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Abstract. This article concerns an approximate solution for the Benjamin-
Bona-Mahony (BBM) equation with a bilinear control in slowly varying medium.

By a sharp estimation of the error term, a suitable approximate solution for

this equation is established.

1. Introduction

In this article, we consider the following BBM equation with internal bilinear
control in slowly varying medium

(1− λ∂2
x)∂tu+ ∂x(∂2

xu− u+mεu
2) = f(t, x), (t, x) ∈ R× R (1.1)

where u = u(t, x) is a real-valued function, λ ∈ (0, 1) is a constant, and the interior
control f is given by the bilinear control (or feedback law) f(t, x) = n(t, x)u(t, x)
with n(t, ·) ∈ C3(R) ∩ L2(R) ∩ L∞(R). Concerning slowly varying medium mε =
m(εx), we always assume that there exist positive constants k and γ such that

1 < m(s) < 2, m′(s) > 0, ∀s ∈ R
0 < m(s)− 1 < keγs, ∀s ≤ 0

0 < 2−m(s) < ke−γs, ∀s > 0.

(1.2)

Clearly, it is inferred from (1.2) that lims→−∞m(s) = 1 and lims→+∞m(s) = 2.
Let us briefly review some results concerning the related control problems and

stability of solitons for the BBM, KdV and gKdV equations. The BBM equation
model [3] was proposed by Benjamin, Bona and Mahony. Ko and Kuehl [10] con-
sidered the approximate solution of the soliton for the variable coefficient KdV
equation under given initial conditions, and obtained the unavoidable loss of the
solitary wave energy in the propagation process. Bona, Pritchard and Scott [4]
introduced solitary wave interaction in the dispersion medium numerically. Albert
[1, 2] investigated the global existence, the long time behavior and the decay of
solutions about the gBBM equation. Weinstein [27] studied the existence and dy-
namics stability of solitary wave. Weinstein [17] also obtained asymptotic stability

2010 Mathematics Subject Classification. 35Q53, 35B40.
Key words and phrases. Approximate solution; BBM equation; bilinear control;

slowly varying medium.
c©2017 Texas State University.

Submitted December 11, 2016. Published September 19, 2017.

1



2 W. CHEN, L. TIAN, G. XU, P. YANG EJDE-2017/224

of regularized long wave equations. Russell and Zhang [23, 24] studied control-
lability and stabilizability of the third-order linear dispersion equation and KdV
equation, and showed smoothing and decay properties of the KdV equation on a
periodic domain [25]. The asymptotic stability of the soliton solution of the BBM
equation in H1 space is studied in [18]. Dejak and Jonsson [5] considered the long-
time dynamics of the variable coefficient modified KdV solitary waves. In the same
year, Dejak and Sigal [6] studied the KdV solitary waves over a variable bottom
similarly. Martel [11] researched asymptotic N-solitons-like solutions of the sub-
critical and critical gKdV equations. Martel and Merle has been making a great
contribution for the BBM, KdV and gKdV equations. They proved that the soliton
solution near Qc of gKdV equation with a general nonlinearity is asymptotically
stable in H1 space [12]. They also studied the inelastic interaction of nearly equal
solitons for the BBM and gKdV equations in [13, 14]. They estimated the error
term between the approximate solution and the exact solution. They also gave
descriptions of the inelastic collision of two solitary waves for the BBM and quartic
gKdV equations [15, 16], and estimated some non-zero residual items accurately.
Muñoz explored soliton dynamics and the existence and global properties under
slowly varying medium for the gKdV equation, and proved that there is no pure
soliton solution [19]. On this basis, he introduced inelastic character of solitons of
slowly varying gKdV equations in [20], and dealt with approximate controllability
of the gKdV solitons with bilinear control in [21, 22]. Holmer introduced dynamics
of the KdV solitons in the presence of a slowly varying potential, and obtained an
explicit description of the trajectory of the soliton parameters of scale and position
on the dynamically relevant time scale, together with an estimate on the error [8].

Unlike the previous study, in this paper, we focus on a bilinear control problem
for a given BBM soliton in slowly varying medium. The main difficulties to our
problem are the suitable construction and the decomposition of an approximate
solution. An essential step of the proof is the error term between the approximate
solution and exact solution can be controlled under O(ε3/2e−γε|ρ(t)|) during an
interval of time [0, T ]. Finally, we introduce a cut-off function ζ ∈ C∞(R) and
redefine the new approximate solution K̃ = ζε(y)K(t, x) to solve the problem of
K /∈ L2(R).

The rest of this paper is organized as follows. In Section 2, we introduce the
soliton solution of the BBM equation and the associated control system. In Section
3, we construct an approximate solution and prove that the error term can be
raised to O(ε2) by analyzing the first order term. In Section 4, we introduce a
cut-off function ζ ∈ C∞(R) in order to resolve the case of K /∈ L2(R).

2. Preliminaries

We consider the equation

(1− λ∂2
x)ut + (uxx − u+mεu

2)x = nu, (2.1)

which has solitary wave solutions:

u(t, x) = Qc(x− ct), (2.2)

and

Qc(x) = (1 + c)Q
(√ 1 + c

1 + λc
x
)
, (2.3)

where the parameter c > 0 describes the wave speed of the soliton.
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Differentiating (2.3) with respect to x gives

(
Qc(x)

)′
x

=
(1 + c)3/2

(1 + λc)1/2
Q′(ξ), ξ =

√
1 + c

1 + λc
x. (2.4)

Differentiating (2.3) with respect to c leads to

∧Qc(x) =
(
Qc(x)

)′
c

=
1

1 + c

(
Qc(x) +

1− λ
2(1 + λc)

x
(
Qc(x)

)′
x

)
. (2.5)

By (2.3), we have

Q(x) =
1

1 + c
Qc

(√1 + λc

1 + c
x
)
, (2.6)

with

Q(x) =
3
2

cosh−2(
x

2
) which satisfies Q′′ +Q2 = Q, (2.7)

and
(1 + λc)Q′′c +Q2

c = (1 + c)Qc. (2.8)

We now introduce the control n(t, x) = −εn′0(x)Qc(t)(x− ρ(t)). For any ε > 0
small enough, we define

α := −4
3

∫
R
Q3∫

R
Q2

> 0, (2.9)

n∞ := − 1
α

log c. (2.10)

We choose a smooth function n0 satisfying

n0 ∈ C3(R) ∩ L∞(R),

|n0(x)| ≤ keγ0x, for x ≤ −1,

|n∞ − n0(x)| ≤ ke−γ0x, for x ≥ 1,

|n(p)
0 (x)| ≤ ke−γ0|x|, x ∈ R, p = 1, 2, 3,

n′0(x) > 0 if n∞ > 0; n′0(x) < 0 if n∞ < 0.

(2.11)

for a fixed positive constant γ0. Note that with this choice, it holds ‖n0‖∞ = |n∞|.

3. Approximate solution

In the aforementioned context, we consider the function Vc(t)(εt, x) ∈ L∞(R)
satisfying the following hypothesis :

(H1) V ′c(t)(εt, x) ∈ L2(R), ∂cVc(t)(εt, x) ∈ L∞(R)
(H2) For all t ∈ R, there exist positive constants k and γ satisfying

‖Vc(t)(εt, x)‖L∞(R) ≤ ke−γε|ρ(t)|.

Equation (1.1) remains invariant under space and time translations at the H1-level,
usually called mass conservation and energy conservation:

M(u(t)) =
∫
R

(
1
2
u2 − λu2

x)(t, x)dx = M(u(0)), (3.1)
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and

E(u(t)) =
1
2

∫
R

(1− λ∂2
x)
(
(ux)2 + u2

)
(t, x)dx− 1

3

∫
R

(1− λ∂2
x)u3(t, x)dx

= E(u(0)).
(3.2)

We introduce the time of interaction for any given ε > 0 and δ0 > 0 small
enough:

T := min{T0, ε
−1−δ0}, (3.3)

where T0 > 0 is the maximal time of existence for the solution u(t).
Let

y := x− ρ(t), R(t, x) :=
Qc(t)(y)
m(ερ(t))

, (3.4)

with

ρ(t) =
∫ t

0

c(εs)ds, ∂tρ(t) = c(εt).

Define K(t, x) as the approximate solution of equation (2.1):

K(t, x) := R(t, x) +W (t, x), W (t, x) := εn′0(ερ(t))Vc(t)(εt, y), (3.5)

where Vc(t) satisfies the hypothesis (H1)-(H2).
Then we can reduce the error by introducing K(t, x) defined in (3.5). Set

S[K](t, x) := (1− λ∂2
x)Kt + (Kxx −K +mεK

2)x + εn′0(εx)Qc(t)(y)K, (3.6)

with mε = m(εx).

Theorem 3.1. There exists a function Vc(t) ∈ L∞(R) such that K(t, x) defined by
(3.5) satisfies

S[K](t, x) = (1− λ∂2
x)
(
c′∂cK − c∂yK

)
+ S0[K](t, x) (3.7)

for some n ∈ R, and

‖S0[K](t, x)‖H1(y>− 2
ε ) ≤ ε3/2e−γε|ρ(t)| + ε3 (3.8)

and∣∣∫
R

(1− λ∂2
x)Qc(t)(y)S0[K](t, x)dx

∣∣+
∣∣∫

R
(1− λ∂2

x)yQc(t)(y)S0[K](t, x)dx
∣∣

≤ ε2e−εγ|ρ(t)| + ε3.

(3.9)

Following the strategy in [21], from (3.6) we obtain

S[K] = I + II + III, (3.10)

where I = S[R](t, x),

II = (1− λ∂2
x)Wt + (Wxx −W + 2mεRW )x + εn′0(εx)Qc(t)(y)W,

and III = (mεW
2)x, where

R(t, x) =
Qc(t)(y)
m(ερ(t))

, y = x− ρ(t).

For proving Theorem 3.1, we discuss I, II and III, separately.
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Lemma 3.2. we have
I = εA1(t, y) + ε2A2(t, y),

where

A1(t, y) =
c′

m(ερ)
(1− λ∂2

x) ∧Qc(t)(y)− m′(ερ)c
m2(ερ)

(1− λ∂2
x)Qc(t)(y)

+
m′(ερ)
m2(ερ)

(
yQ2

c(t)(y)
)
x

+
n′0(ερ)
m(ερ)

Q2
c(t)(y)

(3.11)

and

A2(t, y) =
m′′(ερ)
2m2(ερ)

(
y2Q2

c(t)(y)
)
x

+
n′′0(ερ)
m(ερ)

yQ2
c(t)(y) (3.12)

for all t ∈ [0, T ], and A2(t) satisfies ‖A2(t)‖H1(R) ≤ e−εγ|ρ(t)| + ε.

Proof. We have

I = (1− λ∂2
x)Rt + (Rxx −R+mεR

2)x + εn′0(εx)Qc(t)R

= (1− λ∂2
x)

(∧Qcc′ε−Q′cc)m(ερ)−Qcm′(ερ)εc
m2(ερ)

+
1

m(ερ)
Q′′′c

− 1
m(ερ)

Q′c +
1

m2(ερ)
(m(εx)Q2

c)x +
1

m(ερ)
εn′0(εx)Q2

c .

By the Taylor expansion, we obtain

(m(εx)Q2
c)x = (m(ερ(t))Q2

c)x + εm′(ερ(t))(yQ2
c)x

+
1
2
ε2m′′(ερ(t))(y2Q2

c)x +OH1(R)(ε3)

and
n′0(εx)Q2

c = n′0(ερ(t))Q2
c + εn′′0(ερ(t))yQ2

c +OH1(R)(ε2),
which implies

I = (1− λ∂2
x)

(∧Qcc′ε−Q′cc)m(ερ)−Qcm′(ερ)εc
m2(ερ)

+
1

m2(ερ)
[
(m(ερ)Q2

c)x + εm′(ερ)(yQ2
c)x +

1
2
ε2m′′(ερ)(y2Q2

c)x
]

+
Q′′′c
m(ερ)

− Q′c
m(ερ)

+
1

m(ερ)
ε
(
n′0(ερ)Q2

c + εn′′0(ερ)yQ2
c

)
+OH1(R)(ε3).

Then, using (1 + λc)Q′′c +Q2
c = (1 + c)Qc, we obtain

I =
1

m(ερ)
[Q2

c − (1 + c)Qc + (1 + λc)Q′′c ]x

+ ε
[ c′

m(ερ)
(1− λ∂2

x) ∧Qc −
m′(ερ)c
m2(ερ)

(1− λ∂2
x)Qc +

m′(ερ)
m2(ερ)

(yQ2
c)x

+
n′0(ερ)
m(ερ)

Q2
c

]
+ ε2

[ m′′(ερ)
2m2(ερ)

(y2Q2
c)x +

n′′0(ερ)
m(ερ)

yQ2
c

]
+OH1(R)(ε3)

= ε
[ c′

m(ερ)
(1− λ∂2

x) ∧Qc −
m′(ερ)c
m2(ερ)

(1− λ∂2
x)Qc +

m′(ερ)
m2(ερ)

(yQ2
c)x

+
n′0(ερ)
m(ερ)

Q2
c

]
+ ε2

[ m′′(ερ)
2m2(ερ)

(y2Q2
c)x +

n′′0(ερ)
m(ερ)

yQ2
c

]
+OH1(R)(ε3).
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From equation (3.12), we have

A2(t, y) ∈ S(R), ‖A2(t, y)‖H1(R) ≤ e−εγ|ρ(t)| + ε.

This completes the proof. �

We now consider a linear elliptic operator L, for any fixed c > 0. Let

LB = −(1 + λc)B′′ + (1 + c)B − 2QcB, (3.13)

where

Qc(x) = (1 + c)Q
(√ 1 + c

1 + λc
x
)
. (3.14)

Lemma 3.3. Assume that Vc satisfies the hypothesis (H1)-(H2). Then

II = (1− λ∂2
x)(c′∂cW − c∂yW )− (LW )y

+ ε2
[
(1− λ∂2

x)
(
n′′0(ερ)cVc + n′0(ερ)c′∂cVc

)]
+ ε2A3(t, y),

where

A3(t, y) = (1− λ∂2
x)n′0(ερ)∂tVc +

2m′(ερ)
m(ερ)

(yQcn′0(ερ)Vc)x

+OH1(R)(e−εγ|ρ(t)|).

Proof. Let Bc(t, y) = W be a smooth function with y = x− ρ(t), then by using

II(B) = (1− λ∂2
x)Bt + (Bxx −B + 2mεRB)x + εn′0(εx)Qc(t)B

we obtain

II(B) = (1− λ∂2
x)[c′∂cB +Bt − (ρ′ − c)By]

+
[
Byy − (1− λ∂2

x)cB −B + 2Qc(t)B +
2m′(ερ)
m(ερ)

εyQc(t)B]x

+O(εn′0(εx)Qc(t)B)

= (1− λ∂2
x)(c′∂cB +Bt) + [(1 + λc)Bxx − (1 + c)B + 2Qc(t)B]x

+
2m′(ερ)
m(ερ)

ε(yQc(t)B)x +OH1(R)

(
ε2e−εγ|ρ(t)|

)
.

Applying the identity W (t, x) = εn′0(ερ(t))Vc(t)(εt, y) defined in (3.5), we have

∂cW = εn′0(ερ(t))∂cVc,

Wt = ε
[
εn′′0(ερ(t))ρ′(t)Vc + n′0(ερ(t))

(
c′ε∂cVc + ε∂tVc − c∂yVc

)]
,

and

II(W ) = (1− λ∂2
x)(c′∂cW +Wt)− (LW )′ +

2m′(ερ)
m(ερ)

ε(yQc(t)W )x

+OH1(R)(ε2e−εγ|ρ(t)|)

= ε2
[
(1− λ∂2

x)(n′′0(ερ)ρ′Vc + n′0(ερ)c′∂cVc + n′0(ερ)∂tVc)

+
2m′(ερ)
m(ερ)

(yQcn′0(ερ)Vc)x
]

+ εn′0(ερ)(1− λ∂2
x)(c′∂cVc − c∂yVc)

− εn′0(ερ)(LVc)y +OH1(R)(ε2e−εγ|ρ(t)|)

= (1− λ∂2
x)(c′∂cW − c∂yW )− (LW )y + ε2

[
(1− λ∂2

x)
(
n′′0(ερ)cVc
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+ n′0(ερ)c′∂cVc
)]

+ ε2
[
(1− λ∂2

x)n′0(ερ)∂tVc +
2m′(ερ)
m(ερ)

(yQcn′0(ερ)Vc)x

+OH1(R)(e−εγ|ρ(t)|)
]
.

This completes the proof. �

Lemma 3.4. For any t ∈ [0, T ],

III = OH1(R)(ε2e−εγ|ρ(t)|).

Proof. Recall that III := (mεW
2)x. Then we obtain

III = ε2
(
n′0(ερ)

)2(m(εx)V 2
c )x = ε2(n′0(ερ))2

[
εm′(εx)V 2

c +m(εx)(V 2
c )
′]
.

Since Vc satisfies the hypothesis (H1)-(H2), (V 2
c )′ ∈ S(R) holds. By taking the

space derivative, we can see the desired result. �

Proof of Theorem 3.1. According to the estimates from Lemmas 3.2, 3.3 and 3.4,
we obtain

S[K] = (1− λ∂2
x)(c′∂cK − c∂yK) + S0[K], (3.15)

where

S0[K] = ε[A1(t, y)− n′0(ερ)(LVc)y]

+ ε2
[
(1− λ∂2

x)(n′′0(ερ)cVc + n′0(ερ)c′∂cVc + n′0(ερ)∂tVc)
]

+ ε2
[ m′′(ερ)
2m2(ερ)

(y2Q2
c)x +

n′′0(ερ)
m(ερ)

yQ2
c +

2m′(ερ)
m(ερ)

(yQcn′0(ερ)Vc)x
]

+ ε2OH1(R)(e−εγ|ρ(t)| + ε).

(3.16)

The next step is the resolution of the linear differential equation about the first
order term in ε. From (3.16), we want to solve

n′0(ερ(t))(LVc)y = A1(t, y). (3.17)

Obviously, accuracy of the error term can be raised to O(ε2) now. It is not
difficult to check that, for all y ∈ R and t fixed, A1 satisfies the regularity conditions:∫

R
A1(t, y)Qc(y)dy = 0. (3.18)

Lemma 3.5. The operator L defined on L2(R) by (3.13) satisfies
(1) The kernel of L is Q′c, that is LQ′c = 0.
(2) For any f = f(y) ∈ L2(R) which satisfies

∫
R fQ

′
c(y)dy = 0, and there

exists a unique function f0 such that
∫

R f0Q
′
c(y)dy = 0 and Lf0 = f .

Furthermore, if f is odd, then f0 is odd.

Set c > 0 and define

ψ(x) := −Q
′(x)
Q(x)

, ψc(x) := −Q
′
c(x)

Qc(x)
=

√
1 + c

1 + λc
ψ(

√
1 + c

1 + λc
x). (3.19)

A direct computation yields

lim
x→−∞

ψ(x) = −1, lim
x→+∞

ψ(x) = 1. (3.20)
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Lemma 3.6. There exists a unique solution Vc = Vc(t)(t, y) satisfying

n′0(ερ)(LVc)y = A1(t, y)

such that, for every t,

Vc(t, y) := αc(t)
(
ψc(y)−

√
1 + c

1 + λc

)
+ βc(t)Q′c(y) + V1(t, y) + σc(t), (3.21)

and

lim
y→−∞

Vc(t, y) = −2

√
1 + c

1 + λc
αc(t); |Vc(y)| ≤ ke−γy, as y → +∞, (3.22)

with V1(y) ∈ S(R) for all t, αc(t), βc(t) and σc(t) ∈ R. Moreover, we have

αc(t) :=
1

2n′0(ερ(t))

√
1 + λc

1 + c

∫
R
A1(t, y)dy 6= 0. (3.23)

Proof. The proof of this lemma is divided into three steps.
Step 1. The first step is to prove the existence of n′0(ερ(t))(LVc)y = A1(t, y),
where Vc was established in [19]. For equation (3.21), we have

LVc(y) = αc(t)L
(
ψc(y)−

√
1 + c

1 + λc

)
+ βc(t)LQ′c(y) + LV1(y) + Lσc(t).

So

LV1(y) = H(y)− αc(t)L
(
ψc(y)−

√
1 + c

1 + λc

)
− θc(t),

with

H(y) =
1

n′0(ερ)

∫
R
A1(t, y)dy, θc(t) = Lσc(t).

Without lose of generality, we assume

θc(t) = 2αc(t)

√
1 + c

1 + λc
.

The solvability of equation (3.17) is equivalent to∫
R
LV1(y)Q′c(y)dy

=
∫

R

[
H(y)− αcL

(
ψc(y)−

√
1 + c

1 + λc

)
− 2αc

√
1 + c

1 + λc

]
Q′c(y)dy

=
∫

R

[
H(y)− αc

(
L
(
ψc(y)−

√
1 + c

1 + λc

)
+ 2

√
1 + c

1 + λc

)]
Q′c(y)dy

=
∫

R
H(y)Q′c(y)dy = −

∫
R
Qc(y)dH

= − 1
n′0(ερ)

∫
R
Qc(y)A1(y)dy = 0.

Since LQ′c(y) = 0 and
∫

R LV1(y)Q′c(y)dy = 0, according to Lemma 3.5, there exists
a function V1(y) satisfying

∫
R V1(y)Q′c(y)dy = 0. Note that

lim
y→−∞

[
H(y)− αc

(
L
(
ψc(y)−

√
1 + c

1 + λc

)
+ 2

√
1 + c

1 + λc

)]
= 0
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and

lim
y→+∞

[
H(y)− αc

(
L
(
ψc(y)−

√
1 + c

1 + λc

)
+ 2

√
1 + c

1 + λc

)]
=

1
n′0(ερ)

∫
R
A1(y)dy − 2αc

√
1 + c

1 + λc
= 0,

So we have V1(y) ∈ S(R) and

αc =
1

2n′0(ερ)

√
1 + λc

1 + c

∫
R
A1(t, y)dy.

Step 2. In this step we show that

αc =

∫
R Qc(y)dy
2n′0(ερ)

√
1 + λc

1 + c

[ 1 + 2λc+ λ

2(1 + λc)(1 + c)
c′

m(ερ)
− m′(ερ)c

m(ερ)

+
n′0(ερ)(1 + c)

m(ερ)

]
.

From equation (3.11), one has

A1(t, y) =
c′

m(ερ)
(1− λ∂2

x) ∧Qc(y)− m′(ερ)c
m2(ερ)

(1− λ∂2
x)Qc(y)

+
m′(ερ)
m2(ερ)

(yQ2
c(y))x +

n′0(ερ)
m(ερ)

Q2
c(y).

Next we consider the following four integrals:∫
R

(1− λ∂2
x) ∧Qc(y)dy,

∫
R

(1− λ∂2
x)Qc(y)dy,

∫
R

(yQ2
c(y))xdy,

∫
R
Q2
c(y)dy.

Note that∫
R

(1− λ∂2
x) ∧Qc(y)dy

=
1

1 + c

∫
R

(1− λ∂2
x)
(
Qc(y) +

1− λ
2(1 + λc)

yQ′c(y)
)
dy

=
1

1 + c
[
∫

R

(
Qc(y)− λQ′′c (y)

)
dy +

∫
R

( 1− λ
2(1 + λc)

yQ′c(y)− λ(1− λ)
2(1 + λc)

(yQ′c(y))′′
)
dy]

=
1

1 + c

[ ∫
R
Qc(y)dy − 1− λ

2(1 + λc)

∫
R
Qc(y)dy

− λ(1− λ)
2(1 + λc)

∫
R

(yQ′c(y))′′dy
]

=
[ 1
1 + c

− 1− λ
2(1 + λc)(1 + c)

] ∫
R
Qc(y)dy,

∫
R

(1− λ∂2
x)Qc(y)dy =

∫
R
Qc(y)dy − λ

∫
R
Q′′c (y)dy =

∫
R
Qc(y)dy,∫

R
(yQ2

c(y))x dy = 0.

According to

r

∫
R
Qrc(y)dy =

2r + 1
3(1 + c)

∫
R
Qr+1
c (y)dy,
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when r = 1 one has ∫
R
Q2
c(y)dy = (1 + c)

∫
R
Qc(y)dy.

So we can get

αc =

∫
R Qc(y)dy
2n′0(ερ)

√
1 + λc

1 + c

[ 1 + 2λc+ λ

2(1 + λc)(1 + c)
c′

m(ερ)
− m′(ερ)c

m(ερ)
+
n′0(ερ)(1 + c)

m(ερ)

]
.

Step 3. From step 1, we have

θc(t) = 2αc(t)

√
1 + c

1 + λc
.

By computing θc(t) = 2αc(t)
√

1+c
1+λc , we can easily assert that Vc is exponential

decay as y → +∞, that is limy→+∞ Vc = 0. This completes the proof of the
lemma. �

We use a method similarly to the one in [21]. According to (3.22), we obtain
the estimation (3.8). In addition, from Lemma 3.6, we see that Vc satisfies the
hypothesis (H1)-(H2). From (3.16) we arrive at (3.9). All these complete the proof
of Theorem 3.1. �

4. Solution for K ∈ L2(R)

The following method is similar to those introduced in [19, 21, 22]. Since K /∈
L2(R), we introduce a cut-off function ζ ∈ C∞(R) satisfying the following properties

ζ(y) ≡

{
0 for y ≤ −1,
1 for y ≥ 1,

0 ≤ ζ(y) ≤ 1, 0 ≤ ζ ′(y) ≤ 1 for y ∈ R.
(4.1)

Similarly, for R(t, x) and W (t, x) constructed in equation (3.5), we define a new
approximate solution K̃:

K̃ := ζε(y)K(t, x) = ζε(y)(R(t, x) +W (t, x)), (4.2)

where
ζε(y) := ζ(εy + 2). (4.3)

Theorem 4.1. For all 0 < ε < τ , there exist positive constants τ and k such that:
(1)

K̃ = 0 for y ≤ −3
ε
,

K̃ = K(t, x) for y ≥ −1
ε
.

(4.4)

For any t in a given interval, W (t, x) ∈ H1(R) satisfies

‖W (t, x)‖H1(R) ≤ kε1/2e−γε|ρ(t)|. (4.5)

(2) The error term associated to the new solution K̃ satisfies

S[K̃] = (1− λ∂2
x)[c′(∂cK̃ +OH1(R)(εn′0))

− c
(
∂yK̃ +OH1(R)(εn′0)

)
] + S0[K̃],

(4.6)
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where
‖S0[K̃]‖H1(R) ≤ kε3/2e−γε|ρ(t)|. (4.7)

Proof. (1) It follows from (4.5) that

‖ζε(y)W (t, x)‖H1(R) ≤ k‖W (t, x)‖H1(y≥− 3
ε ).

From (H1)-(H2), we have

‖εn′0(ερ(t))Vc(t)(y)‖H1(y≥− 3
ε ) ≤ kε1/2e−γε|ρ(t)|.

(2) We make a simple calculation as follows

S[K̃] = S[ζε(y)K] = S[ζε(y)(R+W )]

= ζεS[K] + (ζε)t(1− λ∂2
x)K + 2εζε′Kxx + 3ε2ζε′′Kx + ε3ζε

′′′K.

and

2εζε′Kxx + 3ε2ζε′′Kx + ε3ζε
′′′K = OH1(R)(ε3/2e−γε|ρ(t)|) +OH1(R)(ε30).

Similarity, we have

(ζε)t(1− λ∂2
x)K = OH1(R)(ε3/2e−γε|ρ(t)|) +OH1(R)(ε30),

so we obtain

S[ζε(y)K] = ζεS[K] +OH1(R)(ε3/2e−γε|ρ(t)|) +OH1(R)(ε30).

Finally, from (H1)-(H2), and (3.5) and (3.7), we have

‖ζεS0[K]‖H1(R) ≤ kε3/2e−γε|ρ(t)| + ε3,

ζε(1− λ∂2
x)(c′∂cK − c∂yK)

= (1− λ∂2
x)c′∂c(ζεK)− (1− λ∂2

x)c∂y(ζεK)− ε(1− λ∂2
x)cζε′K.

Note that
ε(1− λ∂2

x)ζε′K = OH1(R)(ε3/2e−γε|ρ(t)|).
Consequently, we obtain the desired results. �
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[19] C. Muñoz; On the soliton dynamics under slowly varying medium for generalized Korteweg-de
Vries equations, Anal. Partial Differential Equations, 4 (2011), 573-638.
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