
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 227, pp. 1–42.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

DIFFERENTIAL EQUATIONS WITH A DIFFERENCE
QUOTIENT

BRIAN STREET

Abstract. The purpose of this paper is to study a class of ill-posed differential

equations. In some settings, these differential equations exhibit uniqueness but
not existence, while in others they exhibit existence but not uniqueness. An

example of such a differential equation is, for a polynomial P and continuous

functions f(t, x) : [0, 1]× [0, 1]→ R,

∂

∂t
f(t, x) =

P (f(t, x))− P (f(t, 0))

x
, x > 0.

These differential equations are related to inverse problems.

1. Introduction

The purpose of this paper is to study a family of ill-posed differential equations.
In some instances, these equations exhibit existence, but not uniqueness. In other
instances, they exhibit uniqueness, but not existence. The questions studied here
can be seen as a family of forward and inverse problems, which in special cases
become well-known examples from the literature. This is discussed more below and
detailed in Section 3.

In this introduction, we informally state the main results, and present their
relationship to inverse problems. However, before we enter into the results in full
generality, to help the reader understand our somewhat technical results, we give
some very simple special cases, where some of the basic ideas already appear in a
simple form:

Example 1.1 (Existence without uniqueness). Fix ε1, ε0 > 0. We consider the
differential equation, defined for functions f(t, x) ∈ C([0, ε1]× [0, ε0]) by

∂

∂t
f(t, x) =

f(t, 0)− f(t, x)
x

, x > 0. (1.1)

We claim that (1.1) has existence: i.e., given f0(x) ∈ C([0, ε0]), there exists a
solution f(t, x) to (1.1) with f(0, x) = f0(x). Indeed, given a(t) ∈ C([0, ε1]) with
a(0) = f0(0) set

f(t, x) =

{
e−t/xf0(x) + 1

x

∫ t
0
e(s−t)/xa(s) ds, x > 0,

a(t), x = 0.
(1.2)
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It is immediate to verify that f(t, x) ∈ C([0, ε1] × [0, ε0]) and satisfies (1.1). Fur-
thermore, this is the unique solution, f(t, x), to (1.1) with f(0, x) = f0(x) and
f(t, 0) = a(t).1 Thus, to uniquely determine the solution to (1.1) one needs to give
both f(0, x) and f(t, 0). We call this existence without uniqueness, since there are
many solutions corresponding to any initial condition f(0, x)-one for each choice of
a(t).

Example 1.2 (Uniqueness without existence). Fix ε1, ε0 > 0. We consider the
differential equation, defined for functions f(t, x) ∈ C([0, ε1]× [0, ε0]) by

∂

∂t
f(t, x) =

f(t, x)− f(t, 0)
x

, x > 0. (1.3)

We claim that (1.3) has uniqueness: i.e., if f(t, x), g(t, x) ∈ C([0, ε1]× [0, ε0]) both
satisfy (1.3) and f(0, x) = g(0, x), for all x, then f(t, x) = g(t, x), for all t, x.
Indeed, suppose f(t, x) satisfies (1.3). Then, by reversing time, treating f(ε1, x) as
our initial condition, and treating a(t) := f(t, 0) as a given function, we may solve
the differential equation (1.3), for x > 0, to see

f(0, x) = e−ε1/xf(ε1, x) +
1
x

∫ ε1

0

e−u/xa(u) du, x > 0. (1.4)

From (1.4) uniqueness follows. Indeed, if f(t, x) and g(t, x) are two solutions to
(1.3) with f(0, x) = g(0, x) for all x, then (1.4) shows

1
x

∫ ε1

0

e−u/xf(u, 0) du =
1
x

∫ ε1

0

e−u/xg(u, 0) du+O(e−ε1/x).

It then follows (see Corollary 8.4) that f(t, 0) = g(t, 0) for all t. With f(t, 0) =
g(t, 0) in hand, (1.3) is a standard ODE for x > 0 and it follows that f(t, x) = g(t, x)
for all t, x. This proves uniqueness. Furthermore, (1.4) shows that (1.3) does not
have existence: not every initial condition gives rise to a solution. In fact, every
initial condition that does give rise to a solution must be of the form given by (1.4),
for some continuous functions a(t) and f(ε1, x). I.e., the initial condition must be
of Laplace transform type, modulo an appropriate error. Furthermore, it is easy
to see that for such an initial condition, there exists a solution. Hence, we have
exactly characterized the initial conditions which give rise to a solution to (1.3).

The goal of this paper is to extend the above ideas to a nonlinear setting. Con-
sider the following simplified example.

Example 1.3. Let P (y) =
∑D
j=1 cjy

j be a polynomial without constant term.
Consider the differential equation, defined for functions f(t, x) ∈ C([0, ε1]× [0, ε0]),
given by

∂

∂t
f(t, x) =

P (f(t, x))− P (f(t, 0))
x

, x > 0. (1.5)

• (Uniqueness without existence) If we restrict our attention to solutions
f(t, x) with P ′(f(t, 0)) > 0 for all t and we insist that f(t, 0) ∈ C2([0, ε1]),
then (1.5) has uniqueness (but not existence). I.e., if f(t, x), g(t, x) ∈
C([0, ε1] × [0, ε0]) are two solutions to (1.5) with f(0, x) = g(0, x) for all
x, P ′(f(t, 0)), P ′(g(t, 0)) > 0 for all t, and f(t, 0), g(t, 0) ∈ C2([0, ε1]), then
f(t, x) = g(t, x) for all t, x. However, not every initial condition gives rise to

1Uniqueness is immediate here, since for x > 0, if f(t, 0) is assumed to be a(t), then (1.1) is a
standard ODE and standard uniqueness theorems apply.
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a solution. See Section 2.2. This generalizes2 Example 1.2 where P (y) = y
and therefore P ′(y) ≡ 1 > 0.
• (Existence without uniqueness) Given f0(x) ∈ C([0, ε0]) and a(t) ∈ C2([0, ε1])

with a(0) = f0(0) and P ′(a(t)) < 0 for all t, there exists δ > 0 and a
unique solution f(t, x) ∈ C([0, ε1]× [0, δ]) to (1.5) satisfying f(0, x) = f0(x)
and f(t, 0) = a(t). See Section 2.1. This generalizes Example 1.1 where
P (y) = −y and therefore P ′(y) ≡ −1 < 0.

In short, if one has P ′(f(t, 0)) > 0 for all t, one has uniqueness but not existence,
and if one has P ′(f(t, 0)) < 0 for all t, one has existence but not uniqueness.

We now turn to the more general setting of our main results. Fix m ∈ N and
ε0, ε1 > 0. For t ∈ [0, ε1], x ∈ [0, ε0], and y, z ∈ Rm, let P (t, x, y, z) be a polynomial
in y given by

P (t, x, y, z) =
m∑
j=1

∑
|α|≤D

cα,j(t, x, z)yαej ,

where ej ∈ Rm denotes the jth standard basis element. For f(t, x) ∈ C([0, ε1] ×
[0, ε0]; Rm) we consider the differential equation

∂

∂t
f(t, x) =

P (t, x, f(t, x), f(t, 0))− P (t, 0, f(t, 0), f(t, 0))
x

, x > 0. (1.6)

We state our assumptions more rigorously in Section 2, but we assume:
• cα,j(t, x, z) = 1

x

∫∞
0
e−w/xbα,j(t, w, z) dw, where the bα,j(t, w, z) have a cer-

tain prescribed level of smoothness.
• We consider only solutions f(t, x) ∈ C([0, ε1]×[0, ε0]; Rm) such that f(t, 0) ∈
C2([0, ε1]; Rm).
• For y ∈ Rm, setMy(t) := dyP (t, 0, y, y), so thatMy(t) is an m×m matrix.

We consider only solutions f(t, x) such that there exists an invertible matrix
R(t) which is C1 in t and such that R(t)Mf(t,0)(t)R(t)−1 is a diagonal
matrix. When m = 1, this is automatic.

Under the above assumptions, we prove the following:
• (Uniqueness without existence) Under the above hypotheses, if Mf(t,0)(t)

is assumed to have all strictly positive eigenvalues, then (1.6) has unique-
ness, but not existence. I.e., if f(t, x), g(t, x) ∈ C([0, ε1] × [0, ε0]; Rm) are
solutions to (1.6) which satisfy all of the above hypothesis and such that
the eigenvalues of Mf(t,0)(t) and Mg(t,0)(t) are strictly positive, for all t,
then if f(0, x) = g(0, x) for all x, we have f(t, x) = g(t, x) for all t, x. Fur-
thermore, in this situation we prove stability estimates. Finally, in analogy
to Example 1.2, we will see that only certain initial conditions give rise to
solutions. See Section 2.2.
• (Existence without uniqueness) Suppose f0(x) ∈ C([0, ε0]; Rm) and A(t) ∈
C2([0, ε1]; Rm) are given such that f0(0) = A(0) and MA(t)(t) has all
strictly negative eigenvalues. Suppose further that there exists an invert-
ible matrix R(t), which is C1 in t such that R(t)MA(t)R(t)−1 is a diagonal
matrix. Then we show that there exists δ > 0 and a unique function

2Since we insisted f(t, 0) ∈ C2, this is not strictly a generalization of Example 1.2, however it
does generalize the basic ideas of Example 1.2. A similar remark holds for the next part where

we discuss existence without uniqueness.
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f(t, x) ∈ C([0, ε1] × [0, δ]; Rm) such that f(0, x) = f0(x), f(t, 0) = A(t),
and f(t, x) solves (1.6). See Section 2.1.

The main idea is the following. If f(t, x) were assumed to be of Laplace trans-
form type, f(t, x) = 1

x

∫∞
0
e−w/xA(t, w) dw, then (1.6) can be restated as a partial

differential equation on A(t, w)–and this partial differential equation is much easier
to study. As exemplified in Examples 1.1 and 1.2, not every solution is of Laplace
transform type. However, we will show (under the above discussed hypotheses)
that every solution is of Laplace transform type modulo an error which can be
controlled. Once this is done, the above results follow.

1.1. Motivation and relation to inverse problems. It is likely that the meth-
ods of this paper are the most interesting aspect. The differential equations in this
paper seem to not fall under any current methods (the equations are too unstable),
and the methods in this paper are largely new. Moreover, as we will see, special
cases of the above appear in some inverse problems. Furthermore, there are other
(harder) inverse problems where differential equations similar to (but more com-
plicated than) the ones studied in this paper appear. For example, we will see in
Section 9.2 that the anisotropic version of the famous Calderón problem involves a
“non-commutative” version of some of these differential equations. We hope that
the ideas in this paper might shed light on such questions–and, indeed, one of our
motivation for these results is as a simpler model case for full anisotropic version
of the Calderón problem.

We briefly outline the relationship between these results and inverse problems;
these ideas are discussed in greater detail in Section 3. We begin by explaining
that the results in this paper can be thought of as a class of forward and inverse
problems. For simplicity, consider the setting in Example 1.3, with ε0 = ε1 = 1.
Thus, we are given a polynomial without constant term, P (y) =

∑D
j=1 cjy

j . We
consider the differential equation, for functions f(t, x), given by

∂

∂t
f(t, x) =

P (f(t, x))− P (f(t, 0))
x

, x > 0. (1.7)

Forward Problem: Given a function f0(x) ∈ C([0, 1]) and a(t) ∈ C2([0, 1]) with
P ′(a(t)) < 0, for all t and f0(0) = a(0), the results below imply that there exists
δ > 0 and a unique solution f(t, x) ∈ C([0, 1]× [0, δ]) to (1.7) with f(0, x) = f0(x)
and f(t, 0) = a(t).

The forward problem is the map (f0(·), a(·)) 7→ f(1, ·).
Inverse Problem: The inverse problem is given f(1, ·), as above, to find f0(·) and
a(·).

To see how the inverse problem relates to the main results of the paper, let
f(t, x) be the solution as above. Set g(t, x) = f(1 − t, x). If Q(y) = −P (y), then
g(t, 0) = a(1− t) and g(t, x) satisfies

∂

∂t
g(t, x) =

Q(g(t, x))−Q(g(t, 0))
x

, x > 0. (1.8)

Also, Q′(g(t, 0)) > 0, for all t. The main results of this paper imply (1.8) has
uniqueness in this setting: g(0, x) ∈ C([0, δ]) uniquely determines g(t, x) ∈ C([0, 1]×
[0, δ]). Since g(t, x) = f(1 − t, x), f(1, x) ∈ C([0, δ]) uniquely determines both
f0

∣∣
[0,δ]

and a(t). Thus, the inverse problem has uniqueness. In short, the map
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(f0

∣∣
[0,δ]

(·), a(·)) 7→ f(1, ·) is injective (though it is far from surjective as we explain
below).

We go further than just proving existence and uniqueness, though. We have:

• In the forward problem, we do the following (see Section 2.1):
– Beyond just proving existence, we show that every solution f(t, x)

must be of Laplace transform type, modulo an appropriate error, for
every t > 0. This is despite the fact that the initial condition, f(0, x) =
f0(x), can be any continuous function with P ′(f0(0)) < 0.

– We reduce the problem to a more stable PDE, so that solutions can
be more easily studied.

• In the inverse problem, we do the following (see Section 2.2.1):
– We characterize the initial conditions g(0, x) which give rise to solu-

tions to (1.8). In other words, we characterize the image of the map
(f0(·), a(·)) 7→ f(1, ·). We see that all such functions are of Laplace
transform type, modulo an appropriate error.

– We give a procedure to reconstruct a(t) and f0

∣∣
[0,δ]

from f(1, ·). This
is necessarily unstable, but we reduce the instability to the instability
of the Laplace transform, which is well understood.

– We prove a kind of stability for the inverse problem. Namely if one has
two solutions g1(t, x) and g2(t, x) to (1.8) such that g1(0, x)− g2(0, x)
vanishes sufficiently quickly as x ↓ 0, then g1(t, 0) = g2(t, 0) on a neigh-
borhood of 0 (the size of the neighborhood depends on how quickly
g1(0, x) − g2(0, x) vanishes in a way which is made precise). In other
words if one only knows f(1, x) modulo functions which vanish suffi-
ciently quickly at 0, one can still reconstruct a(t) on a neighborhood
of t = 1, in a way which we make quantitative.

Some special cases of the main results in this paper can be interpreted as some
standard inverse problems in the following way:

• When P (y) = −y, we saw in Examples 1.1 and 1.2 that the forward prob-
lem is essentially taking the Laplace transform, and the inverse problem is
essentially taking the inverse Laplace transform. See Section 3.1 for more
details on this. As a consequence, the results in this paper can be inter-
preted as nonlinear analogs of the Laplace transform.

• In our main results, we allow the coefficients of the polynomial to be func-
tions of x. We will see in Section 3.2 that the special case of P (x, y) =
−y − x2y2 is closely related to Simon’s approach [22] to the theorem of
Borg [4] and Marčenko [18] that the principal m-function for a finite inter-
val or half-line Schrödinger operator determines the potential.

• In our main results, we allow f to be vector valued, and also allow the
coefficients to depend on f(t, 0). By doing this, we see in Section 9.1 that
the translation invariant version of the anisotropic version of Calderón’s
inverse problem can be seen in this framework.

Thus, the results in this paper can be viewed as a family of inverse problems
which generalize and unify the above examples, and for which we have good re-
sults on uniqueness, characterization of solutions, a reconstruction procedure, and
stability estimates.
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Furthermore, as argued in Section 9.2, a non-commutative analog3 of these equa-
tions arise in the full anisotropic version of the Calderón problem. Thus, a special
case of results in this paper can be seen as a simplified model case for the full
Calderón problem. Moreover, by replacing functions in our results with pseudodif-
ferential operators, one gives rise to an entire family of conjectures which generalize
the Calderón problem.

1.2. Selected notation.
• All functions take their values in real vector spaces or spaces of real matri-

ces. Other than in Section 8, there are no complex numbers in this paper.
• Let ε1, ε2 > 0. For n1, n2 ∈ N, we write b(t, w) ∈ Cn1,n2([0, ε1] × [0, ε2]) if

for 0 ≤ j ≤ n1, 0 ≤ k ≤ n2, ∂j

∂tj
∂k

∂wk
b(t, w) ∈ C([0, ε1]× [0, ε2]). If U ⊆ Rm

is open, and n3 ∈ N, we write c(t, w, z) ∈ Cn1,n2,n3([0, ε1]× [0, ε2]×U) if for
0 ≤ j ≤ n1, 0 ≤ k ≤ n2, and 0 ≤ |α| ≤ n3, we have ∂j

∂tj
∂k

∂wk
∂α

∂zα c(t, w, z) ∈
C([0, ε1]× [0, ε2]× U). We define the norms

‖b‖Cn1,n2 :=
n1∑
j=0

n2∑
k=0

sup
t,w

∣∣∣ ∂j
∂tj

∂k

∂wk
b(t, w)

∣∣∣,
‖c‖Cn1,n2,n3 :=

n1∑
j=0

n2∑
k=0

∑
|α|≤n3

sup
t,w,z

∣∣∣ ∂j
∂tj

∂k

∂wk
∂α

∂zα
c(t, w, z)

∣∣∣.
• If V ⊆ Rn is open, and U ⊆ Rm, we write Cj(V ;U) to be the usual space

of Cj functions on V taking values in U . We use the norm

‖g‖Cj(V ;U) :=
∑
|α|≤j

sup
z∈V

∣∣ ∂α
∂zα

g(z)
∣∣.

• We write Mm×n to be the space of m× n real matrices. We write GLm to
be the space of m×m real, invertible matrices.
• For a(w), b(w) ∈ C([0, ε2]) we write

(a∗̃b)(w) :=
∫ w

0

a(w − r)b(r) dr ∈ C([0, ε2]). (1.9)

Note that ∗̃ is commutative and associative.
• If A(w) ∈ C([0, ε2]; Rm) and α = (α1, . . . , αm) ∈ Nm is a multi-index, we

write

∗̃αA = A1∗̃ · · · ∗̃A1︸ ︷︷ ︸
α1 terms

∗̃ · · · ∗̃Aj ∗̃ · · · ∗̃Aj︸ ︷︷ ︸
αj terms

∗̃ · · · ∗̃Am∗̃ · · · ∗̃Am︸ ︷︷ ︸
αm terms

.

and with a slight abuse of notation, if |α| = 0 and b(w) is another function,
we write b∗̃(∗̃αA) = b.
• If A(t, w) is a function of t and w, we write Ȧ = ∂

∂tA and A′ = ∂
∂wA.

• For λ1, . . . , λm ∈ R, we write diag(λ1, . . . , λm) to denote the m×m diagonal
matrix with diagonal entries λ1, . . . , λm.
• We write A . B to mean A ≤ CB, where C depends only on certain

parameters. It will always be clear from context what C depends on.
• We write a ∧ b to mean min{a, b}.

3Achieved by replacing functions with pseudodifferential operators: here the frequency plays
the role that x−1 plays in our main results.
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2. Statement of results

Fix m ∈ N, ε0, ε1, ε2 ∈ (0,∞), U ⊆ Rm open, and D ∈ N. For j ∈ {1, . . . ,m},
α ∈ Nm a multi-index with |α| ≤ D, let

bα,j(t, w, z) ∈ C0,3,0([0, ε1]× [0, ε2]× U),

with bα,j(t, 0, z),
(
∂
∂w bα,j

)
(t, 0, z) ∈ C1([0, ε1]×U). Define cα,j(t, x, z) ∈ C([0, ε1]×

[0, ε0]× U) by

cα,j(t, x, z) :=
1
x

∫ ε2

0

e−w/xbα,j(t, w, z) dw.

We assume there is a C0 <∞ with

‖bα,j‖C0,3,0([0,ε1]×[0,ε2]×U), ‖bα,j‖C1([0,ε1]×U), ‖bα,j‖C1([0,ε1]×U) ≤ C0.

Example 2.1. Because 1
x

∫ ε2
0
e−w/x w

l

l! dw = xl + e−ε2/xG(x), with G ∈ C([0,∞)),
any polynomial in x can be written in the form covered by the cα,j , modulo error
terms of the form e−ε2/xG(x), G ∈ C([0,∞)). The results below are invariant under
such error terms, so polynomials in x can be considered as a special case of the cα,j .

Define P (t, x, y, z) := (P1(t, x, y, z), . . . , Pm(t, x, y, z)), where for y ∈ Rm,

Pj(t, x, y, z) =
∑
|α|≤D

cα,j(t, x, z)yα.

Let V ⊆ Rm be an open set with U ⊆ V . Let G(t, x, y, z) ∈ C([0, ε1] × [0, ε0] ×
V × U ; Rm) be such that for every γ ∈ (0, ε2), G(t, x, y, z) = e−γ/xGγ(t, x, y, z),
where Gγ(t, x, y, z) ∈ C([0, ε1]× [0, ε0]× V × U ; Rm) satisfies for any compact sets
K1 b U , K2 b V ,

sup
t∈[0,ε1],x∈[0,ε0],z∈K1
y1,y2∈K2,y1 6=y2

|Gγ(t, x, y1, z)−Gγ(t, x, y2, z)|
|y1 − y2|

<∞.

We will be considering the differential equation, defined for f(t, x) ∈ C([0, ε1]×
[0, ε0];V ) with f(t, 0) ∈ C([0, ε1];U),

∂

∂t
f(t, x) =

P (t, x, f(t, x), f(t, 0))− P (t, 0, f(t, 0), f(t, 0))
x

+G(t, x, f(t, x), f(t, 0)), x > 0.
(2.1)

Corresponding to P (t, x, y, z), for δ ∈ (0, ε2] and A ∈ C1([0, δ]; Rm), we define

P̂ (t, A(·), z)(w) =
(
P̂1(t, A(·), z)(w), . . . , P̂m(t, A(·), z)(w)

)
by

P̂j(t, A(·), z)(w) =
∑
|α|≤D

∂|α|+1

∂w|α|+1
(bα,j(t, ·, z)∗̃(∗̃αA)) (w).
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2.1. Existence without uniqueness.

Theorem 2.2. Suppose f0(x) ∈ C([0, ε0];V ) and A0(t) ∈ C2([0, ε1];U) are given,
with f0(0) = A0(0). Set M(t) := −dyP (t, 0, A0(t), A0(t)).4 We suppose that there
exists R(t) ∈ C1([0, ε1]; GLm) with

R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t)),

where λj(t) > 0 for all j, t. Then, there exists δ0 > 0 and a unique solution f(t, x) ∈
C([0, ε1]× [0, δ0]; Rm) to (2.1), satisfying f(0, x) = f0(x) and f(t, 0) = A0(t).

Remark 2.3. As in the introduction, we call this existence without uniqueness
because one has to specify both f(0, x) and f(t, 0) (as opposed to just f(0, x)).

Beyond proving existence, we can show that the solution given in Theorem 2.2
is of Laplace transform type, modulo an appropriate error, as shown in the next
theorem.

Theorem 2.4. Assume the same assumptions as in Theorem 2.2, and let f(t, x)
be the unique solution guaranteed by Theorem 2.2. Take c0, C1, C2, C3, C4 > 0
such that mint,j λj(t) ≥ c0 > 0, ‖R‖C1 ≤ C1, ‖R−1‖C1 ≤ C2, ‖M−1‖C1 ≤ C3,
‖A0‖C2 ≤ C4. Then, there exists δ = δ(m,D, c0, C0, C1, C2, C3, C4) > 0 and
A(t, w) ∈ C0,2([0, ε1]× [0, δ ∧ ε2]; Rm) such that

∂

∂t
A(t, w) = P̂ (t, A(t, ·), A(t, 0))(w), A(t, 0) = A0(t),

and such that if λ0(t) = minj λj(t), then for all γ ∈ [0, 1),

f(t, x) =
1
x

∫ δ∧ε2

0

e−w/xA(t, w) dw +O
(
e−γ(δ∧ε2)/x + e−(γ/x)

R t
0 λ0(s) ds

)
, (2.2)

for x ∈ (0, δ0], where the implicit constant in the O in (2.2) does not depend on
(t, x) ∈ [0, ε1] × (0, δ0]. Furthermore, the representation (2.2) is unique in the
following sense. Fix t0 ∈ [0, ε1]. Suppose there exists 0 < δ′ < δ∧ε2∧

( ∫ t0
0
λ0(s) ds

)
and B ∈ C([0, δ′]; Rm) with

f(t0, x) =
1
x

∫ δ′

0

e−w/xB(w) dw +O
(
e−δ

′/x
)
, as x ↓ 0.

Then, A(t0, w) = B(w), for all w ∈ [0, δ′].

2.2. Uniqueness without Existence. In addition to the above assumptions, for
the next result we assume for every compact set K b U ,

sup
t∈[0,ε1],w∈[0,ε2]
z1,z2∈K,z1 6=z2

|bα,j(t, w, z1)− bα,j(t, w, z2)|
|z1 − z2|

<∞,

sup
t∈[0,ε1],w∈[0,ε2]
z1,z2∈K,z1 6=z2

| ∂∂w bα,j(t, w, z1)− ∂
∂w bα,j(t, w, z2)|

|z1 − z2|
<∞.

(2.3)

4Notice the minus sign in the definition of M(t). This is in contrast to the notation in the
introduction, which lacked the minus sign.
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Theorem 2.5. Suppose f1(t, x), f2(t, x) ∈ C([0, ε1] × [0, ε0];V ) satisfy fj(t, 0) ∈
C2([0, ε1];U), both satisfy (2.1), and f1(0, x) = f2(0, x), for all x ∈ [0, ε0]. Set
Mk(t) := dyP (t, 0, fk(t, 0), fk(t, 0)). We suppose that there exists
Rk(t) ∈ C1([0, ε1]; GLm) with

Rk(t)Mk(t)Rk(t)−1 = diag(λk1(t), . . . , λkm(t)),

where λkj (t) > 0, for all j ∈ {1, . . . ,m}, t ∈ [0, ε1]. Then f1(t, x) = f2(t, x), for all
t ∈ [0, ε1], x ∈ [0, ε0].

Theorem 2.5 shows uniqueness, but we will show more. We will further investi-
gate the following questions:

• Stability: If f1(0, x)− f2(0, x) vanishes sufficiently quickly at 0, and under
the hypotheses of Theorem 2.5, we will prove that f1(t, 0) and f2(t, 0) agree
for small t, and we will make this quantitative. See Theorem 2.10.
• Reconstruction: Given the initial condition f(0, x) for (2.1), and under the

hypotheses of Theorem 2.5, we will show how to reconstruct the solution
f(t, x), for all t. This is an unstable process, but we will reduce the insta-
bility to that of inverting the Laplace transform, which is well understood.
See Remark 2.9.
• Characterization: We will show that if f(t, x) is a solution to (2.1), and

under the hypotheses of Theorem 2.5, then f(t, x) must be of Laplace
transform type, modulo an appropriate error term. In particular, only
initial conditions f(0, x) which are of Laplace transform type modulo an
appropriate error give rise to solutions. See Theorem 2.6 and Remark 2.7.

We now turn to making these ideas more precise.

2.2.1. Stability, Reconstruction, and characterization. For our first result, we take
P as in the start of this section, but we drop the assumption (2.3).

Theorem 2.6 (Charaterization). Suppose f(t, x) ∈ C([0, ε1] × [0, ε0]; Rm) is such
that for all γ ∈ [0, ε2),

∂

∂t
f(t, x) =

P (t, x, f(t, x), f(t, 0))− P (t, 0, f(t, 0), f(t, 0))
x

+O(e−γ/x), x ∈ [0, ε0),

where the implicit constant in O is independent of t, x. We suppose
• f(t, 0) ∈ C2([0, ε1];U).
• Set M(t) := dyP (t, 0, f(t, 0), f(t, 0)). We suppose there exists R(t) ∈
C1([0, ε1]; GLm) with

R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t)),

where λj(t) > 0, for all j, t.
Take c0, C1, C2, C3, C4 > 0 such that mint,j λj(t) ≥ c0 > 0, ‖R‖C1 ≤ C1, ‖R−1‖C1 ≤
C2, ‖M−1‖C1 ≤ C3, ‖f(·, 0)‖C2 ≤ C4. Then, there exist
δ = δ(m,D, c0, C0, C1, C2, C3, C4) > 0 and A(t, w) ∈ C0,2([0, ε1] × [0, δ ∧ ε2]; Rm)
such that

∂

∂t
A(t, w) = P̂ (t, A(t, ·), A(t, 0)), A(t, 0) = f(t, 0), (2.4)

and such that if λ0(t) = minj λj(t), then for all γ ∈ (0, 1),

f(t, x) =
1
x

∫ δ∧ε2

0

e−w/xA(t, w) dw +O
(
e−γ(δ∧ε2)/x + e−(γ/x)

R ε1−t
0 λ0(s) ds

)
, (2.5)
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where the implicit constant in O is independent of t, x. Furthermore, the represen-
tation in (2.5) of f(t, x) is unique in the following sense. Fix t0 ∈ [0, ε0]. Suppose
there exists 0 < δ′ < δ ∧ ε2 ∧

∫ ε1−t0
0

λ(s) ds and B ∈ C([0, δ′]; Rm) with

f(t0, x) =
1
x

∫ δ′

0

e−w/xB(w) dw +O
(
e−δ

′/x
)
, as x ↓ 0.

Then, A(t0, w) = B(w), for all w ∈ [0, δ′].

Remark 2.7. By taking t = 0 in (2.5), we see that f(0, x) is of Laplace transform
type, modulo an error: for all γ ∈ (0, 1),

f(0, x) =
1
x

∫ δ∧ε2

0

e−w/xA(0, w) dw +O
(
e−γ(δ∧ε2)/x + e−(γ/x)

R ε1
0 λ0(s) ds

)
.

Thus, under the hypotheses of Theorem 2.6, the only initial conditions that give
rise to a solution are of Laplace transform type, modulo an appropriate error.
Furthermore, by taking t0 = 0 in the last conclusion of Theorem 2.6, we see that
f(0, x) uniquely determines A(0, w).

For the remainder of the results in this section, we assume (2.3).

Proposition 2.8. The differential equation (2.4) has uniqueness in the following
sense. Let δ′ > 0 and A(t, w), B(t, w) ∈ C0,2([0, ε1]× [0, δ′]; Rm) satisfy

∂

∂t
A(t, w) = P̂ (t, A(t, ·), A(t, 0))(w),

∂

∂t
B(t, w) = P̂ (t, B(t, ·), B(t, 0))(w), (2.6)

and A(0, w) = B(0, w) for w ∈ [0, δ′]. Set A0(t) = A(t, 0), and suppose A0(t) ∈
C2([0, ε2]; Rm) and set M(t) = dyP (t, 0, A0(t), A0(t)). Suppose there exists R(t) ∈
C1([0, ε1]; GLm) with

R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t)),

where λj(t) > 0 for all j, t. Set γ0(t) := maxj
∫ t

0
λj(s) ds, and

δ0 :=

{
γ−1

0 (δ′), if γ0(ε1) ≥ δ′,
ε1, else.

Then, A(t, 0) = B(t, 0) for t ∈ [0, δ0].

Remark 2.9 (Reconstruction). Proposition 2.8 leads us to the reconstruction pro-
cedure, which is as follows:

(i) Given a solution f(t, x) to (2.1), satisfying the assumptions of Theorem 2.5,
we use Theorem 2.6 to see that f(t, x) can be written in the form (2.5). In
particular, as discussed in Remark 2.7, f(0, x) uniquely determines A(0, w).
Extracting A(0, w) from f(0, x) involves taking an inverse Laplace transform,
and this step therefore inherits any instability inherent in the inverse Laplace
transform.

(ii) With A(0, w) in hand, and with the knowledge that A(t, w) satisfies (2.4),
Proposition 2.8 shows that A(0, w) uniquely determines A(t, 0) = f(t, 0) for
0 ≤ t ≤ δ′, for some δ′.

(iii) With f(t, 0) in hand, for x > 0 (2.1) is a standard ODE, and so uniquely
determines f(t, x) for 0 ≤ t ≤ δ′.

(iv) Iterating his procedure gives f(t, x), for all t.



EJDE-2017/227 DIFFERENTIAL EQUATIONS WITH A DIFFERENCE QUOTIENT 11

The above procedure reduces the reconstruction of f(t, x) from f(0, x) to the re-
construction of A(t, w) from A(0, w). As we will see in the proof of Proposition
2.8, the differential equation satisfied by A is much more stable than that satisfied
by f . In particular, we will be able to prove Proposition 2.8 by a straightforward
application of Grönwall’s inequality.

Theorem 2.10 (Stability). Suppose f1(t, x), f2(t, x) ∈ C([0, ε1] × [0, ε0]; Rm) sat-
isfy, for k = 1, 2, for all γ ∈ (0, ε2),

∂

∂t
fk(t, x) =

P (t, x, fk(t, x), fk(t, 0))− P (t, 0, fk(t, 0), fk(t, 0))
x

+O
(
e−γ/x

)
,

for x ∈ (0, ε0], where the implicit constant in O may depend on γ, but not on t or
x. Suppose, further, for some r > 0 and all s ∈ [0, r),

f1(0, x) = f2(0, x) +O
(
e−s/x

)
. (2.7)

We assume the following for k = 1, 2:
• fk(t, 0) ∈ C2([0, ε1];U).
• SetMk(t) := dyP (t, 0, fk(t, 0), fk(t, 0)). We suppose that there exists Rk(t)

in C1([0, ε1]; GLm) with

Rk(t)Mk(t)Rk(t)−1 = diag(λk1(t), . . . , λkm(t)),

where λkj (t) > 0 for all j, t.

Take c0, C1, C2, C3, C4 > 0 such that for k = 1, 2, mint,j λkj (t) ≥ c0 > 0, ‖Rk‖C1 ≤
C1, ‖R−1

k ‖C1 ≤ C2, ‖M−1
k ‖C1 ≤ C3, ‖fk(·, 0)‖C2 ≤ C4. Set

γ0(t) := max
j

∫ t

0

λ1
j (s) ds, λk0(t) = min

j
λkj (t).

Then there exists δ = δ(m,D, c0, C0, C1, C2, C3, C4) > 0 such that the following
holds. Define

δ′ = δ ∧ ε2 ∧
∫ ε1

0

λ1
0(s) ds ∧

∫ ε1

0

λ2
0(s) ds > 0,

and set

δ0 :=

{
γ−1

0 (r ∧ δ′), if γ0(ε1) ≥ r ∧ δ′,
ε1, otherwise.

Then, f1(t, 0) = f2(t, 0) for t ∈ [0, δ0].

3. Forward problems, inverse problems, and past work

The results in this paper can be seen as studying a class of nonlinear forward
and inverse problems. Indeed, suppose we have the same setup as described at the
start of Section 2.

Forward Problem. Given f0(x) ∈ C([0, ε1];V ) and A0(t) ∈ C2([0, ε1];U) with
f0(0) = A0(0). Let M(t) be as in Theorem 2.2. Suppose there exists R(t) ∈
C1([0, ε1]; GLm) with R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t)), and λj(t) > 0, for
all t. Let f(t, x) be the solution to (2.1) described in Theorem 2.2, with f(0, x) =
f0(x), f(t, 0) = A0(t). The forward problem is the map:

(f0, A0) 7→ f(ε1, ·).
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Inverse Problem: The inverse problem is, given f(ε1, ·) as described above, find
f0 and A0. Note that if f(t, x) is the function described above, f̃(t, x) = f(ε1− t, x)
satisfies all the hypotheses of Theorem 2.5 (here we assume (2.3)). We have the
following:

• The map (f0, A0) 7→ f(ε1, ·) is injective–Theorem 2.5.
• The map (f0, A0) 7→ f(ε1, ·) is not surjective. In fact, the only functions

in the image of are Laplace transform type, modulo an appropriate error
term–Theorem 2.4.
• The inverse map f(ε1, ·) 7→ (f0, A0) is unstable, but we do have some

stability results. Indeed, if one only knows f(ε1, x) up to error terms of
the form O(e−r/x), then f(ε1, ·) determines A0(t) for t ∈ [δ0− ε1, ε1], where
δ0 is described in Theorem 2.10.
• We have a procedure to reconstruct A0(t) and f0(x) from f(ε1, x)–Remark

2.9.

The above class of inverse problems has, as special cases, some already well
understood inverse problems. We next describe two of these. For these problems,
we reverse time in the above discussion since we are focusing on the inverse problem.
In addition, the results in this paper are related to the famous Calderón problem,
and we describe this connection in Section 9.

3.1. Laplace Transform. As see in Examples 1.1 and 1.2 the Laplace transform
is closely related to the case P (t, x, y, z) = y studied in this paper. In fact, the
following proposition makes this even more explicit. For a ∈ L∞([0,∞)) define the
Laplace transform:

L(a)(x) =
1
x

∫ ∞
0

e−w/xa(w) dw.

Proposition 3.1. Let a ∈ C([0,∞)) ∩ L∞([0,∞)). For each x > 0 there is a
unique solution to the differential equation

∂

∂t
f(t, x) =

f(t, x)− a(t)
x

, (3.1)

such that supt≥0 |f(t, x)| <∞. For t0, t ≥ 0 define at0(t) = a(t0 + t). This solution
f(t, x) is given by f(t, x) = L(at)(x). Furthermore, f(t, x) extends to a continuous
function f ∈ C([0,∞)× [0,∞)) by setting f(t, 0) = a(t).

Proof. If we set

f(t, x) = L(at)(x) =
1
x

∫ ∞
0

e−s/xa(t+ s) ds =
1
x

∫ ∞
t

e(t−s)/xa(s) ds,

then it is clear that f satisfies (3.1), supt≥0 |f(t, x)| <∞, and that f extends to a
continuous function f ∈ C([0,∞)× [0,∞)) by setting f(t, 0) = a(t).

Suppose g(t, x) is another solution to (3.1) such that supt≥0 |g(t, x)| < ∞. Let
h = f − g. Then h(t, x) satisfies ∂

∂th(t, x) = h(t, x)/x, supt≥0 |h(t, x)| < ∞. This
implies that h(t, x) = et/xh(0, x) and we conclude h(0, x) = 0 = h(t, x), for all t.
Thus f(t, x) = g(t, x), proving uniqueness. �

In light of Proposition 3.1 one may define L(a) (at least for a ∈ C([0,∞)) ∩
L∞([0,∞))) in another way: there is a unique f(t, x) ∈ C([0,∞) × [0,∞)) with
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supt≥0 |f(t, x)| <∞ and satisfying

∂

∂t
f(t, x) =

f(t, x)− f(t, 0)
x

, f(t, 0) = a(t).

L(a)(x) is then defined to be L(a)(x) = f(0, x). Thus, the well known fact that
a 7→ L(a) is injective follows from uniqueness for the differential equation

∂

∂t
f(t, x) =

f(t, x)− f(t, 0)
x

.

Example 3.2. The above discussion leads naturally to the following “nonlinear
inverse Laplace transform”. Indeed, let P (y) be a polynomial in y ∈ R. Let
f1(t, x), f2(t, x) ∈ C([0, ε1]× [0, ε0]) satisfy, for j = 1, 2,

∂

∂t
fj(t, x) =

P (fj(t, x))− P (fj(t, 0))
x

, x ∈ (0, ε0].

Suppose:
• f1(0, x) = f2(0, x), for all x ∈ [0, ε0].
• fj(t, 0) ∈ C2([0, ε1]), j = 1, 2.
• P ′(fj(t, 0)) > 0, for t ∈ [0, ε1], j = 1, 2.

Then, by Theorem 2.5, f1(t, x) = f2(t, x) for (t, x) ∈ [0, ε1]×[0, ε0]. When P (y) = y,
this amounts to the inverse Laplace transform as discussed above.

3.2. Inverse spectral theory. In this section, we describe the results due to
Simon in the influential work [22], where he gave a new approach to the theorem
of Borg-Marčenko that the principal m-function for a finite interval or half-line
Schrödinger operator determines the potential. As we will show, this is closely
related to the special case P (t, x, y, z) = x2y2 + y of the results studied in this
paper. We will contrast our theorems and methods with those of Simon.

Let q ∈ L1
loc([0,∞)) with supy>0

∫ y+1

y
q(t)∨0 dt <∞, and consider the Schrödin-

ger operator − d2

dt2 + q(t). For each z ∈ C\ [β,∞) (with −β sufficiently large), there
is a unique solution (up to multiplication by a constant) u(·, z) ∈ L2([0,∞)) of
−ü+ qu = zu. The principal m-function is defined by

m(t, z) =
u̇(t, z)
u(t, z)

.

It is a theorem of Borg [4] and Marčenko [18] that m(0, z) uniquely determines
q–Simon [22] saw this as an instance of uniqueness for a generalized differential
equation, which we now explain in the framework of this paper.

Indeed, it is easy to see that m satisfies the Riccati equation

ṁ(t, z) = q(t)− z −m(t, z)2, (3.2)

and well-known that m has the asymptotics m(t,−κ2) = −κ − q(t)
κ + o(κ−1), as

κ ↑ ∞. Thus, q(t) can be obtained from m(t, ·) and (3.2) is a differential equation
involving only m. Thus, if the equation (3.2) has uniqueness, then m(0, z) uniquely
determines q(t).

However, one does not need to full power of uniqueness for (3.2). In fact,
one needs only know uniqueness under the additional assumption that m(t, z)
is a principal m-function: i.e., if m1(t, z) and m2(t, z) both satisfy (3.2) with
m1(0, ·) = m2(0, ·) and are both principal m-functions, then m1(t, z) = m2(t, z),
for all t, z. Simon proceeds via this weaker statement.
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At this point, we rephrase these ideas into the language used in this paper. For
x ≥ 0, y ∈ R define P (x, y) = x2y2 + y. Note that P is of the form covered in this
paper (Example 2.1) and dyP (0, y) = 1. Given a principal m-function as above,
define for x ≥ 0 small,

f(t, x) :=

{
− 1
x

(
m(t,−(2x)−2) + (2x)−1

)
, if x > 0,

q(t), if x = 0.
(3.3)

It is easy to see from the above discussion that f satisfies
∂

∂t
f(t, x) =

P (x, f(t, x))− P (0, f(t, 0))
x

, x > 0. (3.4)

Furthermore, if q is continuous then f is continuous as well. Thus to show m(t, z)
uniquely determines q(t) it suffices to show that (3.4) has uniqueness.

In this context, our results and the results of [22] are closely related but have a
few differences:

• As discussed above, [22] only considers solutions to (3.2) which are principal
m-functions. This forces f(t, ·) in (3.3) to be exactly of Laplace transform
type, for all t. As we have seen, not all solutions to (3.4) are exactly of
Laplace transform type. In this way, our results are stronger than [22] in
that we prove uniqueness when the initial condition is not necessarily of
Laplace transform type–we do not even require any sort of analyticity.5

• We require q ∈ C2, while [22] requires no additional regularity on q.
• The constant δ in Theorems 2.6 and 2.10 is taken to be ∞ in [22].
• Our results work for much more general polynomials than P .

The reason for the differences above is that, once m is assumed to be a principal
m-function, one is able to use many theorems regarding Schrödinger equations to
deduce the stronger results, which we did not obtain in our more general setting.

That we assumed q ∈ C2 is likely not essential. For the specific case discussed in
this section, our methods do yield results for q with lower regularity than C2, though
we chose to not pursue this. Moreover, even for the more general setting of our main
results, it seems likely that a more detailed study of the partial differential equations
which arise in this paper would lead to lower regularity requirements, though this
would require some new ideas. That δ is assumed small in Theorems 2.6 and 2.10
seems much more essential–this has to do with the fact that the equations studied
in this paper are non-linear in nature, unlike the results in [22] which rested on the
underlying linear theory of the Schrödinger equation.

Remark 3.3. Many works followed [22], some of which dealt with m taking values
in square matrices; e.g., [8]. All of the above discussion applies to these cases as
well.

4. Convolution

In this section, we record several results on the commutative and associative
operation ∗̃ defined in (1.9). In Section 4.2 we distill the consequences of these
results into the form in which they will be used in the rest of the paper–and the
reader may wish to skip straight to those results on a first reading. For this section,
fix some ε > 0.

5We learn a posteriori, in Theorem 2.6, that the initial condition must be of Laplace transform
type modulo an error, but this is not assumed.
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Lemma 4.1. Let a ∈ C([0, ε]), b ∈ C1([0, ε]). Then ∂
∂w (a∗̃b)(w) = a(w)b(0) +

(a∗̃b′)(w). In particular, if b(0) = 0, then ∂
∂w (a∗̃b)(w) = (a∗̃b′)(w).

The proof of the above lemma is immediate from the definitions.

Lemma 4.2. Let l ≥ −1 and let a ∈ C([0, ε]), b ∈ Cl+1([0, ε]). Suppose for 0 ≤
j ≤ l−1, ∂j

∂wj b(0) = 0. Then a∗̃b ∈ Cl+1([0, ε]) and for 0 ≤ j ≤ l, ∂j

∂wj (a∗̃b)(0) = 0.
Furthermore, if a ∈ C1([0, ε]), then a∗̃b ∈ Cl+2([0, ε]).

Proof. By repeated applications of Lemma 4.1, for 0 ≤ j ≤ l, ∂j

∂wj (a∗̃b) = a∗̃ ∂j

∂wj b,
and this expression clearly vanishes at 0. Applying Lemma 4.1 again, we see
∂l+1

∂wl+1 (a∗̃b) = ∂
∂w (a∗̃ ∂l

∂wl
b) = a(w) ∂

lb
∂wl

(0) + (a∗̃ ∂l+1

∂wl+1 b). This expression is continu-
ous, so a∗̃b ∈ Cl+1. Furthermore, if a ∈ C1, it follows from one more application
of Lemma 4.1 that ∂l+2

∂wl+2 (a∗̃b) = ∂
∂w

(
a(w) ∂

lb
∂wl

(0) + (a∗̃ ∂l+1

∂wl+1 b)
)

is continuous, and

therefore a∗̃b ∈ Cl+2. �

For the next few results, suppose a1, . . . , aL ∈ C1([0, ε]) are given. For J =
{j1, . . . , jk} ⊆ {1, . . . , L}, we define

∗̃j∈Ja = aj1 ∗̃ · · · ∗̃ajk .

With an abuse of notation, for b ∈ C([0, ε]), we define b∗̃
(
∗̃j∈∅a

)
= b.

Lemma 4.3. For each n ∈ {1, . . . , L}, a1∗̃ · · · ∗̃an ∈ Cn([0, ε]) and if 0 ≤ j ≤ n−2,
∂j

∂wj (a1∗̃ · · · ∗̃an) (0) = 0.

Proof. For n = 1, the result is trivial. We prove the result by induction on n, the
base case being n = 2 which follows from Lemma 4.1. We assume the result for
n − 1 and prove it for n. By the inductive hypothesis, a1∗̃ · · · ∗̃an−1 ∈ Cn−1 and
vanishes to order n − 3 at 0. From here, the result follows from Lemma 4.2 with
l = n− 2. �

Define
IL(a1, . . . , aL) :=

∑
J({1,...,L}

(∏
j∈J

aj(0)
)(
∗̃k∈Jca′k

)
,

and let I0 = 0.

Lemma 4.4.

∂L−1

∂wL−1
(a1∗̃ · · · ∗̃aL) =

( L−1∏
j=1

aj(0)
)
aL + IL−1(a1, . . . , aL−1)∗̃aL , (4.1)

∂L

∂wL
(a1∗̃ · · · ∗̃aL) = IL(a1, . . . , aL). (4.2)

Proof. We prove the result by induction on by induction on L. The base case,
L = 1, is trivial. We assume (4.1) and (4.2) for L − 1 and prove them for L. We
have, using repeated applications of Lemmas 4.1 and 4.3,

∂L−1

∂wL−1
(a1∗̃ · · · ∗̃aL) =

∂

∂w

(( ∂L−2

∂wL−2
(a1∗̃ · · · ∗̃aL−1

)
∗̃aL

)
=
( ∂L−2

∂wL−2
(a1∗̃ · · · ∗̃aL−1)

)
(0)aL +

( ∂L−1

∂wL−1
(a1∗̃ · · · ∗̃aL−1

)
∗̃aL
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Using our inductive hypothesis for (4.1) and the fact that (b∗̃c)(0) = 0 for any b, c,( ∂L−2

∂wL−2
(a1∗̃ · · · ∗̃aL−1)

)
(0)aL =

[ L−1∏
j=1

aj(0)
]
aL,

and using our inductive hypothesis for (4.2),( ∂L−1

∂wL−1
(a1∗̃ · · · ∗̃aL−1)

)
∗̃aL = IL−1(a1, . . . , aL−1)∗̃aL.

Combining the above equations yields (4.1). Taking ∂
∂w of (4.1) and applying

Lemma 4.1, (4.2) follows, completing the proof. �

Corollary 4.5. Let A ∈ C1([0, ε]; Rm), b ∈ C1([0, ε]). Then, for a multi-index
α ∈ Nm,

∂|α|+1

∂w|α|+1
(b∗̃(∗̃αA))

=
∑
β≤α
|β|<|α|

(
α

β

)
b(0)A(0)β

(
∗̃α−βA′

)
+
∑
β≤α

(
α

β

)
A(0)β

(
b′∗̃
(
∗̃α−βA′

))
.

The above corollary follows immediately from Lemma 4.4.

Lemma 4.6. Let b1, . . . , bL, c1, . . . , cL ∈ C([0, ε]). Then,

b1∗̃ · · · ∗̃bL − c1∗̃ · · · ∗̃cL =
∑

∅6=J⊆{1,...,L}

(−1)|J|+1 (∗̃l∈J(bl − cl)) ∗̃ (∗̃l 6∈Jbl)

The proof of the above lemma is standard, uses only the multilinearity of ∗̃, and
can be proved using a simple induction.

Lemma 4.7. Suppose a1, . . . , aL ∈ C2([0, ε]). Then,

∂L

∂wL
(a1∗̃ · · · ∗̃aL)

=
( L−1∏
l=1

al(0)
)
a′L +

( L−1∑
l=1

( ∏
1≤k≤L−1

k 6=l

ak(0)
)
a′l(0)

)
aL

+
( L−1∑
l=1

∑
J({1,...,L−1}
l=min Jc

(∏
j∈J

aj(0)
)(
a′l(0)

(
∗̃k∈Jc
k 6=l

a′k

)
+ a′′l ∗̃

(
∗̃k∈Jc
k 6=l

a′k

)))
∗̃aL

Proof. Using Lemmas 4.1 and 4.4, we have

∂L

∂wL
(a1∗̃ · · · ∗̃aL)

=
∂

∂w

(( L−1∏
j=1

aj(0)
)
aL + IL−1(a1, . . . , aL−1)∗̃aL

)

=
( L−1∏
j=1

aj(0)
)
a′L + IL−1(a1, . . . , aL−1)(0)aL +

( ∂

∂w
IL−1(a1, . . . , aL−1)

)
∗̃aL
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Since (b∗̃c)(0) = 0 for any b, c,

IL−1(a1, . . . , aL)(0) =
L−1∑
l=1

( ∏
1≤k≤L−1

k 6=l

ak(0)
)
a′l(0).

Using Lemma 4.1,
∂

∂w
IL−1(a1, . . . , aL−1)

=
L−1∑
l=1

∑
J({1,...,L−1}
l=min Jc

(∏
j∈J

aj(0)
)(
a′l(0)

(
∗̃k∈Jc
k 6=l

a′k

)
+ a′′l ∗̃

(
∗̃k∈Jc
k 6=l

a′k

))
.

Combining the above equations yields the result. �

Corollary 4.8. Let a1, . . . , aL ∈ C2([0, ε]).

∂L

∂wL
(a1∗̃ · · · ∗̃aL)(w) =

( L−1∏
l=1

al(0)
)
a′L(w) + F1(w), (4.3)

∂L

∂wL
(a1∗̃ · · · ∗̃aL)(w) = F2(w), (4.4)

where

|F1(w)| . sup
0≤r≤w

|aL(r)|,

|F2(w)| .
(
|aL−1(0)|+ sup

0≤r≤w
|aL(r)|

)
∧
(
|a′L(w)|+ sup

0≤r≤w
|aL(r)|

)
,

where the implicit constants may depend on L, and upper bounds for ε and ‖aj‖C2 ,
1 ≤ j ≤ L.

Proof. The bound for F1 follows immediately from Lemma 4.7. The bound for F2

follows from (4.3) and the bound for F1. �

Lemma 4.9. Let a, b ∈ C1([0, ε]). Let f(x) = 1
x

∫ ε
0
e−w/xa(w) dw and g(x) =

1
x

∫ ε
0
e−w/xb(w) dw. Then, there exists G ∈ C([0,∞)) such that

f(x)g(x) =
1
x

∫ ε

0

e−w/x
∂

∂w
(a∗̃b)(w) dw +

1
x
e−ε/xG(x). (4.5)

Also,
f(x)− f(0)

x
=

1
x

∫ ε

0

e−w/x
∂a

∂w
(w) dw − 1

x
e−ε/xa(ε). (4.6)

Proof. A straightforward computation shows

f(x)g(x) =
1
x2

∫ ε

0

e−u/x
∫ u

0

a(w1)b(u− w1) dw1 du

+
1
x2

∫ 2ε

ε

e−u/x
∫ ε

u−ε
a(w1)b(u− w1) dw1 du.

We have
1
x2

∫ 2ε

ε

e−u/x
∫ ε

u−ε
a(w1)b(u− w1) dw1 du
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=
1
x2
e−ε/x

∫ ε

0

e−u/x
∫ ε

u

a(w1)b(u+ ε− w1) dw1 du =:
1
x
e−ε/xG1(x),

where G1 ∈ C([0, ε]). Also, using that (a∗̃b)(0) = 0,

1
x2

∫ ε

0

e−u/x
∫ u

0

a(w1)b(u− w1) dw1 du

= − 1
x

∫ ε

0

(
∂

∂u
e−u/x

)
(a∗̃b)(u) du

= − 1
x
e−ε/x(a∗̃b)(ε) +

1
x

∫ ε

0

e−u/x
∂

∂u
(a∗̃b)(u) du.

Combining the above equations yields (4.5).
We have

1
x

∫ ε

0

e−w/x
∂a

∂w
(w) dw =

1
x
e−ε/xa(ε)− 1

x
a(0) +

1
x2

∫ ε

0

e−w/xa(w) dw

=
f(x)− f(0)

x
+

1
x
e−ε/xa(ε),

which proves (4.6). �

Lemma 4.10. Let a1, . . . , an ∈ C1([0, ε]). Define fj(x) = 1
x

∫ ε
0
e−w/xaj(w) dw.

Then, there are continuous functions G1, G2 ∈ C([0,∞)) such that
n∏
j=1

fj(x) =
1
x

∫ ε

0

e−w/x
∂n−1

∂wn−1
(a1∗̃ · · · ∗̃an)(w) dw +

1
x
e−ε/xG1(x), (4.7)

∏n
j=1 fj(x)−

∏n
j=1 fj(0)

x

=
1
x

∫ ε

0

e−w/x
∂n

∂wn
(a1∗̃ · · · ∗̃an)(w) dw +

1
x2
e−ε/xG2(x).

(4.8)

Proof. We prove (4.7) by induction on n. n = 1 is trivial and n = 2 is contained in
Lemma 4.9. We assume the result for n− 1 and prove it for n. Thus, we assume

n−1∏
j=1

fj(x) =
1
x

∫ ε

0

∂n−2

∂wn−2
(a1∗̃ · · · ∗̃an−1)(w) dw +

1
x
e−ε/xG̃1(x), (4.9)

where G̃1 ∈ C([0,∞)). By Lemma 4.3, a1∗̃ · · · ∗̃an−1 ∈ Cn−1 and vanishes to order
n− 3 at 0. Using this, and repeated applications Lemma 4.1, we have( ∂n−2

∂wn−2
(a1∗̃ · · · ∗̃an−1)

)
∗̃an =

∂n−2

∂wn−2
(a1∗̃ · · · ∗̃an).

Using this and Lemma 4.9 we have, for some G̃2 ∈ C([0,∞)),(
1
x

∫ ε

0

∂n−2

∂wn−2
(a1∗̃ · · · ∗̃an−1)(w) dw

)
fn(x)

=
1
x

∫ ε

0

e−w/x
∂

∂w

(
∂n−2

∂wn−2
(a1∗̃ · · · an−1)∗̃an

)
(w) dw +

1
x
e−ε/xG̃2(x)

=
1
x

∫ ε

0

∂n−1

∂wn−1
(a1∗̃ · · · ∗̃an)(w) +

1
x
e−ε/xG̃2(x).

(4.10)
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Combining (4.9) with (4.10), we have
n∏
j=1

fj(x) =
1
x

∫ ε

0

∂n−1

∂wn−1
(a1∗̃ · · · ∗̃an)(w) +

1
x
e−ε/xG̃2(x) +

1
x
e−ε/xG̃1(x)fn(x),

which proves (4.7).
We turn to (4.8). Using (4.6) and (4.7), we have∏n

j=1 fj(x)−
∏n
j=1 fj(0)

x

=
1
x

∫ ε

0

e−w/x
∂n

∂wn
(a1∗̃ · · · ∗̃an)(w) dw +

1
x2
e−ε/xG1(x)

− 1
x
e−ε/x

∂n−1

∂wn−1

∣∣∣
w=ε

(a1∗̃ · · · ∗̃an)(w).

Since a1∗̃ · · · ∗̃an ∈ Cn (by Lemma 4.3), this completes the proof. �

4.1. Smoothing. The operation ∗̃ has smoothing properties, and this section is
devoted to discussing the instances of these smoothing properties which are used
in this paper. Fix m ∈ N, ε1, ε2 > 0.

Definition 4.11. For L ≥ 0, n ≥ 1, and increasing functions G1, G2, G3 : (0,∞)→
(0,∞), we say

G : C0,L([0, ε1]× [0, ε2]; Rm)→ C0,L([0, ε1]× [0, ε2]; Rn)

is an (L,G1, G2, G3) operation if:
• G(A)(t, w) depends only on the values of A(t, r) for r ∈ [0, w]. As a result,

for δ ∈ (0, ε2], G defines a map

G : C0,L([0, ε1]× [0, δ]; Rm)→ C0,L([0, ε1]× [0, δ]; Rn).

• For 0 ≤ k ≤ L−1, there are functions Gk : C([0, ε1]; Rm)k+1 → C([0, ε1]; Rm)
such that

Gk : CL([0, ε1]; Rm)× CL−1([0, ε1]; Rm)× · · · × CL−1([0, ε1]; Rm)

→ CL−k−1([0, ε1]; Rn),

and
∂k

∂wk
G(A)(t, w)

∣∣∣
w=0

= Gk
(
A(·, 0),

∂A

∂w
(·, 0), . . . ,

∂kA

∂wk
(·, 0)

)
(t).

• The following holds for all M ∈ (0,∞), δ ∈ (0, ε2].
– for all A ∈ C0,L([0, ε1]× [0, δ]; Rm) with ‖A‖C0,L ≤M , ‖G(A)‖C0,L ≤
G1(M).

– for all A,B ∈ C0,L([0, ε1]× [0, δ]; Rm) with ‖A‖C0,L , ‖B‖C0,L ≤M ,

‖G(A)− G(B)‖C0,L ≤ G2(M)‖A−B‖C0,L .

– For 0 ≤ k ≤ L − 1, and g1, . . . , gk with gj ∈ CL−j([0, ε1]; Rm) and
‖gj‖CL−j ≤M ,

‖Gk(g1, . . . , gk)‖CL−k−1 ≤ G3(M).

Below we use ∗̃ to construct several examples, in the case n = 1, of (2, G1, G2, G3)
operations.
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Lemma 4.12. Let α ∈ Nm be a multi-index with |α| ≥ 2, and let b(t, w) ∈
C([0, ε1]× [0, ε2]). For A ∈ C0,2([0, ε1]× [0, ε2]; Rm) set

G(A)(t, w) := (b(t, ·)∗̃ (∗̃αA′(t, ·))) (w).

Then, G is a (2, G1, G2, G3) operation, where the functions G1, G2, and G3 can be
chosen to depend only on α, m, and upper bounds for ε2 and ‖b‖C0 .

Proof. Let k1 = min{l : αl 6= 0} and k2 = min{l : (α − ek1)l 6= 0}. Using Lemma
4.1, we have

∂

∂w
G(A)(t, w) = A′k1(t, 0)

(
b(t, ·)∗̃

(
∗̃α−ekA′(t, ·)

))
(w)

+
(
b(t, ·)∗̃A′′k1(t, ·)∗̃

(
∗̃α−ek1A′(t, ·)

))
(w),

and

∂2

∂w2
G(A)(t, w) = A′k1(t, 0)A′k2(t, 0)

(
b(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w)

+A′k1(t, 0)
(
b(t, ·)∗̃A′′k2(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w)

+A′k2(t, 0)
(
b(t, ·)∗̃A′′k1(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w)

+
(
b(t, ·)∗̃A′′k1(t, ·)∗̃A′′k2(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w).

For any c1, c2, we have (c1∗̃c2)(0) = 0, we may therefore take G0 = 0 and G1 = 0.
Using the above formulas, combined with Lemma 4.6, the result follows. �

Lemma 4.13. Suppose |α| = 1 and b(t, w) ∈ C0,1([0, ε1] × [0, ε2]). For A ∈
C0,2([0, ε1]× [0, ε2]; Rm) set

G(A)(t, w) := (b(t, ·)∗̃ (∗̃αA′(t, ·))) (w).

Then G is a (2, G1, G2, G3) operation, where the functions G1, G2, and G3 can be
chosen to depend only on m and upper bounds for ε2 and ‖b‖C0,1 .

Proof. Without loss of generality we take α = e1, so that G(A)(t, w) =
(b(t, ·)∗̃A′1(t, ·))(w). Using Lemma 4.1 we have

∂

∂w
G(A)(t, w) = A′1(t, 0)b(t, w) + (b(t, ·)∗̃A′′1(t, ·))(w),

∂2

∂w2
G(A)(t, w) = A′1(t, w)b′(t, w) + b(t, 0)A′′1(t, w) + (b′(t, ·)∗̃A′′1(t, ·))(w).

In particular,

G(A)(t, 0) = 0,
∂

∂w

∣∣∣
w=0
G(A)(t, w) = A′1(t, 0)b(t, 0).

Using the above formulas, the result follows easily. �

Lemma 4.14. Suppose |α| ≥ 2 and b(t) ∈ C([0, ε1]). For A ∈ C0,2([0, ε1] ×
[0, ε2]; Rm) set

G(A)(t, w) := b(t) (∗̃αA′(t, ·)) (w).

Then, G is a (2, G1, G2, G3) operation, where the functions G1, G2, and G3 can be
chosen to depend only on m and upper bounds for ε2 and ‖b‖C0 .
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Proof. Let k1 = min{l : αl 6= 0} and k2 = min{l : (α − ek1)l 6= 0}. Using Lemma
4.1 we have

∂

∂w
G(A)(t, w) = b(t)A′k1(t, 0)

(
∗̃α−ek1A′(t, ·)

)
(w)

+ b(t)
(
A′′k1(t, ·)∗̃

(
∗̃α−ek1A′(t, ·)

))
(w),

and
∂2

∂w2
G(A)(t, w) = b(t)A′k1(t, 0)A′k2(t, 0)

(
∗̃α−ek1−ek2A′(t, ·)

)
(w)

+ b(t)A′k1(t, 0)
(
A′′k2(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w)

+ b(t)A′k2(t, 0)
(
A′′k1(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w)

+ b(t)
(
A′′k1(t, ·)∗̃A′′k2(t, ·)∗̃

(
∗̃α−ek1−ek2A′(t, ·)

))
(w).

In particular,

G(A)(t, 0) = 0,
∂

∂w

∣∣∣
w=0
G(A)(t, w) =

{
0, if |α| > 2,
b(t)A′k1(t, 0)A′k2(t, 0), if |α| = 2.

Using the above formulas, combined with Lemma 4.6, the result follows easily. �

Lemma 4.15. Suppose d ∈ C0,2([0, ε1] × [0, ε2]) is such that d(t, 0) ∈ C1([0, ε1]).
For A ∈ C0,2([0, ε1]× [0, ε2]; Rm) set

G(A)(t, w) := d(t, w).

Then, G is a (2, G1, G2, G3) operation, where the functions G1, G2, and G3 can be
chosen to depend only on upper bounds for ‖d‖C0,2 and ‖d(·, 0)‖C1 .

The above lemma follows immediately from the definitions.

Lemma 4.16. Suppose G : C0,L([0, ε1] × [0, ε2]; Rm) → C0,L([0, ε1] × [0, ε2]) is an
(L,G1, G2, G3) operation. Let β ∈ Nm be a multi-index, and define

G̃(A)(t, w) := A(t, 0)βG(A)(t, w).

Then, G̃ is an (L, G̃1, G̃2, G̃3) operation, where G̃1, G̃2, and G̃3 can be chosen to
depend only on G1, G2, G3, L, and β.

The above lemma follows immediately from the definitions.

4.2. Polynomials. For this section, we take all the same notation and assump-
tions as in the beginning of Section 2. Thus, we have bα,j , cα,j , P (t, x, y, z), and
P̂ (t, A(·), z)(w) as described in that section.

Lemma 4.17. Let δ ∈ (0, ε2] and A(t, w) ∈ C0,1([0, ε1]× [0, δ]; Rm) with A(t, 0) ∈
C([0, ε1];U). Define f(t, x) ∈ C([0, ε1]× [0, ε0]; Rm) by

f(t, x) =
1
x

∫ δ

0

e−w/xA(t, w) dw.

Then
P (t, x, f(t, x), f(t, 0))− P (t, 0, f(t, 0), f(t, 0))

x

=
1
x

∫ δ

0

e−w/xP̂ (t, A(t, ·), A(t, 0))(w) dw +
1
x2
e−δ/xG(t, x),

where G(t, x) ∈ C([0, ε1]× [0, ε0]; Rm).
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The above lemma follows from Lemma 4.10, using the fact that f(t, 0) = A(t, 0).

Proposition 4.18. Let δ ∈ (0, ε2]. For A ∈ C0,2([0, ε1] × [0, δ]; Rm) and A0(t) ∈
C1([0, ε1]; Rm),

P̂ (t, A(t, ·), A0(t))(w) = dyP (t, 0, A(t, 0), A0(t))A′(t, w) + GA0(A)(t, w),

where GA0 : C0,2([0, ε1]× [0, ε2]; Rm)→ C0,2([0, ε1]× [0, ε2]; Rm) is a (2, G1, G2, G3)
operation6. The functions G1, G2, and G3 can be chosen to depend only on C0, m,
D,7 and upper bounds for ε2 and ‖A0‖C1 .

Proof. By linearity, it suffices to prove the result for P a monomial in y. I.e.,

P (t, x, y, z) = cα,j(t, x, z)yαej ,

for some j ∈ {1, . . . ,m}, α ∈ Nm with |α| ≤ D. In this case,

P̂ (t, A(t, ·), z)(w) =
∂|α|+1

∂w|α|+1
(bα,j(t, ·, z)∗̃ (∗̃αA(t, ·))) (w)ej . (4.11)

Using Corollary 4.5 and the fact that bα,j(t, 0, z) = cα,j(t, 0, z),

P̂ (t, A(t, ·), A0(t))(w)

=
m∑
l=1

αlbα,j(t, 0, A0(t))A(t, 0)α−elA′l(t, w)ej

+
∑
β≤α

|β|<|α|−1

(
α

β

)
bα,j(t, 0, A0(t))A(t, 0)β

(
∗̃α−βA′(t, ·)

)
(w)ej

+
∑
β≤α

(
α

β

)
A(t, 0)β

(
b′α,j(t, ·, A0(t))∗̃

(
∗̃α−βA′(t, ·)

))
(w)ej

(4.12)

Note that
m∑
l=1

αlbα,j(t, 0, A0(t))A(t, 0)α−elA′l(t, w)ej = dyP (t, 0, A(t, 0), A0(t))A′(t, w).

Thus, it remains to show the final two terms on the right hand side of (4.12) are
a (2, G1, G2, G3) operation. This follows from Lemmas 4.12, 4.13, 4.14, 4.15, and
4.16, completing the proof. �

Proposition 4.19. In addition to the other assumptions of this section, we assume
(2.3). Let δ ∈ (0, ε2] and let A,B ∈ C0,2([0, ε1]× [0, δ]; Rm). Set g(t, w) = A(t, w)−
B(t, w). Then

P̂ (t, A(t, ·), A(t, 0))(w)− P̂ (t, B(t, ·), B(t, 0))(w)

= dyP (t, 0, A(t, 0), A(t, 0))g′(t, w) + F (t, w),

where there exists a constant C with

|F (t, w)| ≤ C sup
0≤r≤w

|g(t, r)|, ∀t, w.

Here, C is allowed to depend on any of the ingredients in the proposition, including
A and B.

6See Definition 4.11 for the definition of a (2, G1, G2, G3) operation.
7See Section 2 for the definitions of these various constants.
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Proof. By linearity, it suffices to prove the result for P a monomial in y. I.e.,

P (t, x, y, z) = cα,j(t, x, z)yαej ,

for some j ∈ {1, . . . ,m} and α ∈ Nm with |α| ≤ D. In this case P̂ is given by
(4.11). Using Lemma 4.6,

P̂ (t, A(t, ·), A(t, 0))(w)− P̂ (t, B(t, ·), B(t, 0))

=
m∑
l=1

αl
∂|α|+1

∂w|α|+1

(
bα,j(t, ·, A(t, 0))∗̃gl(t, ·)∗̃

(
∗̃α−elA(t, ·)

))
(w)ej

+
∑
β≤α
|β|≥2

(−1)|β|+1

(
α

β

)
∂|α|+1

∂w|α|+1

(
b(t, ·, A(t, 0))∗̃

(
∗̃βg(t, ·)

)
∗̃
(
∗̃α−βA(t, ·)

))
(w)ej

+
∂|α|+1

∂w|α|+1
((bα,j(t, ·, A(t, 0))− bα,j(t, ·, B(t, 0))) ∗̃ (∗̃αB(t, ·))) (w)ej

=: (I) + (II) + (III).

We study the three terms on the right hand side of the above equation separately.
Applying (4.3) to each term of the sum in (I), with gl playing the role of aL, and
using the fact that bα,j(t, 0, z) = cα,j(t, 0, z),

(I) =
m∑
l=1

αlbα,j(t, 0, A(t, 0))A(t, 0)α−elg′l(t, 0)ej + F1(t, w)

= dyP (t, 0, A(t, 0), A(t, 0))g′(t, 0) + F1(t, w),

where |F1(t, w)| . sup0≤r≤w |g(t, r)|. Turning to (II), we note that in each term in
the sum defining (II), |β| ≥ 2, and so there are at least two coordinates (counting
repetitions) of g(t, ·) in the convolution. Applying (4.4) to each term of the sum,
with these two coordinates of g(t, ·) playing the roles of aL and aL−1, we see (II) =
F2(t, w) where |F2(t, w)| . sup0≤r≤w |g(t, r)|. Finally, for (III), we use that as t
varies over [0, ε1], A(t, 0) and B(t, 0) range over a compact subset of U . Applying
(4.4) with bα,j(t, ·, A(t, 0))−bα,j(t, ·, B(t, 0)) playing the role of aL, and using (2.3),
we see (III) = F3(t, w), where

|F3(t, w)| . sup
0≤r≤w

|bα,j(t, r, A(t, 0))− bα,j(t, r, B(t, 0))|

+ |b′α,j(t, w,A(t, 0))− b′α,j(t, w,B(t, 0))|
. |g(t, 0)| . sup

0≤r≤w
|g(t, r)|.

Summing the above three estimates completes the proof. �

5. Ordinary differential equations

In this section, we prove some auxiliary results concerning ODEs which are
needed in the remainder of the paper.

5.1. Chronological Calculus. Let m ∈ N and let J = [a, b] for some a < b. Let
M(t) : J →Mm×m be locally bounded and measurable.
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Definition 5.1. For t ∈ J , we define

←−exp
(∫ t

a

A(s) ds
)

= E(t),

to be the unique solution E : J →Mm×m to the differential equation

Ė(t) = A(t)E(t), E(a) = I,

where I denotes the m×m identity matrix.

For the rest of this section, fix ε0 > 0.

Proposition 5.2. Let M(t, x) ∈ C(J × [0, ε0]; Mm×m) be such that there exists
R(t) ∈ C1(J ; GLm) with R(t)M(t, 0)R(t)−1 = diag(λ1(t), . . . , λm(t)), with λj(t) >
0 for all t. Set λ0(t) = min1≤j≤m λj(t). Then, for all δ ∈ [0, 1), ∃x0 ∈ (0, ε0], for
all x ∈ (0, x0], for all t ∈ J ,∥∥←−exp

(
− 1
x

∫ t

a

M(s, x) ds
)∥∥ ≤ ‖R(t)−1‖ ‖R(a)‖ exp

(
− δ

x

∫ t

a

λ0(s) ds
)
.

To prove Proposition 5.2, we introduce the following lemma.

Lemma 5.3. Let M(t, x) ∈ C(J × [0, ε0]; Mm×m) and set 2λ0(t) to be the least
eigenvalue of M(t, 0)> +M(t, 0). We assume λ0(t) > 0, for all t ∈ J . Then, for
all δ ∈ [0, 1), there exists x0 ∈ (0, ε0], such that for all x ∈ (0, x0],∥∥←−exp

(
− 1
x

∫ t

a

M(s, x) ds
)∥∥ ≤ exp

(
− δ

x

∫ t

a

λ0(s) ds
)
.

Proof. Let N (t, x) =M(t, x)−M(t, 0) so that N (t, x) ∈ C(J × [0, ε0]; Mm×m) and
N (t, 0) = 0. Fix δ ∈ [0, 1) and take x0 ∈ (0, ε0] so small for all (t, x) ∈ J × [0, x0],
‖N (t, x)‖ ≤ infs∈J(1− δ)λ0(s).

Let θ0 ∈ Rm and set θ(t, x) :=←−exp
(
− 1

x

∫ t
a
M(s, x) ds

)
θ0. Then

∂

∂t
|θ(t, x)|2 = −

〈
θ(t, x),

( 1
x
M(t, x)> +

1
x
M(t, x)

)
θ(t, x)

〉
= − 1

x
〈θ(t, x),

(
M(t, 0)> +M(t, 0)

)
θ(t, x)〉

− 1
x
〈θ(t, x),

(
N (t, x)> +N (t, x)

)
θ(t, x)〉

≤ − 2
x
λ0(t)|θ(t, x)|2 +

2
x
‖N (t, x)‖|θ(t, x)|

≤ − 2
x
δλ0(t)|θ(t, x)|2.

By Grönwall’s inequality, we have

|θ(t, x)|2 ≤ |θ0|2 exp
(
− 2δ

x

∫ t

a

λ0(s) ds
)
.

Taking square roots yields the result. �

Proof of Proposition 5.2. Let Λ(t) = diag(λ1(t), . . . , λm(t)) = R(t)M(t, 0)R(t)−1.
For θ0 ∈ Rm, set θ(t, x) = ←−exp

(
− 1

x

∫ t
a
M(s, x) ds

)
θ0. Let γ(t, x) = R(t)θ(t, x). γ

satisfies
∂

∂t
γ(t, x) = − 1

x
R(t)M(t, x)R(t)−1γ(t, x) + Ṙ(t)R(t)−1γ(t, x)
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= − 1
x
M̃(t, x)γ(t, x),

where M̃(t, x) = Λ(t) +R(t) (M(t, x)−M(t, 0))R(t)−1 − xṘ(t)R(t)−1. In partic-
ular, note M(t, 0) = Λ(t). It follows that γ(t, x) =←−exp

(
− 1

xM̃(s, x) ds
)
γ(a, x).

Fix δ ∈ [0, 1). By Lemma 5.3, there exists x0 ∈ (0, ε0] (independent of θ0) such
that for x ∈ (0, x0],∥∥←−exp

(
− 1
x

∫ t

a

M̃(s, x) ds
)∥∥ ≤ exp

(
− δ

x

∫ t

a

λ0(s) ds
)
.

Hence, for x ∈ (0, x0],

|θ(t, x)| ≤ ‖R(t)−1‖ |γ(t, x)|

≤ ‖R(t)−1‖ exp
(
− δ

x

∫ t

a

λ0(s) ds
)
|γ(a, x)|

≤ ‖R(t)−1‖‖R(a)‖ exp
(
− δ

x

∫ t

a

λ0(s) ds
)
|θ0|.

The result follows. �

5.2. A basic existence result. Fix ε1, ε0 > 0 and let W ⊆ Rm be an open
neighborhood of 0 ∈ Rm. Suppose M(t, x, y) ∈ C([0, ε1] × [0, ε0] ×W ; Mm×m) be
such that for every compact set K bW ,

sup
t∈[0,ε1],x∈[0,ε0]
y1,y2∈K,y1 6=y2

‖M(t, x, y1)−M(t, x, y2)‖
|y1 − y2|

<∞.

Let G(t, x, y) ∈ C([0, ε1] × [0, ε0] × W ; Rm) be such that for every compact set
K bW ,

sup
t∈[0,ε1],x∈[0,ε0]
y1,y2∈K,y1 6=y2

|G(t, x, y1)−G(t, x, y2)|
|y1 − y2|

<∞.

Let g0 ∈ C([0, ε0]; Rm) have g0(0) = 0. The goal of this section is to study the
differential equation

∂

∂t
g(t, w) = − 1

x
M(t, x, g(t, x))g(t, x) +G(t, x, g(t, x)), x > 0 (5.1)

with the initial condition g(0, x) = g0(x). The main result is the following.

Proposition 5.4. Set M0(t) = M(t, 0, 0). We suppose that there exists R(t) ∈
C1([0, ε1]; GLm) such that

R(t)M0(t)R(t)−1 = diag(λ1(t), . . . , λm(t))

and λj(t) > 0, for all j, t. Then, there exists δ0 ∈ (0, ε0] and a function g(t, x) ∈
C([0, ε1]× [0, δ0];W ) such that g(0, x) = g0(x) for all x ∈ [0, δ0], g(t, 0) = 0 for all
t ∈ [0, ε1], and g satisfies (5.1).

To prove Proposition 5.4, we need two lemmas. As in Proposition 5.4, set
M0(t) = M(t, 0, 0). For these lemmas, instead of assuming the existence of R(t)
as in Proposition 5.4, we let 2λ0(t) be the least eigenvalue ofM0(t)>+M0(t) and
we assume λ0(t) > 0, for all t ∈ [0, ε1].
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Lemma 5.5. Under the the assumption λ0(t) > 0 for all t, the following holds.
For all ε > 0, there exists δ > 0 such that for all x0 ∈ (0, δ], there exists a unique
solution gx0(t) ∈ C1([0, ε1];Bm(ε) ∩W ) to the differential equation

∂

∂t
gx0(t) = − 1

x0
M(t, x0, g

x0(t))gx0(t) +G(t, x0, g
x0(t)), gx0(0) = g0(x0).

In the above, Bm(ε) = {y ∈ Rm : |y| < ε}.

Proof. Fix ε > 0. Set N (t, x, y) := M(t, x, y) − M0(t), so that N (t, 0, 0) = 0.
Fix r > 0 so small Bm(r) ⊂ W . Take γ > 0 so small that if x, |y| ≤ γ,
supt∈[0,ε1] ‖N (t, x, y)‖ ≤ 1

2 inft∈[0,ε1] λ0(t). Without loss of generality, we assume
ε < r ∧ γ. Let

C := sup
t∈[0,ε1],x∈[0,ε0]

|y|≤r

|G(t, x, y)| <∞.

Take δ ∈ (0, γ] so small that
ε

δ
inf

t∈[0,ε1]
λ0(t) > 2C, sup

x∈[0,δ]

|g0(x)| < ε.

Fix x0 ∈ (0, δ]. The Picard-Lindelöf theorem shows that the solution gx0(t) exists
and is unique for t in some interval [0, s], where s ∈ (0, ε1]. We will show that for
t ∈ [0, s], |gx0(t)| < ε. By iterating this process, it follows that we do not have blow
up in small time, and can take s = ε1.

Thus, we wish to show that for all t ∈ [0, s], |gx0(t)| < ε. Suppose, for con-
tradiction, there is t0 ∈ [0, s] with |gx0(t0)| ≥ ε. Take the least such t0. Since
|gx0(0)| = |g0(x0)| < ε, t0 > 0. Hence, |gx0(t0)| = ε and

∂

∂t

∣∣∣
t=t0
|gx0(t)|2 ≥ 0. (5.2)

But, for t ∈ [0, t0], |gx0(t)| ≤ ε < r ∧ γ, and therefore,
∂

∂t
|gx0(t)|2

= − 1
x0
〈gx0(t),

(
M0(t)> +M0(t)

)
gx0(t)〉

− 1
x0
〈gx0(t),

(
N (t, x0, g

x0(t))> +N (t, x0, g
x0(t))

)
gx0(t)〉

+ 2〈gx0(t), G(t, x0, g
x0(t))〉

≤ − 1
x0

2λ0(t)|gx0(t)|2 + 2
1
x0
‖N (t, x0, g

x0(t))‖|gx0(t)|2

+ 2|G(t, x0, g
x0(t)||gx0(t)|

≤ − 1
x0
λ0(t)|gx0(t)|2 + 2C|gx0(t)| ≤ −1

δ
λ0(t)|gx0(t)|2 + 2C|gx0(t)|.

Hence,
∂

∂t

∣∣
t=t0
|gx0(t)|2 ≤ −ε

2

δ
λ0(t0) + 2Cε < 0,

contradicting (5.2) and completing the proof. �

Lemma 5.6. Under the the assumption λ0(t) > 0 for all t, there exists δ0 ∈ (0, ε0]
and a function g(t, x) ∈ C([0, ε1] × [0, δ0];W ) such that g(0, x) = g0(x) for all
x ∈ [0, δ0], g(t, 0) = 0 for all t ∈ [0, ε1], and g satisfies (5.1).
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Proof. Let δ0 > 0 be the δ guaranteed by Lemma 5.5 with ε = 1. For x ∈ (0, δ],
set g(t, x) = gx(t), where gx(t) is the unique solution from Lemma 5.5. Standard
theorems from ODEs show g(t, x) : [0, ε1] × (0, δ0] → Rm is continuous. All that
remains to show is that g(t, x) extends to a continuous function at x = 0 by setting
g(t, 0) = 0. This follows immediately from Lemma 5.5. �

Proof of Proposition 5.4. Set

M̃(t, x, y) := −xṘ(t)R(t)−1 +R(t)M(t, x,R(t)−1y)R(t)−1,

and G̃(t, x, y) = R(t)G(t, x,R(t)−1y). Note that M̃(t, 0, 0) = diag(λ1(t), . . . , λm(t)).
Lemma 5.6 shows that there exists δ0 ∈ (0, ε0] and and a function h(t, x) ∈
C([0, ε1]× [0, δ0];W ) such that h(0, x) = R(0)g0(x) for all x ∈ [0, δ0], h(t, 0) = 0 for
all t ∈ [0, ε1], and h satisfies

∂

∂t
h(t, w) = − 1

x
M̃(t, x, h(t, x))h(t, x) + G̃(t, x, h(t, x)), x > 0.

Setting g(t, x) = R(t)−1h(t, x) gives the desired solution, and completes the proof.
�

6. Existence

In this section, we prove Theorems 2.2 and 2.4. The key result needed for these,
which is also useful for proving Theorem 2.6, is the next proposition. For it, we
take all the same notation and assumptions as in the beginning of Section 2. Thus,
we have m ∈ N, ε0, ε1, ε2 ∈ (0,∞), U ⊆ Rm open, D ∈ N, and bα,j , cα,j , C0, P ,
and P̂ as described in that section.

Proposition 6.1. Let A0(t) ∈ C2([0, ε1];U) and M(t) := −dyP (t, 0, A0(t), A0(t)).
Suppose there exists R(t) ∈ C1([0, ε1]; GLm) with R(t)M(t)R(t)−1 =
diag(λ1(t), . . . , λm(t)), where λj(t) > 0, for all t, j. Take c0, C1, C2, C3, C4 > 0
such that mint,j λj(t) ≥ c0 > 0, ‖R‖C1 ≤ C1, ‖R−1‖C1 ≤ C2, ‖M−1‖C1 ≤ C3,
‖A0‖C2 ≤ C4. Then, there exists δ = δ(m,D, c0, C0, C1, C2, C3, C4) > 0 and
A(t, w) ∈ C0,2([0, ε1]× [0, δ ∧ ε2]; Rm) such that

∂

∂t
A(t, w) = P̂ (t, A(t, ·), A(t, 0))(w), A(t, 0) = A0(t). (6.1)

Moreover, if we set

f(t, x) =

{
1
x

∫ δ∧ε2
0

e−w/xA(t, w) dw, if x > 0,
A0(t), if x = 0,

(6.2)

then f(t, x) ∈ C([0, ε1]× [0, ε0]; Rm) and there exists G̃(t, x) ∈ C([0, ε1]× [0, ε0]; Rm)
such that

∂

∂t
f(t, x) =

P (t, x, f(t, x), f(t, 0))− P (t, 0, f(t, 0), f(t, 0))
x

+
1
x2
e−(δ∧ε2)/xG̃(t, x),

f(t, 0) = A0(t).

(6.3)
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Finally, if δ1 ∈ [0, ε2 ∧ δ) and f̃(t, x) ∈ C([0, ε1]× [0, ε0]; Rm) satisfies

∂

∂t
f̃(t, x) =

P (t, x, f̃(t, x), f̃(t, 0))− P (t, 0, f̃(t, 0), f̃(t, 0))
x

+O(e−δ1/x),

f̃(t, 0) = A0(t),
(6.4)

then if λ0(t) = min1≤j≤m λj(t), we have that for all γ ∈ [0, 1),

f(t, x) = f̃(t, x) +O
(
e−δ1/x + e−

γ
x

R t
0 λ0(s) ds

)
.

In the above, the implicit constants in O are independent of (t, x) ∈ [0, ε1]× [0, ε0].

Without loss of generality, we may assume ε2 ≤ 1 in Proposition 6.1; and we
assume this for the rest of the section. The heart of Proposition 6.1 is an abstract
existence result, which we now present.

Proposition 6.2. Fix L ≥ 0. Suppose G : C0,L([0, ε1]×[0, ε2]; Rm)→ C0,L([0, ε1]×
[0, ε2]; Rm) is an (L,G1, G2, G3) operation (see Definition 4.11). Let M(t) ∈
C(L−1)∨0([0, ε1]; Mm×m) be such that there exists R(t) ∈ C1([0, ε1]; GLm) satis-
fying R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t)), where λj(t) > 0, for all j, t. Fix
A0 ∈ CL([0, ε1]; Rm) and take c0, C1, C2, C3, C4 > 0 such that mint,j λj(t) ≥ c0 > 0,
‖R‖C1 ≤ C1, ‖R−1‖C1 ≤ C2, ‖M−1‖C(L−1)∨0 ≤ C3, ‖A0‖CL ≤ C4. Then, there ex-
ists δ = δ(L,m,G1, G2, G3, c0, C1, C2, C3, C4) > 0 such that there exists a solution
A(t, w) ∈ C0,L([0, ε1]× [0, δ ∧ ε2]; Rm) to the equation

∂

∂t
A(t, w) = −M(t)

∂

∂w
A(t, w) + G(A)(t, w), A(t, 0) = A0(t). (6.5)

We prove Proposition 6.2 by induction on L. We begin with the inductive step,
which is contained in the next lemma.

Lemma 6.3. Let L ≥ 1, and G, A0, M, and C4 be as in Proposition 6.2. For
B(t, w) ∈ C0,L−1([0, ε1] × [0, δ]; Rm) let I(A0, B) = A0(t) +

∫ w
0
B(t, r) dr, and

set G̃A0(B)(t, w) := ∂
∂wG(I(A0, B))(t, w), and let B0(t) = M(t)−1

[
− Ȧ0(t) +

G0(A0)(t)
]
∈ CL−1([0, ε1]; Rm) (here G0 is as in Definition 4.11). Then, G̃A0 is

an (L − 1, G̃1, G̃2, G̃3) operation, where G̃1, G̃3, and G̃3 can be chosen to depend
only on G1, G2, G3, and C4. Furthermore, consider the differential equation

∂

∂t
B(t, w) = −M(t)

∂

∂w
B(t, w) + G̃A0(B)(t, w), B(t, 0) = B0(t). (6.6)

Then, solutions to (6.5) and (6.6) are in bijective correspondence in the following
sense:

(i) If A(t, w) ∈ C0,L([0, ε1] × [0, δ]; Rm) is a solution to (6.5), then B(t, w) =
A′(t, w) ∈ C0,L−1([0, ε1]× [0, δ]; Rm) is a solution to (6.6).

(ii) If B(t, w) ∈ C0,L−1([0, ε1] × [0, δ]; Rm) is a solution to (6.6), then A(t, w) =
I(A0, B)(t, w) ∈ C0,L([0, ε1]× [0, δ]; Rm) is a solution to (6.5).

Proof. That G̃A0 is an (L − 1, G1, G2, G3) operation follows immediately from the
definitions. Suppose A(t, w) ∈ C0,L([0, ε1] × [0, δ]; Rm) is a solution to (6.5) and
set B(t, w) = A′(t, w) ∈ C0,L−1([0, ε1] × [0, δ]; Rm). Putting w = 0 in (6.5) and
solving for B(t, 0) shows B(t, 0) = B0(t). Taking ∂

∂w of (6.5) and writing A(t, w) =
I(A0, B)(t, w) shows B satisfies ∂

∂tB(t, w) = −M(t) ∂
∂wB(t, w)+G̃A0(B)(t, w). This

proves (i).
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Suppose B(t, w) ∈ C0,L−1([0, ε1] × [0, δ]; Rm) is a solution to (6.6) and set
A(t, w) = I(A0, B)(t, w) ∈ C0,L([0, ε1] × [0, δ]; Rm). We wish to show (6.5) holds.
Clearly, A(t, 0) = A0(t). At w = 0, (6.5) is equivalent to Ȧ0(t) +M(t)B0(t) −
G0(A0)(t) = 0, and this follows from the choice of B0(t). Thus, (6.5) follows if:

∂

∂w

[
∂

∂t
A(t, w) +M(t)

∂

∂w
A(t, w)− G(A)(t, w)

]
= 0. (6.7)

But (6.7) is exactly (6.6), completing the proof. �

In light of Lemma 6.3, it suffices to prove Proposition 6.2 in the case L = 0. The
next lemma reduces this to the case when M(t) is diagonal and R(t) = I.

Lemma 6.4. Let L = 0, and G, A0, M, λ1, . . . , λm, and R be as in Proposi-
tion 6.2. For B ∈ C([0, ε1] × [0, ε2]; Rm), set G̃(B)(t, w) := Ṙ(t)R(t)−1B(t, w) +
R(t)G(R(·)−1B)(t, w). Then, G̃ is a (0, G̃1, G̃2, G̃3) operation, where G̃1, G̃2, and
G̃3 can be chosen to depend only on G1, G2, G3, C1, and C2. Set B0(t) :=
R(t)A0(t), and consider the differential equation

∂

∂t
B(t, w) = −diag(λ1(t), . . . , λm(t))

∂

∂w
B(t, w) + G̃(B)(t, w),

B(t, 0) = B0(t).
(6.8)

Then, solutions to (6.5) and (6.8) are in bijective correspondence in the sense that
A(t, w) satisfies (6.5) if and only if B(t, w) = R(t)A(t, w) satisfies (6.8).

The above lemma is immediate from the definitions.

Proof of Proposition 6.2. In light of Lemmas 6.3 and 6.4 it suffices to prove the
result when L = 0, M(t) = diag(λ1(t), . . . , λm(t)).
Write G(A)(t, w) = (G1(A)(t, w), . . . ,Gm(A)(t, w)), then (6.5) can be written as the
system of differential equations

∂

∂t
Aj(t, w) = −λj(t)

∂

∂w
Aj(t, w) + Gj(A)(t, w), A(t, 0) = A0(t). (6.9)

Here, A0(t) ∈ C([0, ε1]; Rm), and the goal is to find a solution A(t, w) ∈ C([0, ε1]×
[0, δ ∧ ε2]; Rm) to (6.9) for some δ > 0. The condition A(t, 0) = A0(t) does not
uniquely specify the solution to (6.9). We will prove the existence of a solution to
(6.9) that, in addition, satisfies A(0, w) = A0(0).

Let δ > 0, to be chosen later, and set δ0 = δ ∧ ε2. We consider (t, w) in
[0, ε1] × [0, δ0]. For each j ∈ {1, . . . ,m}, let Vj := ∂

∂t + λj(t) ∂
∂w . For u ≥ 0, let

φj,u(v) :=
∫ u+v

u
λj(r) dr and define

ψj,u(r) :=

{
φ−1
j,u(r), if

∫ ε1
u
λj(s) ds ≥ r,

ε1, if
∫ ε1
u
λj(s) ds ≤ r.

Vj foliates [0, ε1]× [0, δ0] into integral curves. We parameterize these integral curves
by u ∈ [−δ0, ε1]: when u ≤ 0 we use the integral curve starting at (0,−u) and when
u ≥ 0 we use the integral curve starting at (u, 0).

More precisely, set

U jε1,δ0 :=
{

(u, v) : u ∈ [−δ0, ε1], and if u ≤ 0 then v ∈ [0, ψj,0(δ0 + u)],

and if u ≥ 0 then v ∈ [0, ψj,u(δ0)]
}
.
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Note that for (u, v) ∈ U jε1,δ0 , v ≤ δ0/c0 ≤ δ/c0. Define Hj : U jε1,δ0 → [0, ε1]× [0, δ0]
by

Hj(u, v) :=

{
(v,−u+

∫ v
0
λj(r) dr), if u ≤ 0,

(u+ v,
∫ u+v

u
λj(r) dr), if u ≥ 0.

Then, for each u ∈ [−δ0, ε1], Hj(u, ·) parameterizes and integral curve of Vj : when
u ≤ 0, it parameterizes the curve starting at (0,−u) and when u ≥ 0, it param-
eterizes the curve starting at (u, 0). As such, Hj : U jε1,δ0 → [0, ε1] × [0, δ0] is a
homeomorphism.

Define L0 ∈ C([−δ0, ε1]; Rm) by L0(u) = A0(u) for u ≥ 0 and L0(u) = A0(0)
for u ≤ 0. We consider L = (L1, . . . , Lm) with Lj(u, v) ∈ C(U jε1,δ0). We related L

and A by the correspondence Lj(u, v) = Aj ◦Hj(u, v). We consider the system of
differential equations

∂

∂v
Lj(u, v) = Gj(L1 ◦H−1

1 , . . . , Lm ◦H−1
m )(Hj(u, v)), Lj(u, 0) = L0,j(u), (6.10)

where L0 = (L0,1, . . . , L0,m). Note that if L satisfies (6.10), then A satisfies (6.9)
and has A(0, w) = A0(0). Thus, we complete the proof by finding δ > 0 such
that there is a solution to (6.10). To do this, we utilize the contraction mapping
principle.

For M > 0, let

FM,ε1,δ0 := {L = (L1, . . . , Lj) : Lj ∈ C(U jε1,δ0), ‖Lj‖C0 ≤M},

and we give FM,ε1,δ0 the metric ρ(L, L̃) = max1≤j≤m ‖Lj− L̃j‖C0 , making FM,ε1,δ0

into a complete metric space.
For L ∈ FM,ε1,δ0 , define T (L) = (T1(L), . . . , Tm(L)), where Tj(L) ∈ C(U jε1,δ0) is

defined by

Tj(L)(u, v) := L0,j(u) +
∫ v

0

Gj(L1 ◦H−1
1 , . . . , Lm ◦H−1

m )(Hj(u, v′)) dv′.

We wish to pick M and δ so that T : FM,ε1,δ0 → FM,ε1,δ0 is a strict contraction.
First, we pick M and δ so that T : FM,ε1,δ0 → FM,ε1,δ0 . Indeed, we have

|Tj(L)(u, v)| ≤ ‖A0‖C0 +
∫ v

0

G1(
√
mM) dr

= ‖A0‖C0 + vG1(
√
mM) ≤ C4 +

δ

c0
G1(
√
mM),

where in the last step we have used v ≤ δ
c0

, as noted earlier. Set M = 2C4, then if
δ ≤ c0C4G1(

√
mM)−1, we have T : FM,ε1,δ0 → FM,ε1,δ0 .

We now wish to show that if we make δ sufficiently small, T is a strict contraction.
Consider, for L, L̃ ∈ FM,ε1,δ0 we have

|Tj(L)(u, v)− Tj(L̃)(u, v)| ≤
∫ v

0

G2(
√
mM)ρ(L, L̃) dr ≤ δ

c0
G2(
√
mM)ρ(L, L̃),

where we have again used v ≤ δ
c0

. Thus, ρ(T (L), T (L̃)) ≤ δ
c0
G2(
√
mM)ρ(L, L̃).

Thus, if δ =
(

1
2c0G2(

√
mM)−1

)
∧
(
c0C4G1(

√
mM)−1

)
, T : FM,ε1,δ0 → FM,ε1,δ0 is

a strict contraction.



EJDE-2017/227 DIFFERENTIAL EQUATIONS WITH A DIFFERENCE QUOTIENT 31

The contraction mapping principle applies to show that there is a fixed point
L ∈ FM,ε1,δ with T (L) = L. This L is the desired solution to (6.10), which
completes the proof. �

Proof of Proposition 6.1. We begin with the existence of δ > 0 and A(t, w) ∈
C0,2([0, ε1] × [0, δ ∧ ε2]; Rm) satisfying (6.1). Proposition 4.18 shows that (6.1)
is of the form covered by the case L = 2 of Proposition 6.2. Thus, the existence of
δ and A follow from Proposition 6.2.

Let f be given by (6.2), so that for x > 0,

∂

∂t
f(t, x) =

1
x

∫ δ∧ε2

0

e−w/xP̂ (t, A(t, ·), A(t, 0)) dw.

From here, (6.3) follows from Lemma 4.17.
Finally, suppose f̃ is as in the statement of the proposition, and set g(t, x) =

f(t, x) − f̃(t, x). Since f(t, 0) = f̃(t, 0) = A0(t), combining (6.3) with (6.4) shows
that there exists a bounded function Ĝ(t, x) : [0, ε1] × (0, ε0] → Rm such that for
x ∈ (0, ε0],

∂

∂t
g(t, x) =

P (t, x, f(t, x), A0(t))− P (t, x, f̃(t, x), A0(t))
x

+ e−δ1/xĜ(t, x)

= − 1
x
M(t, x) + e−δ1/xĜ(t, x),

(6.11)

where M(t, x) = −
∫ 1

0
dyP (t, x, sf(t, x) + (1 − s)f̃(t, x), A0(t)) ds. In particular,

note that M(t, 0) =M(t), since f(t, 0) = f̃(t, 0) = A0(t). Solving (6.11) we have

g(t, x) =←−exp
(
− 1
x

∫ t

0

M(s, x) ds
)
g(0, x)

+ e−δ1/x
∫ t

0

←−exp
(
− 1
x

∫ t

s

M(r, x) dr
)
Ĝ(s, x) ds

Applying Proposition 5.2, we have for all γ ∈ [0, 1),

|g(t, x)| . e−
γ
x

R t
0 λ0(s) ds|g(0, x)|+ e−δ1/x

∫ t

0

e−
γ
x

R t
s
λ0(r) dr ds

= O
(
e−δ1/x + e−

γ
x

R t
0 λ0(s) ds

)
,

completing the proof. �

Proof of Theorem 2.2. Let f̃(t, x) ∈ C([0, ε1] × [0, ε0]; Rm) be the function f(t, x)
from Proposition 6.1. Thus, f̃ satisfies (6.3) for some function G̃(t, x) ∈ C([0, ε1]×
[0, ε0]; Rm).

For some δ0 > 0, we will construct f(t, x) ∈ C([0, ε1] × [0, δ0]; Rm) as in the
statement of the theorem. We do this by considering f(t, x) of the form f(t, x) =
f̃(t, x) + g(t, x), where g(t, x) ∈ C([0, ε1]× [0, δ0]; Rm). Notice that f(t, x) satisfies
the conclusions of the theorem if g(t, x) satisfies the following:

• g(t, 0) = 0, for all t ∈ [0, ε1] (so that f(t, 0) = f̂(t, 0) = A0(t)).
• g(0, x) = g0(x), where g0(x) = f0(x) − f̃(0, x) ∈ C([0, ε0]; Rm). Since
f0(0) = A0(0) = f̃(0, 0), we have g0(0) = 0.
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•
∂

∂t
g(t, x) =

P (t, x, f̃(t, x) + g(t, x), A0(t))− P (t, x, f̃(t, x), A0(t))
x

+G1(t, x, g(t, x)),
(6.12)

where G1(t, x, g(t, x)) = G(t, x, f̃(t, x)+g(t, x), A0(t))− 1
x2 e
−(δ∧ε2)/xG̃(t, x)

and δ is as in Proposition 6.1.
Set

M̃(t, x, z) := −
∫ 1

0

(dyP )(t, x, f̃(t, x) + sz,A0(t)) ds,

so that

M̃(t, x, z)z = P (t, x, f̃(t, x), A0(t))− P (t, x, f̃(t, x) + z,A0(t)).

Using this, (6.12) can be re-written as
∂

∂t
g(t, x) = − 1

x
M̃(t, x, g(t, x))g(t, x) +G1(t, x, g(t, x)).

Also note note that M̃(t, 0, 0) =M(t), whereM(t) is as in the statement of the the-
orem. From here, the existence of g(t, x) follows from Proposition 5.4, completing
the proof. �

Proof of Theorem 2.4. The representation (2.2) follows by applying Proposition 6.1
with f playing the role f̃ , and δ0 playing the role of ε0. The uniqueness of the
representation follows from Corollary 8.4. �

7. Uniqueness

The purpose of this section is to prove Theorems 2.5, 2.6, Proposition 2.8, and
Theorem 2.10. The main remaining ingredient needed is an abstract uniqueness
result, which we present first.

7.1. An abstract uniqueness result.

Proposition 7.1. Let m ≥ 1, ε1, ε2 > 0. LetM(t) ∈ C([0, ε1]; Mm×m) be such that
there exists R(t) ∈ C1([0, ε1]; GLm) with R(t)M(t)R(t)−1 = diag(λ1(t), . . . , λm(t))
where each λj(t) > 0, for all t ∈ [0, ε1]. Suppose g(t, w) ∈ C([0, ε1] × [0, ε2]; Rm)
satisfies the differential equation

∂

∂t
g(t, w) =M(t)

∂

∂w
g(t, w) + F (t, w), g(0, w) = 0,∀w,

where F (t, w) satisfies |F (t, w)| ≤ C sup0≤r≤w |g(t, r)|.
Set γ0(t) := max1≤j≤m

∫ t
0
λj(s) ds, and

δ0 :=

{
γ−1

0 (ε2), if γ0(ε1) ≥ ε2,
ε1, otherwise.

Then g(t, 0) = 0 for 0 ≤ t ≤ δ0.

Proof. We begin by showing that it suffices to prove the result in the case when
M(t) = diag(λ1(t), . . . , λm(t)). Indeed, if g(t, w) is as above and h(t, w) = R(t)g(t, w),
then h(t, w) satisfies
∂

∂t
h(t, w) = diag(λ1(t), . . . , λm(t))

∂

∂w
h(t, w) +R(t)F (t, w) + Ṙ(t)R(t)−1h(t, w),
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h(0, w) = 0,∀w.

Thus, if we have the result for h, the result for g follows.
For the rest of the proof, we assume M(t) = diag(λ1(t), . . . , λm(t)). Write

g(t, w) = (g1(t, w), . . . , gm(t, w)) and F (t, w) = (F1(t, w), . . . , Fm(t, w)). Thus we
are interested in the system of equations

∂

∂t
gj(t, w) = λj(t)

∂

∂w
gj(t, w) + Fj(t, w), gj(0, w) = 0, (7.1)

under the hypothesis |Fj(t, w)| ≤ C sup0≤r≤w |g(t, r)|. For each j ∈ {1, . . . ,m}, set
γj(t) =

∫ t
0
λj(s) ds, and let Yj = ∂

∂t − λj(t)
∂
∂w . Let Hj(u, v) =

(
v, u−

∫ v
0
λj(s) ds

)
(we will be more precise about the domain of Hj in a moment). Note that Hj is
invertible with H−1

j (v, r) =
(
r +

∫ v
0
λj(s) ds, v

)
. Finally set

δj :=

{
γ−1
j (ε2), if γj(ε1) ≥ ε2,
ε1, otherwise.

For 0 ≤ j ≤ m, set Wj := {(t, w) : 0 ≤ t ≤ δj , 0 ≤ w ≤ ε2−γj(t)}, and note that
for j ∈ {1, . . . ,m}, W0 ⊆ Wj . Furthermore, for j ∈ {1, . . . ,m}, Yj foliates Wj into
the integral curves of Yj . Indeed, for u ∈ [0, ε2], define

rj(u) :=

{
γ−1
j (u), if γj(ε1) ≥ u,
ε1, otherwise.

Note that rj(ε2) = δj . As v ranges from 0 to rj(u), Hj(u, v) parameterizes the
integral curve of Yj in Wj which starts at (0, u). Let Uj := {(u, v) : u ∈ [0, ε2], v ∈
[0, rj(u)]}. By the above discussion, Hj : Uj → Wj is a homeomorphism. Set
Vj := H−1

j (W0) ⊆ Uj .
For v ∈ [0, δ0], we define

E(v) := sup{|g(v, w)| : (v, w) ∈W0} = sup{|g(v, w)| : w ∈ [0, ε2 − γ0(v)]}.
Clearly E(0) = 0, since g(0, w) = 0. We will show E(v) = 0 for v ∈ [0, δ0], which
will complete the proof.

We claim that if (u, v) ∈ Vj , then for all v′ ∈ [0, v], (u, v′) ∈ Vj . Indeed, note
that

(u, v) ∈ Vj ⇔ v ∈ [0, δ0] and 0 ≤ u−
∫ v

0

λj(s) ds ≤ ε2 −max
k

∫ v

0

λk(s) ds.

So if (u, v) ∈ Vj and v′ ∈ [0, v], then clearly v′ ∈ [0, δ0] and adding
∫ v
v′
λj(s) ds to

the above equation, we see

0 ≤
∫ v

v′
λj(s) ds ≤ u−

∫ v′

0

λj(s) ds

≤ ε2 −max
k

∫ v

0

λk(s) ds+
∫ v

v′
λj(s) ds ≤ ε2 −max

k

∫ v′

0

λk(s) ds.

Thus, (u, v′) ∈ Vj , proving the claim.
Set lj(u, v) = gj ◦Hj(u, v). Then (7.1) shows that

∂

∂v
lj(u, v) = Fj ◦Hj(u, v), lj(u, 0) = gj(0, u) = 0.

Hence, lj(u, v) =
∫ v

0
Fj ◦Hj(u, v′) dv′.
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For (u, v) ∈ Vj , Hj(u, v) ∈W0 and therefore u−
∫ v

0
λj(s) ds ≤ ε2−γ0(v). Hence,

for (u, v) ∈ Vj ,
|Fj ◦Hj(u, v)| . sup

0≤r≤u−
R v
0 λj(s) ds

|g(v, r)| ≤ sup
0≤r≤ε2−γ0(v)

|g(v, r)| = E(v).

Thus, for (u, v) ∈ Vj , if v′ ∈ [0, v] we have (u, v′) ∈ Vj and therefore |Fj◦Hj(u, v′)| .
E(v′). We conclude, for (u, v) ∈ Vj ,

|lj(u, v)| =
∣∣ ∫ v

0

Fj ◦Hj(u, v′) dv′
∣∣ . ∫ v

0

E(v′) dv′.

Therefore, for v ∈ [0, δ0],

sup{|gj(v, w)| : (v, w) ∈W0} = sup{|lj(u, v)| : (u, v) ∈ Vj} .
∫ v

0

E(v′) dv′,

and so E(v) .
∫ v

0
E(v′) dv′. Grönwall’s inequality implies E(v) = 0 for v ∈ [0, δ0],

completing the proof. �

7.2. Completion of proofs.

Proof of Theorem 2.6. Set f̃(t, x) = f(ε1 − t, x), Ã0(t) = f(ε1 − t, 0) = f̃(t, 0),
P̃ (t, x, y, z) = −P (ε1 − t, x, y, z). f̃ satisfies, for all γ ∈ [0, ε2),

∂

∂t
f̃(t, x) =

P̃ (t, x, f̃(t, x), f̃(t, 0))− P̃ (t, 0, f̃(t, 0), f̃(t, 0))
x

+O(e−γ/x),

f̃(t, 0) = Ã0(t).

By the hypotheses of the theorem, P̃ and Ã0 satisfy all the hypotheses of P and A0

in Proposition 6.1. Here, λ̃j(t) = λj(ε1− t) plays the role of λj in that proposition.
Thus, let δ be as in Proposition 6.1 and Ã ∈ C0,2([0, ε1] × [0, δ]; Rm) be A from
Proposition 6.1 when applied to P̃ and Ã0. Proposition 6.1 shows that for all
γ ∈ [0, 1), if λ̃0(t) = min1≤j≤m λ̃j(t),

1
x

∫ δ∧ε2

0

e−w/xÃ(t, w) dw = f̃(t, x) +O
(
e−γ(ε2∧δ)/x + e−

γ
x

R t
0 λ̃0(s) ds

)
. (7.2)

Define A(t, x) := Ã(ε1 − t, x). Replacing t with ε1 − t in (7.2) and using that Ã
satisfies (6.1) (with P and A0 replaced by P̃ and Ã0), (2.4) and (2.5) follow. Finally,
the stated uniqueness of (2.5) follows from Corollary 8.4. �

Proof of Proposition 2.8. Let g(t, w) = A(t, w) − B(t, w). (2.6) combined with
Proposition 4.19 shows

∂

∂t
g(t, w) =M(t)

∂

∂w
g(t, w) + F (t, w), g(0, w) = 0,

where |F (t, w)| . sup0≤r≤w |g(t, r)|. M(t) and g(t, w) satisfy all the hypotheses of
Theorem 7.1 (with ε2 replaced by δ′), and the result follows from Theorem 7.1. �

Proof of Theorem 2.10. Applying Theorem 2.6 to f1 and f2 we see that there exists
δ = δ(m,D, c0, C0, C1, C2, C3, C4) > 0 and A1, A2 ∈ C0,2([0, ε1] × [0, δ ∧ ε2]; Rm)
such that for k = 1, 2, ∂

∂tAk(t, w) = P̂ (t, Ak(t, ·), Ak(t, 0))(w), Ak(t, 0) = fk(t, 0),
and for all γ ∈ [0, 1),

fk(0, x) =
1
x

∫ δ∧ε2

0

e−w/xAk(0, w) dw +O
(
e−γ(δ∧ε2)/x + e−

γ
x

R ε1
0 λk0 (s) ds

)
.
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The uniqueness of this representation as described in Theorem 2.6, combined with
(2.7), shows that A1(0, w) = A2(0, w) for w ∈ [0, δ′ ∧ r].

From here, Proposition 2.8 shows that A1(t, 0) = A2(t, 0) for t ∈ [0, δ0]. Since
Ak(t, 0) = fk(t, 0), the result follows. �

Proof of Theorem 2.5. This follows from the reconstruction procedure discussed in
Remark 2.9. �

8. Appendix: Laplace transform

The purpose of this section is to discuss the following Paley-Wiener type theorem
for the Laplace transform, which is presented in [22].

Theorem 8.1 ([22, Theorem A.2.2]). Fix ε > 0 and suppose f, g ∈ L1([0, ε]) and
for some s ∈ [0, ε],∫ ε

0

e−λtf(t) dy =
∫ ε

0

e−λtg(t) dy +O(e−sλ), as λ ↑ ∞.

Then f ≡ g on [0, s).

In this section, we offer a discussion of this result, along with two proofs. The
first is closely related to the proof in [22], though may be somewhat simpler. This
first proof uses complex analysis. The second proof uses only real analysis and is
more constructive.

Lemma 8.2. Fix ε > 0 and suppose a ∈ L1([0, ε]). For each λ ≥ 1, let F (λ) :=∫ ε
0
e−λta(t) dt. Suppose |F (λ)| = O(e−ελ) as λ ↑ ∞. Then, a = 0.

Proof. For λ ∈ C, set G(λ) =
∫ ε

0
e(ε−t)λa(t) dt = eελF (λ). We have:

(a) G is entire.
(b) supλ∈R |G(iλ)| <∞.
(c) supλ∈[0,∞) |G(λ)| <∞ (this is a restatement of the fact that |F (λ)| = O(e−ελ)).
(d) supλ∈(−∞,0] |G(λ)| <∞.
(e) |G(λ)| ≤ Ceε|λ|, for all λ ∈ C.

Item (e) shows that we may apply the Phragmén-Lindelöf principle in sectors of
angle less than π. (b), (c), and (d) show |G(λ)| is bounded on each coordinate axis,
and so the Phragmén-Lindelöf principle shows that G is bounded in each quadrant.
We conclude that G is a bounded entire function and therefore Liouville’s theorem
implies that G is constant. Since limλ→−∞G(λ) = 0, we see that G(λ) = 0 for
all λ. Thus, 0 = F (λ) =

∫ ε
0
e−tλa(t) dt for all λ. Standard theorems now show

a = 0. �

Proof of Theorem 8.1. This follows immediately from Lemma 8.2. �

In this paper, we use Theorem 8.1 and Lemma 8.2 via the next corollary.

Corollary 8.3. Suppose a ∈ C([0, ε]) satisfies |λ
∫ ε

0
e−tλa(t) dt| = O(e−ελ), as

λ ↑ ∞. Then, a = 0.

The above corollary follows immediately from Lemma 8.2.
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Corollary 8.4. Let ε, ε′ > 0 and suppose a, b ∈ C([0, ε′]) satisfy

1
x

∫ ε′

0

e−w/xa(w) dw =
1
x

∫ ε′

0

e−w/xb(w) dw +O(e−ε/x) as x ↓ 0.

Then, a(w) = b(w) for w ∈ [0, ε ∧ ε′].

The above corollary follows from Corollary 8.3 by setting λ = 1
x .

It is interesting to note that Lemma 8.2 (and therefore Theorem 8.1) can be
easily proved without complex analysis, and we present this next. Thus, all of the
results in this paper can be proved without complex analysis. First, we note that
Corollary 8.3 actually implies Lemma 8.2.

Proof of Lemma 8.2 given Corollary 8.3. Suppose that a ∈ L1([0, ε]) and that∫ ε
0
e−λta(t) dt = O(e−ελ); we wish to show a = 0. Integration by parts shows

e−λε
∫ ε

0

a(s) ds+ λ

∫ ε

0

e−λt
∫ t

0

a(s) ds dt =
∫ ε

0

e−λta(t) dt = O(e−ελ).

Thus λ
∫ ε

0
e−λt

∫ t
0
a(s) ds dt = O(e−ελ), and Corollary 8.3 shows

∫ t
0
a(s) ds = 0, for

all t. Thus, a = 0, as desired. �

Hence, to prove Lemma 8.2 using only real analysis, it suffices to prove Corollary
8.3 using only real analysis, to which we now turn.

Proposition 8.5. Fix ε > 0, and let a ∈ C([0, ε]). Suppose

sup
n∈N

∣∣n∫ ε

0

enta(t) dt
∣∣ <∞.

Then, a = 0.

Remark 8.6. Two remarks are in order:
• If

∫ ε
0
enta(t) dt = 0, for all n ∈ N, then the classical Weierstrass approxima-

tion easily yields that a = 0. It therefore makes sense to consider Theorem
8.5 a “quantitative Weierstrass approximation theorem.”
• By replacing a(t) with a(ε− t), Theorem 8.5 implies Corollary 8.3.

Lemma 8.7. Fix ε > 0, and let a ∈ C([0, ε]). Suppose

sup
n∈N

∣∣n∫ ε

0

enta(t) dt
∣∣ <∞.

Then, a(0) = 0.

Proof of Theorem 8.5 given Lemma 8.7.
Let δ ∈ [0, ε), and set C = supn∈N |n

∫ ε
0
enta(t) dt|. Then, we have∣∣n∫ ε

δ

enta(t) dt
∣∣ ≤ ∣∣n∫ ε

0

enta(t) dt
∣∣+
∣∣n∫ δ

0

enta(t) dt
∣∣

≤ C +
(

sup
t∈[0,δ]

|a(t)|
)
n

∫ δ

0

ent dt ≤ Denδ,

for some constant D which does not depend on n. Multiplying both sides of the
above inequality by e−nδ and applying the change of variables s = t− δ, we have∣∣n ∫ ε−δ

0

ensa(s+ δ) ds
∣∣ ≤ D, ∀n ∈ N.
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Lemma 8.7 now implies a(δ) = 0. As δ ∈ [0, ε) was arbitrary, this completes the
proof. �

We close this appendix with a proof of Lemma 8.7. Fix ε > 0. For j,N ∈ N,
define

Aj :=
∫ ∞

1

yj−1e−y dy, Ij,N :=
∫ eεN

1

yj−1e−y dy,

so that Aj ≤ Aj+1 and limN→∞ Ij,N = Aj . Set

fj,N (t) :=
N

Ij,N
eNjte−e

Nt

.

Lemma 8.8. fj,N has the following properties.
•
∫ ε

0
fj,N (t) dt = 1.

• For j fixed, limN→∞ fj,N (x) = 0 uniformly on compact subsets of (0, ε].
• For a ∈ C([0, ε]), limN→∞

∫ ε
0
fj,N (t)a(t) dt = a(0).

Proof. The last property follows from the first two. The second property is imme-
diate from the definitions. We prove the first property. Applying the change of
variables y = eNt, we have∫ ε

0

fj,N (t) dt =
1
Ij,N

∫ eεN

0

yj−1e−y dy = 1.

�

Proof of Lemma 8.7. Let a be as in the statement of the lemma, and set C :=
supn∈N |n

∫ ε
0
enta(t) dt| <∞. Using Lemma 8.8, we have

|a(0)| = lim
N→∞

∣∣ ∫ ε

0

fj,N (t)a(t) dt
∣∣ ≤ lim inf

N→∞

N

Ij,N

∞∑
k=0

∣∣ ∫ ε

0

eNjt
(−eNt)k

k!
a(t) dt

∣∣
≤ lim inf

N→∞

N

Ij,N

∞∑
k=0

C

N(k + j)(k!)
=

1
Aj

∞∑
k=0

C

(k + j)(k!)
.

Taking the limit of the above equation as j → ∞ shows a(0) = 0, completing the
proof. �

9. Appendix: Pseudodifferential operators and the Calderón
problem

The results in this paper can serve as a model case for a more difficult (and still
open) problem involving pseudodifferential operators, which arises in the famous
Calderón problem.

Let N be a smooth manifold of dimension n ≥ 2, and let ΨDOs denote the
space of standard pseudodifferential operators on N of order s ∈ R. We use x to
denote points in N . For T ∈ ΨDOs, let σ(T ) denote the principal symbol of T .
Let t 7→ Γ(t) be a smooth map [0, ε1] → ΨDO1 such that Γ(t) is elliptic for all t,
and such that

σ(Γ(t))(x, ξ) =
(
|g(x, t)|

∑
α,β

gα,β(x, t)ξαξβ
)1/2

,

where gα,β(·, t) is a Riemannian metric on N for each t ∈ [0, ε1], |g(x, t)| denotes
detgα,β(x, t), and ξ denotes the frequency variable. In what follows, we suppress the
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dependance on x. By taking principal symbols, the function Γ(t) 7→ |g(t)|gα,β(t)
is well defined. Also, det(|g|gα,β) = |g|n−1, so (since n ≥ 2), Γ(t) 7→ |g(t)| is
well-defined. We conclude that Γ(t) 7→ gα,β(t) is well defined.

Let ∆g(t) denote the Laplace-Beltrami operator associated to g(t) (with the
convention that ∆g(t) is a negative operator). We consider the following, well-
known, differential equation:

∂

∂t
Γ(t) = |g(t)|1/2

(
|g(t)|−1/2Γ(t)

)2

−
(
− |g(t)|1/2∆g(t)

)
. (9.1)

Since g(t) is a function of Γ(t), (9.1) can be considered as a differential equation
involving only Γ(t).

Conjecture 9.1. If N is compact and without boundary, the differential equation
(9.1) has uniqueness. I.e., if Γ1(t) and Γ2(t) are as above and both satisfy (9.1)
and Γ1(0) = Γ2(0), then Γ1(t) = Γ2(t), for all t.

Note that the left hand side of (9.1) is in ΨDO1, while the right hand side is a
difference of two elements of ΨDO2, but this is possible since the principal symbols
of the two terms on the right hand side cancel. This makes this equation similar to
the ones studied in this paper, as we discuss next.

Remark 9.2. Other than this cancelation, as far as the methods in this paper
are concerned, there seems to be nothing particularly special about the form of
(9.1) and one could state many other versions of Conjecture 9.1 using different
polynomials. We will see in Section 9.2, and as is well-known, (9.1) arises naturally
in the Calderón problem. Thus, if one replaces (9.1) with a more general polynomial
differential equation, one creates a class of conjectures which “generalize” part of
the Calderón problem. These generalizations move beyond the setting where any
ingredient in the problem is linear.

9.1. Translation invariant operators. When N = Rn, n ≥ 2, if one replaces
composition of pseudodifferential operators with multiplication of their symbols,
then (9.1) is of the form covered by our main theorems. Another way of saying this
is that if the operators were all assumed to be translation invariant on Rn, then the
equation (9.1) is of the form covered by our main theorems–and we describe this
next. Thus, Conjecture 9.1 can be viewed as a noncommutative analog of Theorem
2.5.

Let Γ(t) be as described in the previous section, satisfying (9.1) and assume that
Γ(t) is translation invariant. Thus, g(t) does not depend on x and Γ(t) is given by
a multiplier:

Γ̂(t)f(ξ) = M(t, ξ)f̂(ξ),

and M satisfies the differential equation

∂

∂t
M(t, ξ) = |g(t)|−1/2M(t, ξ)2 − |g(t)|1/2

∑
α,β

gα,β(t)ξαξβ , (9.2)

and satisfies

M(t, ξ) =
(
|g(t)|

∑
α,β

gα,β(t)ξαξβ
)1/2

+O(1), as |ξ| → ∞.
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For 1 ≤ α ≤ n, let eα denote the αth standard basis element. For a positive
definite quadratic form

B(ξ) = |g̃|
∑
α,β

g̃α,βξαξβ ,

where g̃ is a positive definite matrix, associate to B the vector v indexed by 1 ≤
α ≤ β ≤ n with vα,β =

√
B(eα + eβ). Note that v = (vα,β) uniquely determines g̃,

and therefore B, and the function F(v) := |g̃|−1/2 is well-defined and smooth (here
we have used n ≥ 2 and argued as in the previous section).

For 1 ≤ α ≤ β ≤ n and x ≥ 0, we define

fα,β(t, x) :=

{
xM

(
t, 1
x (eα + eβ)

)
if x > 0,√

|g(t)| (gα,α(t) + 2gα,β(t) + gβ,β(t)) if x = 0.

Rewriting (9.2) in terms of fα,β we see fα,β satisfies the system of differential
equations

∂

∂t
fα,β(t, x) =

|g(t)|−1/2fα,β(t, x)2 − |g(t)|−1/2fα,β(t, 0)2

x

=
F(f(t, 0))fα,β(t, x)2 −F(f(t, 0))fα,β(t, 0)2

x
.

(9.3)

Note that, by the assumption that g(t) is positive definite, fα,β(t, 0) > 0, for all t.
It follows that (9.3) is of the form covered by Theorem 2.5, where we have used the
polynomial P = (Pα,β), where

Pα,β(t, x, y, z) = F(z)y2
α,β .

Thus, under the restriction that Γ(t) is translation invariant, Conjecture 9.1 follows
from Theorem 2.5.

Remark 9.3. It is not difficult to simplify the above equation using Liouville trans-
formations to reduce the problem to considering, for instance, the case P (t, x, y, z) =
y2. However, the generality of our approach lets us avoid such reductions.

9.2. Calderón problem. In this section, we describe how (9.1) arises in the
Calderón problem–which is well-known to experts. Let M be a smooth, compact
Riemannian manifold with boundary of dimension n + 1 ≥ 3. Let G denote the
metric on M . The Dirichet-to-Neumann map ΛG : C∞(∂M) → C∞(∂M) is de-
fined as follows. Given f ∈ C∞(∂M), let u ∈ C∞(M) be the unique solution to
∆Gu = 0 on M , u

∣∣
∂M

= f . ΛG is then defined as ΛGf = ∂
∂ν f

∣∣
∂M

, where ν denotes
the outward unit normal to ∂M . The inverse problem is to construct G given ΛG.
There is one obvious obstruction: if Ψ : M → M is a diffeomorphism which fixes
∂M , then ΛG = ΛΨ∗G (where Ψ∗G denotes the pull back of G via Ψ).8 Calderón’s
problem then asks if this is the only obstruction.

Anisotropic Calderón Conjecture: Suppose ΛG1 = ΛG2 . Then there is a dif-
feomorphism Ψ : M →M , which fixes the boundary, such that G1 = Ψ∗G2.

The above conjecture remains open, and has attracted a great deal of attention.
It began with work of Calderón [6]. When M ⊂ Rn+1 and in the so-called isotropic
setting: Gi,j(x) = c(x)δi,j , the problem is well understood [9, 12, 14, 13, 23, 24, 25,
21, 19, 10, 1].

8This obstruction was noted by Luc Tartar.
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Moving to the general (anisotropic) setting, much less is known. In the real
analytic category, the result is known in the affirmative [16, 17, 15]. In the smooth
category, little progress has been made on the full anisotropic question. In a big step
forward, recent work of Dos Santos Ferreira, Kenig, Salo, and Uhlmann [7, 11] have
given some of the first results in this setting. However, they still require a special
form of the metric G, and even then do not answer the full Calderón question.

Remark 9.4. When n+ 1 = 2, the problem takes a slightly different form, and is
very well understood [20, 27, 26, 5, 2, 3]. Because of this, our main interest is the
case n+ 1 ≥ 3.

Following [16], we use boundary normal coordinates on a neighborhood of ∂M .
This sees a neighborhood of ∂M in the form ∂M×[0, ε). We use coordinates (x, t) ∈
∂M × [0, ε). M has dimension n + 1 and ∂M has dimension n. In what follows,
α, β range over the numbers 1, . . . , n while i, j index the numbers 1, . . . , n + 1. In
boundary normal coordinates, Gi,j satisfies Gn+1,n+1 = 1, Gn+1,β = 0, Gα,n+1 = 0.
Let gα,β(x, t) = Gα,β(x, t); in particular, gα,β(x, t) is an n× n matrix and satisfies
det gα,β(x, t) = detGi,j(x, t).

For each t0 ∈ [0, ε), we shrink the manifold M but cutting off the part of the
manifold [0, t0)×∂M (in boundary normal coordinates), yielding a new Riemannian
manifold Mt0 . Let Gt0 denote the metric on Mt0 (given by restricting G to Mt0).
For each t0 ∈ [0, ε), we think of g(x, t0) as a metric on ∂M ∼= ∂Mt0 (where we
identify ∂M with ∂Mt0 in the obvious way). We sometimes suppress the variable
x and write g(t0) to denote the metric, which depends smoothly on t0.

For each t0 we define the map Γ(t0) : C∞(∂M)→ C∞(∂M) as follows. Let ut0
solve ∆Gt0

ut0 = 0 in Mt0 with ut0
∣∣
∂Mt0

= f (here we are again identifying ∂Mt0

with ∂M in the obvious way). Then define

Γ(t0)f(x) := −|g(x, t)|1/2 ∂
∂t

∣∣
t=t0

ut0(t, x). (9.4)

Note that Γ(0) = |g(0)|1/2ΛG. Because it is well-known that ΛG uniquely deter-
mines G on ∂M , the Calderón problem can be equivalently stated with ΛG replaced
by Γ(0).

We have

∆G = ∆g(t) + |g(x, t)|−1/2 ∂

∂t
|g(x, t)|1/2 ∂

∂t
.

Differentiating (9.4) with respect to t, using the above formula for ∆G, and using
∆Gt0

ut0 = 0, we see that Γ(t) satisfies the differential equation (9.1).
Hence, if Conjecture 9.1 were true, it would follow that Γ(0) uniquely determines

g(t). I.e., that ΛG uniquely determines G on a neighborhood of the boundary in
boundary normal coordinates.

Remark 9.5. In the real analytic category, differential equations always have
uniqueness, and the above argument shows that, for a real analytic manifold, ΛG
uniquely determines G on a neighborhood of the boundary, in boundary normal
coordinates. This is equivalent to the first step of [16], where the same ideas are
used to determine the Taylor series of g in the t-variable, centered at t = 0.

9.3. Acknowledgments. This research was partially supported by NSF DMS-
1401671.
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