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EXPLICIT LIMIT CYCLES OF A FAMILY OF POLYNOMIAL
DIFFERENTIAL SYSTEMS

RACHID BOUKOUCHA

Abstract. We consider the family of polynomial differential systems

x′ = x+ (αy − βx)(ax2 − bxy + ay2)n,

y′ = y − (βy + αx)(ax2 − bxy + ay2)n,

where a, b, α, β are real constants and n is positive integer. We prove that these

systems are Liouville integrable. Moreover, we determine sufficient conditions
for the existence of an explicit algebraic or non-algebraic limit cycle. Examples

exhibiting the applicability of our result are introduced.

1. Introduction

An important problem in the qualitative theory of differential equations [9, 13,
20] is to determine the limit cycles of systems of the form

x′ =
dx

dt
= P (x, y) and y′ =

dy

dt
= Q(x, y), (1.1)

where P (x, y) and Q(x, y) are coprime polynomials. Here, the degree of system
(1.1) is denoted by n = max{degP,degQ}. A limit cycle of system (1.1) is an
isolated periodic solution in the set of all periodic solutions of system (1.1), and
it is said to be algebraic if it is contained in the zero level set of a polynomial
function [18]. In 1900 Hilbert [17] in the second part of his 16th problem proposed
to find an estimation of the uniform upper bound for the number of limit cycles of
all polynomial vector fields of a given degree, and also to study their distribution
or configuration in the plane R2. An even more difficult problem is to give an
explicit expression of them [1, 15]. This has been one of the main problems in the
qualitative theory of planar differential equations in the 20th century. We solve
this last problem for a system of type (1.1). Until recently, the only limit cycles
known in an explicit way were algebraic. In [3, 12, 15] examples of explicit limit
cycles which are not algebraic are given. For instance, the limit cycle appearing in
van der Pol’s system is not algebraic as it is proved in [19].

Let Ω be a non-empty open and dense subset of R2. We say that a non-locally
constant C1 function H : Ω → R is a first integral of the differential system (1.1)
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in Ω if H is constant on the trajectories of the system (1.1) contained in Ω, i.e. if

dH(x, y)
dt

=
∂H(x, y)

∂x
P (x, y) +

∂H(x, y)
∂y

Q(x, y) ≡ 0 in Ω.

Moreover, H = h is the general solution of this equation, where h is an arbitrary
constant. It is well known that for differential systems defined on the plane R2

the existence of a first integral determines their phase portrait. There is a lot of
literature on the existence of a first integral [2, 4].

A real or complex polynomial U(x, y) is called algebraic solution of the polyno-
mial differential system (1.1) if

∂U(x, y)
∂x

P (x, y) +
∂U(x, y)
∂y

Q(x, y) = K(x, y)U(x, y),

for some polynomial K(x, y), called the cofactor of U(x, y). If U(x, y) is non-
algebraic the cofactor may not be algebraic [10, 11, 16]. If U is real, the curve
U(x, y) = 0 is an invariant under the flow of differential system (1.1) and the
set {(x, y) ∈ R2, U(x, y) = 0} is formed by orbits of system (1.1). There are
strong relationships between the integrability of system (1.1) and its number of
invariant algebraic solutions. It is shown [8] that the existence of a certain number
of algebraic solutions for a system implies the Darboux integrability of the system,
that is the first integral is the product of the algebraic solutions with complex
exponents [5, 6, 7, 14]. In [21], it is proved that, if a polynomial system (1.1) has a
Liouvillian first integral, then it can be computed by using the invariant algebraic
solutions and the exponential factors of the system (1.1).

In this paper, we consider the family of the polynomial differential system of the
form

x′ =
dx

dt
= x+ (αy − βx)(ax2 − bxy + ay2)n,

y′ =
dy

dt
= y − (βy + αx)(ax2 − bxy + ay2)n,

(1.2)

where a, b, α, β are real constants and n is positive integer. We prove that these
systems are Liouville integrable. Moreover, we determine sufficient conditions for a
polynomial differential system to possess an explicit algebraic or non-algebraic limit
cycles. Concrete examples exhibiting the applicability of our result are introduced.

2. Main result

Our main result is contained in the following theorem.

Theorem 2.1. Consider a multi-parameter polynomial differential system (1.2).
Then the following statements hold.

(1) The curve U(x, y) = −α(x2 + y2)(ax2 − bxy + ay2)n = 0 is an invariant
algebraic of system (1.2).

(2) If α > 0 and a > 1
2 |b|, then system (1.2) has the first integral

H(x, y) = (x2 + y2)n exp
(−2nβ

α
arctan

y

x

)
+ 2n

∫ arctan y
x

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw.
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(3) If α > 0, β > 0 and 2a > |b| then system (1.2) has an explicit limit cycle,
given in polar coordinates (r, θ) by

r(θ, r∗) = exp
(β
α
θ
)(
r2n∗ − 2n

∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

,

where

r∗ = exp
(2βπ
α

)(2n
∫ 2π

0

( exp(− 2nβw
α )

α(a− 1
2 b sin 2w)n

)
dw

exp( 4nβπ
α )− 1

)1/(2n)

.

Proof. (1) We prove that U(x, y) = −α(x2 + y2)(ax2 − bxy + ay2)n = 0 is an
invariant algebraic curve of the differential system (1.2).

Indeed, we have
∂U(x, y)
∂x

P (x, y) +
∂U(x, y)
∂y

Q(x, y) = U(x, y)K(x, y),

where

K(x, y) = 2 + 2n+ (2β − 2βn)(ax2 − bxy + ay2)n

− nαb((y2 − x2))(ax2 − bxy + ay2)n−1.

Therefore, U(x, y) = −α(x2 +y2)(ax2−bxy+ay2)n = 0 is an invariant algebraic
curve of the polynomial differential systems (1.2). Hence, statement (1) is proved.

(2) To prove our results (2) and (3) we write the polynomial differential system
(1.2) in polar coordinates (r, θ), defined by x = r cos θ and y = r sin θ. Then the
system becomes

r′ = r − β(a− 1
2
b sin 2θ)nr2n+1,

θ′ = −α(a− 1
2
b sin 2θ)nr2n,

(2.1)

where θ′ = dθ
dt , r

′ = dr
dt .

Taking as new independent variable the coordinate θ, this differential system
reads

dr

dθ
=
β

α
r +

−1
α(a− 1

2b sin 2θ)n
r1−2n, (2.2)

which is a Bernoulli equation.
By introducing the standard change of variables ρ = r2n we obtain the linear

equation
dρ

dθ
=

2nβ
α
ρ+

−2n
α(a− 1

2b sin 2θ)n
. (2.3)

The general solution of linear equation (2.3) is

r(θ) = exp
(β
α
θ
)(
c− 2n

∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

,

where c ∈ R. From these solution we can obtain a first integral in the variables
(x, y) of the form

H(x, y) = (x2 + y2)n exp
(−2nβ

α
arctan

y

x

)
+ 2n

∫ arctan y
x

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw.

Since this first integral is a function that can be expressed by quadratures of
elementary functions, it is a Liouvillian function, and consequently system (1.2) is
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Liouville integrable. The curves H = h with h ∈ R, which are formed by trajectories
of the differential system (1.2), in Cartesian coordinates are written as

x2 + y2 =
(
h exp

(2nβ
α

arctan
y

x

)
− 2n exp

(2nβ
α

arctan
y

x

)∫ arctan y
x

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/n

,

where h ∈ R. Hence, statement (2) is proved.
(3) Since α > 0 and a > 1

2 |b|, it follows that −α(a− 1
2b sin 2θ)n < 0 for all θ ∈ R,

then θ′ is negative for all t, which means that each orbit of system (1.2) encircle
the singularity at the origin.

Notice that system (1.2) has a periodic orbit if and only if equation (2.2) has a
strictly positive 2π periodic solution. This, moreover, is equivalent to the existence
of a solution of (2.2) that satisfies r(0, r∗) = r(2π, r∗) and r(θ, r∗) > 0 for any θ in
[0, 2π].

The solution r(θ, r0) of the differential equation (2.2) such that r(0, r0) = r0 is

r(θ, r0) = exp
(β
α
θ
)(
r2n0 − 2n

∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

,

where r0 = r(0).
A periodic solution of system (1.2) must satisfy the condition r(2π, r0) = r(0, r0),

which leads to a unique value r0 = r∗, given by

r∗ = exp
(2βπ
α

)(2n
∫ 2π

0
( exp(− 2nβw

α )

α(a− 1
2 b sin 2w)n

)dw

exp( 4nβπ
α )− 1

)1/(2n)

.

After the substitution of these value r∗ into r(θ, r0) we obtain

r(θ, r∗) = exp
(β
α
θ
)(

2n
exp( 4nβπ

α )

exp( 4nβπ
α )− 1

∫ 2π

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw

− 2n
∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

.

Next we prove that r(θ, r∗) > 0. Indeed

r(θ, r∗) = 2n
√

2n exp
(β
α
θ
)( exp( 4nβπ

α )

exp( 4nβπ
α )− 1

∫ 2π

0

(
exp(− 2nβw

α )
α(a− 1

2b sin 2w)n
)dw

−
∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

≥ 2n
√

2n exp
(β
α
θ
)( ∫ 2π

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw

−
∫ θ

0

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

= 2n
√

2n exp
(β
α
θ
)( ∫ 2π

θ

( exp(− 2nβw
α )

α(a− 1
2b sin 2w)n

)
dw
)1/(2n)

> 0,
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because
exp(− 2nβw

α )
α(a− 1

2b sin 2w)n
> 0

for all s ∈ R. Moreover, we compute

dr(2π, r0)
dr0

∣∣
r0=r∗

= exp
(4βnπ

α

)
> 1.

This is a stable and hyperbolic limit cycle for the differential systems (1.2). This
completes the proof of statement (3) of Theorem 2.1. �

3. Examples

The following examples illustrate our result.

Example 3.1. When a = b = α = β = n = 1, system (1.2) reads

x′ = x+ (y − x)(x2 − xy + y2),

y′ = y − (y + x)(x2 − xy + y2).
(3.1)

This system is a cubic system that has a non-algebraic limit cycle whose expression
in polar coordinates (r, θ) is

r(θ, r∗) = eθ
(
r2∗ − 4

∫ θ

0

( e−2ω

2− sin 2ω

)
dω
)1/2

,

where θ ∈ R, and the intersection of the limit cycle with the OX+ axis is the point

r∗ =
( 2e4π

e4π − 1

∫ 2π

0

( 2
2− sin 2ω

e−2ω
)
dω
)1/2

' 1.1912.

Moreover,
dr(2π, r0)

dr0

∣∣
r0=r∗

= exp(4π) > 1.

This limit cycle is a stable hyperbolic limit cycle. This results presented was by
Llibre and Rebiha [3].

Example 3.2. When a = α = β = n = 1 and b = 0, system (1.2) reads

x′ = x− x3 + x2y − xy2 + y3,

y′ = y − x3 − x2y − xy2 − y3.
(3.2)

This system is a cubic system that has a algebraic limit cycle whose expression in
polar coordinates (r, θ) is

r(θ, r∗) = 1,

where θ ∈ R. In Cartesian coordinates it is written

x2 + y2 = 1.

Moreover,
dr(2π, r0)

dr0

∣∣
r0=r∗

= exp(4π) > 1.

This limit cycle is a stable hyperbolic limit cycle.
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Example 3.3. When α = β = 1 and a = b = n = 2, system (1.2) reads

x′ = x− 4x5 + 12x4y − 20x3y2 + 20x2y3 − 12xy4 + 4y5,

y′ = y − 4x5 + 4x4y − 4x3y2 − 4x2y3 + 4xy4 − 4y5,
(3.3)

This system is a quintic system that has a non-algebraic limit cycle whose expression
in polar coordinates (r, θ) is

r(θ, r∗) = eθ
(
r4∗ − 4

∫ θ

0

( exp(−4w)
(2− sin 2w)2

)
dw
)1/4

,

where θ ∈ R, and the intersection of the limit cycle with the OX+ axis is the point

r∗ = exp(2π)
(4
∫ 2π

0

( exp(−4w)
(2−sin 2w)2

)
dw

exp(8π)− 1

)1/4

' 0.816 28.

Moreover,
dr(2π, r0)

dr0
|r0=r∗ = exp(8π) > 1.

This limit cycle is a stable hyperbolic limit cycle.

Example 3.4. When a = b = α = β = 1 and n = 3, system (1.2) reads

x′ = x− x7 + 4x6y − 9x5y2 + 13x4y3 − 13x3y4 + 9x2y5 − 4xy6 + y7,

y′ = y − x7 + 2x6y − 3x5y2 + x4y3 + x3y4 − 3x2y5 + 2xy6 − y7.
(3.4)

This system has a non-algebraic limit cycle whose expression in polar coordinates
(r, θ) is

r(θ, r∗) = eθ
(
r6∗ − 6

∫ θ

0

( 8 exp(−6w)
(1− 1

2 sin 2w)3

)
dw
)1/6

,

where θ ∈ R, and the intersection of the limit cycle with the OX+ axis is

r∗ =
( exp(12π)
−1 + exp(12π)

∫ 2π

0

( 48 exp(−6w)
(2− sin 2w)3

)
dw
)1/6

' 1.1189.

Moreover,
dr(2π, r0)

dr0

∣∣
r0=r∗

= exp(12π) > 1.

This limit cycle is a stable hyperbolic limit cycle.
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