q−2
2∗−2
∞ − ‖a‖σqS

−q/2
qσ′q

]
‖u‖q.

Thus, for ‖a‖σq < M , we have ϕ(tmax) > 0. It then follows that ϕ(t) has exactly
two points 0 < t− < tmax < t+ such that

ϕ(t+) = 0 = ϕ(t−) and ϕ′(t+) < 0 < ϕ′(t−).

Equivalently, we obtain t+u ∈ Λ− and t−u ∈ Λ+. Also I(t+u) ≥ I(tu), for any
t ≥ tmax and I(t−u) ≤ I(tu), for any t ∈ [0, t+]. �

Lemma 3.2. Let ‖a‖σq < M , then Λ0 = {0}.

Proof. Suppose to the contrary, there exists w ∈ Λ0, w 6= 0 such that (2−q)‖w‖2−
(2∗−q)

∫
K(x)b(x)|w|2∗ = 0. Combining this with (2.1), we can obtain that ‖w‖ ≥(

2−q
2∗−q

)(N−2)/4|b|(2−N)/4
∞ SN/4. On the other hand, we infer from w ∈ Λ that

0 = ‖w‖2 −
∫
K(x)a(x)|w|q −

∫
K(x)b(x)|w|2

∗

≥
(2∗ − 2

2∗ − q

)
‖w‖2 − ‖a‖σqS

−q/2
qσ′q
‖w‖q

≥ ‖w‖q
[2∗ − 2

2∗ − q

( 2− q
2∗ − q

)(N−2)(2−q)/4
|b|(q−2)/(2∗−2)
∞ SN(2−q)/4 − ‖a‖σqS

−q/2
qσ′q

]
> 0,

which is a contradiction. This completes the proof. �

Lemma 3.3. Let ‖a‖σq < M . Given u ∈ Λ−, there are ρu > 0 and a differential
function gρu : Bρu(0)→ R+ defined for w ∈ H, w ∈ Bρu(0) such that

(i) gρu(0) = 1, gρu(w)(u+ w) ∈ Λ−,
(ii)

〈g′ρu(0), φ〉

=
(
− 2

∫
K(x)∇u∇φ+ 2∗

∫
K(x)b(x)|u|2

∗−2uφ

+ q

∫
K(x)a(x)|u|q−2uφ

)/(
(2− q)‖u‖2 − (2∗ − q)

∫
K(x)b(x)|u|2

∗
)
.

Proof. Define F : R×H → R by:

F (t, w) = t2−q‖u+ w‖2 − t2
∗−q

∫
K(x)b(x)|u+ w|2

∗
−
∫
K(x)a(x)|u+ w|q.

In view of u ∈ Λ− ⊂ Λ, we obtain F (1, 0) = 0 and

Ft(1, 0) = (2− q)‖u‖2 − (2∗ − q)
∫
K(x)b(x)|u|2

∗
< 0.

Using Implicit function Theorem for F at the point (1, 0), we know that there is
ε̄ > 0 so that for w ∈ H, ‖w‖ < ε̄, the equation F (t, w) = 0 has a unique solution
t = gρu(w) > 0 with gρu(0) = 1. Since F (gρu(w), w) = 0 for w ∈ H, ‖w‖ < ε̄, we
have

g2−q
ρu (w)‖u+ w‖2 − g2∗−q

ρu (w)
∫
K(x)b(x)|u+ w|2

∗
−
∫
K(x)a(x)|u+ w|q

=
(
‖gρu(w)(u+ w)‖2 −

∫
K(x)b(x)|gρu(w)(u+ w)|2

∗
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−
∫
K(x)a(x)|gρu(w)(u+ w)|q

)/(
gqρu(w)

)
= 0,

namely, gρu(w)(u+ w) ∈ Λ for all w ∈ H with ‖w‖ < ε̄. Since Ft(1, 0) < 0 and

Ft(gρu(w), w)

= (2− q)g1−q
ρu (w)‖u+ w‖2 − (2∗ − q)g2∗−q−1

ρu (w)
∫
K(x)b(x)|u+ w|2

∗

=
(2− q)‖gρu(w)(u+ w)‖2 − (2∗ − q)

∫
K(x)b(x)|gρu(w)(u+ w)|2∗

g1+q
ρu (w)

,

we can choose ε > 0 small enough (ε < ε̄) such that for w ∈ H and ‖w‖ < ε,

(2− q)‖gρu(w)(u+ w)‖2 − (2∗ − q)
∫
K(x)b(x)|gρu(w)(u+ w)|2

∗
< 0,

which means that

gρu(w)(u+ w) ∈ Λ−, for all w ∈ H, ‖w‖ < ε.

Moreover, for any φ ∈ H, r > 0, we have

F (1, 0 + rφ)− F (1, 0)

=
∫
K(x)|∇(u+ rφ)|2 −

∫
K(x)b(x)|u+ rφ|2

∗
−
∫
K(x)a(x)|u+ rφ|q

−
∫
K(x)|∇u|2 +

∫
K(x)b(x)|u|2

∗
+
∫
K(x)a(x)|u|q

=
∫
K(x)(2r∇u∇φ+ r2|∇φ|2)−

∫
K(x)b(x)

(
|u+ rφ|2

∗
− |u|2

∗
)

−
∫
K(x)a(x)

(
|u+ rφ|q − |u|q

)
and so

〈Fw, φ〉|t=1,w=0 = lim
r→0

F (1, 0 + rφ)− F (1, 0)
r

= 2
∫
K(x)∇u∇φ− 2∗

∫
K(x)b(x)|u|2

∗−2uφ

− q
∫
K(x)a(x)|u|q−2uφ.

Therefore,

〈g′ρu(0), φ〉

= −〈Fw, φ〉
Ft

∣∣
t=1,w=0

=
−2
∫
K(x)∇u∇φ+ 2∗

∫
K(x)b(x)|u|2∗−2uφ+ q

∫
K(x)a(x)|u|q−2uφ

(2− q)‖u‖2 − (2∗ − q)
∫
K(x)b(x)|u|2∗

.

This completes the proof. �
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3.2. Existence results. We are now in a position to prove Theorem 1.1. To this
end, we need to make comparisons among some minimization problems. Set

Λ−1 = {u = u+ − u− ∈ Λ : u+ ∈ Λ−},
Λ−2 = {u = u+ − u− ∈ Λ : −u− ∈ Λ−},

where u+ = max{u, 0} and u− = u+ − u. Define

β1 = inf
u∈Λ−1

I(u),

β2 = inf
u∈Λ−2

I(u).

Lemma 3.4. Let ‖a‖σq < M , then Λ−1 and Λ−2 are closed.

Proof. Let {un} be a sequence in Λ−1 with un → u0. It then follows from {un} ⊂
Λ−1 ⊂ Λ that

‖u0‖2 = lim
n→∞

‖un‖2

= lim
n→∞

[ ∫
K(x)a(x)|un|q +

∫
K(x)b(x)|un|2

∗
]

=
∫
K(x)a(x)|u0|q +

∫
K(x)b(x)|u0|2

∗

and

(2− q)‖u+
0 ‖2 − (2∗ − q)

∫
K(x)b(x)|u+

0 |2
∗

= lim
n→∞

[
(2− q)‖u+

n ‖2 − (2∗ − q)
∫
K(x)b(x)|u+

n |2
∗
]
≤ 0,

namely, u0 ∈ Λ and u+
0 ∈ Λ− ∪ Λ0.

Since there exists a positive d1 such that ‖u+‖ ≥ d1 > 0 for all u ∈ Λ−1 , we know
u+

0 6= 0. Combining this with Lemma 3.2, for ‖a‖σq < M , we have u+
0 /∈ Λ0. In

turn, u+
0 ∈ Λ− and hence, u0 ∈ Λ−1 . Thus, Λ−1 is closed for ‖a‖σq < M . The same

argument can prove that Λ−2 is closed. The proof of Lemma 3.4 is complete. �

Lemma 3.5. (i) If β1 < c1, then the minimization problem (3.2) achieves its
infimum at a point which defines a sign-changing critical point of I.

(ii) If β2 < c1, then the same conclusion follows for the minimization problem
(3.2).

Proof. We only prove (i). Part (ii) of the lemma can be proved by a similar ar-
gument. By Lemma 3.4, we can use Ekeland variational principle to construct a
minimizing sequence {un} ⊂ Λ−1 with the following properties:

(1) I(un)→ β1,
(2) I(z) ≥ I(un)− 1

n‖un − z‖ for all z ∈ Λ−1 .
Firstly, we claim that ‖u−n ‖ ≥ d > 0. Indeed, if to the contrary, there is a subse-
quence (still denoted by {u−n }) such that ‖u−n ‖ → 0, then

β1 + o(1) = I(un) = I(u+
n ) + I(−u−n ) ≥ c1 + o(1),

which is a contradiction with assumption β1 < c1. Secondly, we claim I ′(un) → 0
in H−1. Indeed, set 0 < ρ < ρn ≡ ρun , g±n ≡ g±un , where ρun and g±un are given by
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Lemma 3.3 so that for vρ = ρv with ‖v‖ = 1, there holds

zρ = g+
n (vρ)(un − vρ)+ − g−n (vρ)(un − vρ)− ∈ Λ−1 .

Consequently,
1
n
‖zρ − un‖ ≥ 〈I ′(un), un − zρ〉+ o(1)‖zρ − un‖

= 〈I ′(un), un − vρ − zρ〉+ ρ〈I ′(un), v〉+ o(1)‖zρ − un‖
= (1− g+

n (vρ))〈I ′(un), (un − vρ)+〉+ ρ〈I ′(un), v〉
− (1− g−n (vρ))〈I ′(un), (un − vρ)−〉+ o(1)‖zρ − un‖.

(3.1)

It is trivial to show {u+
n } is bounded, and so we may assume that u+

n ⇀ w+
0 in H

for some w+
0 ∈ H. Since {un} ⊂ Λ−1 , one has

(2∗ − 2)‖u+
n ‖2 − (2∗ − q)

∫
K(x)a(x)|u+

n |q > 0.

This together with limn→∞
∫
K(x)a(x)|u+

n |q =
∫
K(x)a(x)|w+

0 |q (see [10]) imply

(2∗ − 2) lim inf
n→∞

‖u+
n ‖2 − (2∗ − q)

∫
K(x)a(x)|w+

0 |q ≥ 0.

At this point, we show that for ‖a‖σq < M ,

(2∗ − 2) lim inf
n→∞

‖u+
n ‖2 − (2∗ − q)

∫
K(x)a(x)|w+

0 |q > 0. (3.2)

To prove that, we employ the method used in [16] and suppose to the contrary that

(2∗ − 2) lim inf
n→∞

‖u+
n ‖2 = (2∗ − q)

∫
K(x)a(x)|w+

0 |q.

In view of (A1) and the fact ‖u+
n ‖ ≥ d > 0, we have

∫
K(x)a(x)|w+

0 |q > 0 and so

lim inf
n→∞

[ (2∗ − 2)‖u+
n ‖2

(2∗ − q)
∫
K(x)a(x)|u+

n |q
]

=
lim infn→∞

[
(2∗ − 2)‖u+

n ‖2
]

(2∗ − q)
∫
K(x)a(x)|w+

0 |q
= 1 (3.3)

Notice that
(2∗ − 2)‖u+

n ‖2

(2∗ − q)
∫
K(x)a(x)|u+

n |q
> 1, (3.4)

for n = 1, 2, . . . . Combining with (3.3) and (3.4), we obtain that there exists a
subsequence {u+

nk
} of {u+

n } such that

(2∗ − 2)‖u+
nk
‖2

(2∗ − q)
∫
K(x)a(x)|u+

nk |q
→ 1

as k →∞. Hence,

‖u+
nk
‖2 → 2∗ − q

2∗ − 2

∫
K(x)a(x)|w+

0 |q,∫
K(x)b(x)|u+

nk
|2
∗
→ 2− q

2∗ − 2

∫
K(x)a(x)|w+

0 |q

and so we have that for ‖a‖σq < M ,

0 <
[( 2− q

2∗ − q

)(2∗ − 2
2∗ − q

) 2∗−2
2−q ‖a‖−

2∗−2
2−q

σq S
q
2

2∗−2
2−q

qσ′q
− |b|∞S−

2∗
2

] ∫
K(x)|u+

nk
|2
∗
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≤ 2− q
2∗ − q

(2∗ − 2
2∗ − q

) 2∗−2
2−q ‖u+

nk
‖

2(2∗−q)
2−q(∫

K(x)a(x)|u+
nk |q

) 2∗−2
2−q
−
∫
K(x)b(x)|u+

nk
|2
∗

→ 2− q
2∗ − q

(2∗ − 2
2∗ − q

) 2∗−2
2−q

[
2∗−q
2∗−2

∫
K(x)a(x)|w+

0 |q
] 2∗−q

2−q(∫
K(x)a(x)|w+

0 |q
) 2∗−2

2−q

− 2− q
2∗ − 2

∫
K(x)a(x)|w+

0 |q = 0,

namely, u+
nk
→ 0 in L2∗

K (RN ), and consequently w+
0 ≡ 0, which leads to a contradic-

tion. Thus, (3.2) follows. From (3.2) we can further obtain that there is a suitable
positive constant d for n large enough

(2∗ − 2)‖u+
n ‖2 − (2∗ − q)

∫
K(x)a(x)|u+

n |q ≥ d > 0.

Therefore, by Lemma 3.3 and the boundness of {u+
n }, we conclude that ‖(g+

n )′(0)‖ ≤
d1. Since 0 < d2 ≤ ‖u−n ‖ ≤ d3, a similar argument can show ‖(g−n )′(0)‖ ≤ d4. For
fixed n, since

(1− g+
n (vρ)) = ρ〈(g+

n )′(0), v〉,
(1− g−n (vρ)) = ρ〈(g−n )′(0), v〉,

‖zρ − un‖ ≤ ρ+ d(|1− g+
n (vρ)|+ |1− g−n (vρ)|),

〈I ′(un), u±n 〉 = 0 and (un − vρ)± → u±n as ρ→ 0, letting ρ→ 0 in (3.1) we obtain

〈I ′(un), v〉 ≤ d

n
.

From the above discussion, we can conclude that I ′(un)→ 0 in H−1 as n→∞.
By applying [8, Proposition 3.2], we obtain that the sequence {un} indeed satisfies
the following

(i) I(un)→ β1 < c1 < c0 + 1
N

1

|b|(N−2)/2
∞

SN/2,

(ii) I ′(un)→ 0 in H−1.
Then, we may use (i), (ii) and [8, Lemma 3.1] to guarantee a convergent subsequence
for {un} whose strong limit will give the desired minimizer. �

Clearly, Lemma 3.5 would give the conclusion for Theorem 1.1 only if the given
relations β1 < c1 or β2 < c1 could be established. While it is not sure whether or
not such inequalities should hold, we shall use these values to compare with another
minimization problem. Namely set

Λ−∗ = Λ−1 ∩ Λ−2 ⊂ Λ−

and then define
c2 = inf

u∈Λ−∗

I(u). (3.5)

It is easy to see that c2 ≥ c1. Since I satisfies (PS) condition only locally, we need
the following upper bound for c2.

Lemma 3.6. (i) For any fixed ε > 0, then there are s > 0 and t ∈ R such that
su1 − tUε ∈ Λ−∗ .
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(ii) For ε > 0 sufficiently small , if N ≥ 7, (3N − 2)/(2N − 4) < q < 2 and
α > (N − 2)/2, then we have

c2 ≤ sup
s≥0,t∈R

I(su1 − tUε) < c1 +
1
N

1

|b|(N−2)/2
∞

SN/2.

Proof. (i) It suffices to show that there are s > 0 and t ∈ R so that

s(u1 − tUε)+ ∈ Λ− and − s(u1 − tUε)− ∈ Λ−.

To prove that, we set

t2 = max
RN

u1

Uε
and t1 = min

RN
u1

Uε
.

For each t ∈ (t1, t2), we denote by s+(t) and s−(t) the positive values given by
Lemma 3.1. Then one has

s+(t)(u1 − tUε)+ ∈ Λ− and − s−(t)(u1 − tUε)− ∈ Λ−.

Notice that s+(t) is continuous with respect to t satisfying

lim
t→t+1

s+(t) = t+(u1 − t1Uε) < +∞ and lim
t→t−2

s+(t) = +∞.

Moreover, s−(t) is also continuous with respect to t and

lim
t→t+1

s−(t) = +∞ and lim
t→t−2

s−(t) = t+(t2Uε − u1) < +∞.

By the continuity of s±(t), we conclude that there exists t0 ∈ (t1, t2) such that
s+(t0) = s−(t0) = s0 > 0. This proves (i) with t = t0 and s = s0.

(ii). Obviously, it suffices to estimate I(su1 − tUε) for s ≥ 0 and t ∈ R. Since ε
can be now sufficiently small, we let Uε = vε. From the structure of I, we can take
R1 > 0 possible large such that I(su1 − tvε) ≤ c1 for all s2 + t2 ≥ R2

1. Hence, we
only need to estimate I(su1 − tvε) for all s2 + t2 ≤ R2

1. It follows from Lemma 2.3
and the elementary inequality

|s+ t|m ≥ |s|m + |t|m − d(|s|m−1|t|+ |s||t|m−1), for any s, t ∈ R, m > 1

that

I(su1 − tvε)

≤ I(su1) + I(tvε)− st
∫
K(x)a(x)|u1|q−2u1vε − st

∫
K(x)b(x)|u1|2

∗−2u1vε

+ d
(∫

K(x)b(x)|su1|2
∗−1|tvε|+

∫
K(x)b(x)|su1||tvε|2

∗−1
)

+ d
(∫

K(x)a(x)|su1|q−1|tvε|+
∫
K(x)a(x)|su1||tvε|q−1

)
≤ I(su1) + I(tvε) +O

(
ε

(N−2)(q−1)
4

)
+O

(
ε
N−2

4
)
.

Since
∫
K(x)v2∗

ε = 1, we have

I(tvε) =
t2

2
‖vε‖2 −

t2
∗

2∗

∫
K(x)b(x)v2∗

ε −
tq

q

∫
K(x)a(x)vqε

=
( t2

2
‖vε‖2 −

t2
∗

2∗
|b|∞

)
+
t2
∗

2∗

∫
K(x)(|b|∞ − b(x))v2∗

ε
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− tq

q

∫
K(x)a(x)vqε .

For any ε > 0, it is easy to verify that the function t→ I(tvε) attains its maximum
at a point tε > 0. Moreover, applying the arguments similar to that of [8, Proposi-
tion 3.2] and [7, Lemma 4.1], we can conclude that there are two positive constants
d1 and d2 such that 0 < d1 ≤ tε ≤ d2, independent of ε.

Let h(t) = t2

2 ‖vε‖
2 − t2

∗

2∗ |b|∞. Clearly, h(t) achieves its maximum at the point
t∗ = (‖vε‖2/|b|∞)(N−2)/4. In conclusion, we can deduce from

∫
K(x)(|b|∞ −

b(x))v2∗

ε = O(εN/2) (see [10]), ‖vε‖N ≤ SN/2 +O(εα/2) +O(ε(N−2)/2) (see [9, 10])
and (2.8) that

max
t>0

I(tvε) ≤ h(tε) +
(tε)2∗

2∗

∫
K(x)(|b|∞ − b(x))v2∗

ε −
(tε)q

q

∫
K(x)a(x)vqε

≤ h(t∗) +
d2∗

2

2∗

∫
K(x)(|b|∞ − b(x))v2∗

ε −
dq1
q

∫
K(x)a(x)vqε

≤ 1
N

1

|b|(N−2)/2
∞

SN/2 +O(εα/2) +O(ε(N−2)/2) +O(εN/2)

− dεN2 −
N−2

4 q +O
(
ε

(N−2)q
4
)
.

Furthermore, we can obtain that for ε > 0 small enough,

max
s>0, t∈R

I(su1 − tUε)

≤ max
s>0

I(su1) + max
t∈R

I(tvε) +O
(
ε

(N−2)(q−1)
4

)
+O

(
ε
N−2

4
)

≤ c1 +
1
N

1

|b|(N−2)/2
∞

SN/2 +O(εα/2) +O
(
ε(N−2)/2

)
+O(εN/2)

− dεN2 −
N−2

4 q +O
(
ε

(N−2)q
4
)

+O
(
ε

(N−2)(q−1)
4

)
+O(ε

N−2
4 )

< c1 +
1
N

1

|b|(N−2)/2
∞

SN/2,

if N ≥ 7, 3N−2
2N−4 < q < 2 and α > (N − 2)/2. This completes the proof. �

Lemma 3.7. Assume β1 ≥ c1 and β2 ≥ c1. The minimization problem

c2 = inf
u∈Λ−∗

I(u) (3.6)

achieves its infimum at u2 ∈ Λ−∗ which defines a sign-changing critical point for I,
provided ‖a‖σq < M2 with some M2 > 0.

Proof. Set M2 = min{M1,M}. As in the proof of Lemma 3.5, we can construct a
minimizing sequence {un} ⊂ Λ−∗ for (3.6) such that I(un) → c2 and I ′(un) → 0.
Noting that {un} ⊂ Λ−∗ , we have

0 < d1 ≤ ‖u±n ‖ ≤ d2 (3.7)

for some positive constants d1 and d2. Thus, we may assume that u±n ⇀ u±2 in H.
Claim. u±2 6= 0. Suppose to the contrary, we assume first that u+

2 = 0, then we
infer from u+

n ∈ Λ− ⊂ Λ and limn→∞
∫
K(x)a(x)|u+

n |q =
∫
K(x)a(x)|w+

0 |q that

‖un‖2 −
∫
K(x)b(x)|u+

n |2
∗

= o(1).
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Combining this with (2.1) and (3.7), we can obtain that for n large enough∫
K(x)b(x)|u+

n |2
∗
≥ 1

|b|(N−2)/2
∞

SN/2 + o(1),

and so

I(u+
n ) =

1
2
‖u+

n ‖2 −
1
2∗

∫
K(x)b(x)|u+

n |2
∗

+ o(1) ≥ 1
N

1

|b|(N−2)/2
∞

SN/2 + o(1). (3.8)

On the other hand, from the upper bound of c2 and I(−u−n ) ≥ c1, we have

I(u+
n ) ≤ c2 − c1 + o(1) <

1
N

1

|b|(N−2)/2
∞

SN/2,

which is a contradiction to (3.8). Hence, u+
2 6= 0. Similarly, we can prove that

u−2 6= 0.
Let u2 = u+

2 − u
−
2 . Obviously, u2 is sign-changing and un ⇀ u2 in H. Since

for any φ ∈ H there holds 〈I ′(u2), φ〉 = 0, u2 is a weak solution of (1.1). Now,
to complete the proof of Theorem 1.1, we only need to show that un → u2 in H.
Define u+

n = u+
2 + v+

n and u−n = u−2 + v−n , then we have v±n ⇀ 0 in H. Combining
this with u±n ∈ Λ and 〈I ′(u+

2 ), u+
2 〉 = 〈I ′(u−2 ), u−2 〉 = 0, we can use the Brezis-Lieb

Lemma [19] to obtain

‖v±n ‖2 −
∫
K(x)b(x)|v±n |2

∗
= o(1). (3.9)

Because the fact c1 < c0 + 1
N

1

|b|(N−2)/2
∞

SN/2, it follows from Lemma 3.6 that

lim
n→∞

(I(v+
n ) + I(−v−n )) = lim

n→∞
I(un)− I(u2) ≤ c2 − c0

<
1
N

1

|b|(N−2)/2
∞

SN/2 + c1 − c0

<
2
N

1

|b|(N−2)/2
∞

SN/2.

Therefore, we must have

lim
n→∞

min{I(v+
n ), I(−v−n )} < 1

N

1

|b|(N−2)/2
∞

SN/2.

This and (3.9) imply
‖v+
n ‖ → 0 or ‖v−n ‖ → 0,

that is, u2 = u+
2 − u

−
2 ∈ Λ−1 or u2 = u+

2 − u
−
2 ∈ Λ−2 . Thus, under the assumption

β1 ≥ c1 and β2 ≥ c1, we get I(u2) ≥ c1. Hence, if writing un = u2 + wn, we have
wn ⇀ 0 in H. According to Brezis-Lieb Lemma, one has

I(un) = I(u2 + wn) = I(u2) + o(1) +
1
2
‖wn‖2 −

1
2∗

∫
K(x)b(x)|wn|2

∗
. (3.10)

Since u2 is a weak solution of (1.1), it follows from un ∈ Λ that

‖wn‖2 −
∫
K(x)b(x)|wn|2

∗
= o(1). (3.11)

Now assume

‖wn‖2 → l ≥ 0,
∫
K(x)b(x)|wn|2

∗
→ l ≥ 0.
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If l 6= 0, then (2.1) and (3.11) yield that l ≥ 1

|b|(N−2)/2
∞

SN/2. Using (3.10), I(u2) ≥ c1
and Lemma 3.6, we obtain that

c1 + o(1) +
1
N

1

|b|(N−2)/2
∞

SN/2 ≤ I(un) = c2 + o(1) < c1 +
1
N

1

|b|(N−2)/2
∞

SN/2

which is a contradiction. Therefore, l = 0, that is, un → u2 in H which defines a
sign-changing solution of (1.1). �

The proof of Theorem 1.1 follows from Lemmas 3.5 and 3.7 and the symmetry
of the functional I.
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