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SCHRÖDINGER EQUATIONS WITH MAGNETIC FIELDS AND
HARDY-SOBOLEV CRITICAL EXPONENTS

ZHENYU GUO, MICHAEL MELGAARD, WENMING ZOU

Communicated by Jerry Bona

Abstract. This article is motivated by problems in astrophysics. We con-

sider nonlinear Schrödinger equations and related systems with magnetic fields
and Hardy-Sobolev critical exponents. Under proper conditions, existence of

ground state solutions to these equations and systems are established.

1. Introduction

Astrophysics pose a rich class of nonlinear problems, in particular,

(−i∇+A)2u =
|u|2∗(s)−2u

|x|s
, u ∈ D1,2

A (RN ), (1.1)

with the Hardy-Sobolev term models the dynamics of galaxies; we refer to [3,
4] and the references therein. In the present paper we consider the semilinear
stationary Schrödinger equation (1.1) with a magnetic field and a Hardy-Sobolev
critical exponents, but also

(−i∇+A)2u− λu =
|u|2∗(s)−2u

|x|s
, u ∈ H1

A(Ω),

u = 0, on ∂Ω,
(1.2)

and related systems thereof, viz.

(−i∇+A)2u = µ1
|u|2∗(s)−2u

|x|s
+

αγ

2∗(s)
|u|α−2u|v|β

|x|s
,

(−i∇+B)2v = µ2
|v|2∗(s)−2v

|x|s
+

βγ

2∗(s)
|u|α|v|β−2v

|x|s
,

u ∈ D1,2
A (RN ), v ∈ D1,2

B (RN ),

(1.3)
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and

(−i∇+A)2u− λ1u = µ1
|u|2∗(s)−2u

|x|s
+

αγ

2∗(s)
|u|α−2u|v|β

|x|s
,

(−i∇+B)2v − λ2v = µ2
|v|2∗(s)−2v

|x|s
+

βγ

2∗(s)
|u|α|v|β−2v

|x|s
,

u ∈ H1
A(Ω), v ∈ H1

B(Ω), u = v = 0, on ∂Ω,

(1.4)

where u, v : RN → C, N ≥ 3, A = (A1, . . . , AN ), B = (B1, . . . , BN ) : RN → RN
are magnetic vector potentials, 0 ≤ s < 2, λ, λ1, λ2, µ1, µ2, γ > 0, α, β > 1 with
α+ β = 2∗(s) := 2(N−s)

N−2 , and Ω is a smooth bounded domain containing the origin
as an interior point. Set −∆A := (−i∇+A)2,∇A := ∇+ iA, and

D1,2
A (RN ) :=

{
u ∈ L2∗(RN ) : |∇Au| ∈ L2(RN )

}
,

H1
A(Ω) :=

{
u ∈ L2(Ω) : |∇Au| ∈ L2(Ω)

}
.

Then −∆Au = −∆u− iudivA−2iA ·∇u+ |A|2u, D1,2
A (RN ) and H1

A(Ω) are Hilbert
spaces obtained by the closures of C∞c (RN ,C) and C∞c (Ω,C) with respect to scaler
products

Re
(∫

RN
∇Au · ∇Av

)
and Re

(∫
Ω

∇Au · ∇Av
)

respectively, where the bar denotes complex conjugation. Here and in the following,∫
· means

∫
· dx. We regard the range of function as C, except the places where

we emphasize that the range is R. Lp
(
Ω, dx
|x|s
)

denotes the space of Lp-integrable
functions with respect to the measure dx

|x|s , endowed with norm

|u|p,s :=
(∫

Ω

|u|p

|x|s
)1/p

.

For Ω = RN , denote the Lp norm by

|u|p,s,RN :=
(∫

RN

|u|p

|x|s
)1/p

.

Write |u|p := |u|p,0 and |u|p,RN := |u|p,0,RN for simplicity. Define

µAs (RN ) := inf
u∈D1,2

A (RN )\{0}

|∇Au|22,RN
|u|2

2∗(s),s,RN
,

µA,λs (Ω) := inf
u∈H1

A(Ω)\{0}

|∇Au|22 − λ|u|22
|u|22∗(s),s

.

The first existence results for this kind of problems with a magnetic potential (i.e.,
A ∈ L2

loc) were established in the seminal work [11]. Leaving aside periodic and
singular magnetic fields, a number of papers dealt with nonlinear Schrödinger equa-
tions with regular fields, for example, [5, 10, 16, 20, 21, 22], including [1, 2, 6, 15,
18, 23] for the critical Sobolev exponent and [9] for the critical Hardy exponent.

As far as we know, there are no results for problems of this type with Hardy-
Sobolev critical exponents, in particular for the system case. The Hardy-Sobolev
term has the same homogeneity as the Laplacian but it does not belong to the Kato
class and, therefore, the resulting functional lacks compactness.

The present paper is mainly motivated by [2]; we apply existence results of
ground state solutions obtained in [8, 13, 14, 25] to extend [2, Theorems 1.1 and
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1.2] to the case of Hardy-Sobolev critical exponent and also systems; it is worth
to emphasize that systems are not considered in [2]. First, we establish results for
single equations.

Theorem 1.1. If A ∈ LNloc(RN ,RN ), then µAs (RN ) is attained by a u ∈ D1,2
A (RN )\

{0} if and only if curlA ≡ 0, where curlA is the usual curl operator for N = 3 and
the N ×N skew-symmetric matrix with entries ajk = ∂jAk − ∂kAj for N ≥ 4.

Theorem 1.2. Assume that
(A1) A ∈ LNloc(RN ,RN ), curlA ≡ 0 or
(A2) A ∈ L2

loc(RN ,RN ), A is continuous at 0
holds. Let N ≥ 4 and σ(−∆A − λ) ⊂ (0,+∞), where σ(·) is the spectrum in
L2(RN ). Then µA,λs (Ω) is attained by some u ∈ H1

A(Ω) \ {0}.

Second, we establish results for systems. For this purpose we define

µ̄A,Bs (RN ) := inf
(u,v)∈DA,B\{(0,0)}

‖(u, v)‖2DA,B( ∫
RN
(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

,

µ̄A,Bs (Ω) := inf
(u,v)∈HA,B\{(0,0)}

‖(u, v)‖2HA,B( ∫
Ω

(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

,

where DA,B := D1,2
A (RN )×D1,2

B (RN ), endowed with norm

‖(u, v)‖2DA,B := |∇Au|22,RN + |∇Bv|22,RN ,

and HA,B := H1
A(Ω)×H1

B(Ω), endowed with norm

‖(u, v)‖2HA,B := |∇Au|22 − λ1|u|22 + |∇Bv|22 − λ2|v|22.

Then we have the following result.

Theorem 1.3. Assume that A,B ∈ LNloc(RN ,RN ) and
(A3) N ≥ 3, 1 < α, β < 2, γ > 0 holds.

Then µ̄A,Bs (RN ) is attained by some (u, v) ∈ DA,B such that u 6≡ 0, v 6≡ 0 if and
only if curlA ≡ 0 ≡ curlB.

Theorem 1.4. Assume that (A3) is satisfied and
(A4) A,B ∈ LNloc(RN ,RN ), curlA ≡ 0 ≡ curlB, or
(A5) A,B ∈ L2

loc(RN ,RN ), A and B are continuous at 0
holds. If σ(−∆A − λ1), σ(−∆B − λ2) ⊂ (0,+∞) and N ≥ 4, then µ̄A,Bs (Ω) is
attained by some (u, v) ∈ HA,B such that u 6≡ 0, v 6≡ 0.

The corresponding energy functionals I : DA,B → R and E : HA,B → R of (1.3)
and (1.4) are

I(u, v)

=
1
2
‖(u, v)‖2DA,B −

1
2∗(s)

(
µ1|u|2

∗(s)

2∗(s),s,RN + µ2|v|2
∗(s)

2∗(s),s,RN + γ

∫
RN

|u|α|v|β

|x|s
)
,

and

E(u, v) =
1
2
‖(u, v)‖2HA,B −

1
2∗(s)

(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
)
,
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respectively. Define

N :=
{

(u, v) ∈ DA,B \ {(0, 0)} : ‖(u, v)‖2DA,B

= µ1|u|2
∗(s)

2∗(s),s,RN + µ2|v|2
∗(s)

2∗(s),s,RN + γ

∫
RN

|u|α|v|β

|x|s
}
,

M :=
{

(u, v) ∈ HA,B \ {(0, 0)} : ‖(u, v)‖2HA,B

= µ1|u|2
∗(s)

2∗(s),s + µ2|v|2
∗(s)

2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
}
,

M0 := inf(u,v)∈N I(u, v) and M := inf(u,v)∈ME(u, v). By nontrivial solutions
(u, v) ∈ DA,B of (1.3), we mean u 6= 0, v 6= 0. A solution of (1.3) is called a
ground state solution if (u, v) ∈ N and I(u, v) = M0. A ground state solution is
semi-trivial if it is of type (u, 0) or (0, v). Similar definitions applies to (1.4) and
single equations (1.1) and (1.2). For ground states, we obtain

Theorem 1.5. If (A1) holds, then (1.1) has a nontrivial ground state solution with

energy M1 := 2−s
2(N−s)

(
µAs (RN )

)N−s
2−s .

Theorem 1.6. Assume that (A1) or (A2) holds. If N ≥ 4 and σ(−∆A − λ) ⊂
(0,+∞), then (1.2) has a nontrivial ground state solution with energy given by

M2 := 2−s
2(N−s)

(
µA,λs (Ω)

)N−s
2−s .

Theorem 1.7. If (A3) and (A4) hold, then (1.3) has a nontrivial ground state

solution with energy given by M0 := 2−s
2(N−s)

(
µ̄A,Bs (RN )

)N−s
2−s .

Theorem 1.8. Assume that (A3) and one of (A4) and (A5) hold. If

σ(−∆A − λ1), σ(−∆B − λ2) ⊂ (0,+∞)

and N ≥ 4, then (1.4) has a nontrivial ground state solution with energy M :=
2−s

2(N−s)
(
µ̄A,Bs (Ω)

)N−s
2−s .

Remark 1.9. Although the symmetric and decaying information about ground
state solutions of equations with magnetic fields is not known, the existence of
ground state solutions is heavily dependent on that of equations without magnetic
fields, under proper conditions, such as (A1)–(A5).

Consider the nonlinear system

µ1k
2∗(s)−2

2 +
αγ

2∗(s)
k
α−2

2 lβ/2 = 1,

µ2l
2∗(s)−2

2 +
βγ

2∗(s)
k
α
2 l

β−2
2 = 1,

k > 0, l > 0.

(1.5)

Theorem 1.10. Assume that (A4) and
(A6) N ≥ 4, 1 < α, β < 2, and

γ ≥ 2(N − s)(2− s)
(N − 2)2

max
{µ1

α

(2− β
2− α

) 2−β
2
,
µ2

β

(2− α
2− β

) 2−α
2
}
.
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If A = B, then (1.3) has a nontrivial ground state solution (
√
k0U,

√
l0U) with

energy M0 = 2−s
2(N−s) (k0 + l0)

(
µs(RN )

)N−s
2−s , where U is a nontrivial ground state

solution of (1.1), obtained in Theorem 1.5,

(k0, l0) satisfies (1.5) and k0 = min{k : (k, l) is a solution of (1.5)}. (1.6)

That is, M0 is attained at (
√
k0U,

√
l0U).

Theorem 1.11. Assume that (A6) and either (A4) or (A5) holds. If A = B,
λ1 = λ2 = λ, and σ(−∆A − λ) ⊂ (0,+∞), then (1.4) has a nontrivial ground

state solution (
√
k0ω,

√
l0ω) with energy M = 2−s

2(N−s) (k0 + l0)
(
µA,λs (Ω)

)N−s
2−s , where

(k0, l0) satisfies (1.6) and ω is a nontrivial ground state solution of (1.2), obtained
in Theorem 1.6. That is, M is attained at (

√
k0ω,

√
l0ω).

Remark 1.12. By [17, Lemma 1.1], we see that the above theorems also hold when
conditions (A1) and (A4) are replaced with (A1’) and (A4’) respectively:

(A1’) A ∈ LNloc(RN ,RN ), there exists ϕ ∈W 1,N
loc (RN ,R) such that ∇ϕ = A,

(A4’) A,B ∈ LNloc(RN ,RN ), there exist ϕ,ψ ∈ W 1,N
loc (RN ,R) such that ∇ϕ =

A,∇ψ = B.
For more details, we refer to [11, Theorem 3.7] and the proof of Theorem 1.3 in
this paper.

The paper is organized as follows. In Section 2, we establish several auxil-
iary results for the proof of our main results; key ingredients are Lemma 2.1 and
Lemma 2.4, not found elsewhere. The latter is proven by using Ekeland’s variational
principle. In Section 3, we discuss the attainability of the infimum defined above by
applying the method of concentration-compactness. The existence of ground state
solution to the Schrödinger problems is studied in Section 4. Finally, in Section 5
we consider a magnetic field in three dimensions as an application of some of the
above theorems.

2. Preliminaries

Define

µs(RN ) := inf
u∈D1,2(RN )\{0}

|∇u|22,RN
|u|2

2∗(s),s,RN
,

where D1,2(RN ) = {u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )}. Then, by [13], µs(RN ) is
attained by functions of form

yε(x) :=
(
(N − s)(N − 2)

) N−2
2(2−s) ε

N−2
2
(
ε2−s + |x|2−s

)−N−2
2−s ,

where ε > 0. The function yε is a positive solution of −∆u = |u|2
∗(s)−2u
|x|s , and

moreover,

|∇yε|22,RN = |yε|2
∗(s)

2∗(s),s,RN =
(
µs(RN )

)N−s
2−s .

Define

µ̄s(RN ) := inf
(u,v)∈D\{(0,0)}

‖(u, v)‖2D( ∫
RN
(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

,

where D := D1,2(RN )×D1,2(RN ), endowed with norm

‖(u, v)‖2D := |∇u|22,RN + |∇v|22,RN .
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Then, by Lemma 2.4, [8, 14] (s = 0) and [25] (0 < s < 2), we see that, under
condition (A3), µ̄s(RN ) is attained by (U, V ), where U and V are positive, radially
symmetric functions which decay as follows:

U(x) + V (x) ≤ C(1 + |x|)2−N , |∇U(x)|+ |∇V (x)| ≤ C(1 + |x|)1−N . (2.1)

As proved in [11, 19], for any u ∈ D1,2
A (RN ) or H1

A(Ω), the following (weak)
diamagnetic inequality holds pointwise for almost every x ∈ RN or Ω,∣∣∇|u|∣∣ =

∣∣∣Re
(
∇u u
|u|

)∣∣∣ =
∣∣∣Re

(
(∇u+ iAu)

u

|u|

)∣∣∣ ≤ |∇Au|.
Then, for u ∈ D1,2

A (RN ) or H1
A(Ω), we see that |u| belongs to the usual Sobolev

space D1,2(RN ) or H1
0 (Ω). Moreover, we have the following lemma.

Lemma 2.1. The embedding H1
A(Ω) ↪→ Lp

(
Ω, dx
|x|s
)

is continuous for 1 ≤ p ≤
2∗(s), and it is compact for 1 ≤ p < 2∗(s), where 0 ≤ s < 2. The embedding
D1,2
A (RN ) ↪→ L2∗(s)

(
RN , dx

|x|s
)

is continuous for 0 ≤ s < 2.

Proof. By the diamagnetic inequality and the Hardy-Sobolev inequality, it is easy to
see that the embeddings H1

A(Ω) ↪→ Lp
(
Ω, dx
|x|s
)

and D1,2
A (RN ) ↪→ L2∗(s)

(
RN , dx

|x|s
)

are continuous, where 1 ≤ p ≤ 2∗(s) and 0 ≤ s < 2.
Let {un} be a bounded sequence in H1

A(Ω). For compactness of the embedding,
it remains to show that there exists a subsequence of {un}, strongly converging in
Lp
(
Ω, dx
|x|s
)
, where 1 ≤ p < 2∗(s).

For the case s = 0, since {|un|} is bounded in H1
0 (Ω), we can consider the real

parts Rn and imaginary parts In of un separately, and follow the arguments of
Rellich-Kondrachov Compactness Theorem (cf. [12]), passing to a subsequence, we
may prove that Rn → R and In → I strongly in Lp(Ω), where 1 ≤ p < 2∗ := 2∗(0).
That is, un → u strongly in Lp(Ω), where u = R+ iI.

For the case 0 < s < 2, applying the ideas of [2, Lemma 2.6] and [7, Lemma
2.1], we may extract a subsequence, still denoted by un, such that un ⇀ u weakly
in H1

A(Ω). Then, un ⇀ u weakly in L2∗(Ω), and |un − u| is bounded in H1
0 (Ω).

Hence, up to a subsequence, |un − u| ⇀ 0 weakly in H1
0 (Ω) and un → u a.e.

on Ω. By Rellich-Kondrachov Theorem, we see that un → u strongly in Lq(Ω),
where 1 ≤ q < 2∗. Since H1

A(Ω) ↪→ L2∗(Ω), there exists a constant C such that
|un − u|2

∗

2∗ ≤ C. For any ε > 0, let Ωε := Ω∩Bε and Ωcε := Ω \Ωε, where Bε is the
ball centered at 0 with radius ε. Noting N − 2∗s

2∗−p > 0, we have∫
Ωε

|un − u|p

|x|s
≤
(∫

Ωε

|un − u|2
∗
) p

2∗
(∫

Ωε

|x|−
2∗s

2∗−p

) 2∗−p
2∗

≤ C
(∫ ε

0

r−
2∗s

2∗−p rN−1dr
) 2∗−p

2∗

= O
(
ε

(N−2)(2∗(s)−p)
2

)
.

(2.2)

On the other hand, for any x ∈ Ωcε, there exists a constant Cε > 0 such that 1
|x|s ≤

Cε. It follows from Rellich-Kondrachov Compactness Theorem that
∫

Ωcε

|un−u|p
|x|s =

o(1). Combining this and (2.2), we get that limn→∞ |un − u|pp,s = 0. �
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Remark 2.2. If σ(−∆A − λ1), σ(−∆B − λ2) ⊂ (0,+∞), then by Lemma 2.1, it is
standard to see that the quantities

µAs (RN ), µA,λ1
s (Ω), µB,λ2

s (Ω), µ̄A,Bs (RN ), and µ̄A,Bs (Ω)

are strictly positive.

Lemma 2.3. If A,B ∈ LNloc(RN ,RN ), then µAs (RN ) = µs(RN ) and µ̄A,Bs (RN ) =
µ̄s(RN ).

Proof. We only prove the latter equality. For any (u, v) ∈ DA,B \ {(0, 0)}, by the
diamagnetic inequality, we have

|∇Au|22,RN + |∇Bv|22,RN( ∫
RN
(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

≥

∣∣∇|u|∣∣2
2,RN +

∣∣∇|v|∣∣2
2,RN( ∫

RN
(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

≥ µ̄s(RN ),

which implies that µ̄A,Bs (RN ) ≥ µ̄s(RN ). Define(
Uε(x), Vε(x)

)
:=
(
ε−

N−2
2 U

(x
ε

)
, ε−

N−2
2 V

(x
ε

))
(2.3)

and (
uε(x), vε(x)

)
:=
(
φ(x)Uε(x), φ(x)Vε(x)

)
,

where (U, V ) achieves µ̄s(RN ) with (2.1), and φ ∈ C1
0 (B2) is a cut-off function

satisfying φ ≡ 1 on B1. Then, a direct computation yields∫
Ω

|∇uε|2 ≤
∫

RN
|∇U |2 +O(εN−2), (2.4)∫

Ω

|∇vε|2 ≤
∫

RN
|∇V |2 +O(εN−2), (2.5)∫

Ω

|uε|2
∗(s)

|x|s
≥
∫

RN

|U |2∗(s)

|x|s
+O(εN−s), (2.6)∫

Ω

|vε|2
∗(s)

|x|s
≥
∫

RN

|V |2∗(s)

|x|s
+O(εN−s), (2.7)∫

Ω

|uε|α|vε|β

|x|s
≥
∫

RN

|U |α|V |β

|x|s
+O(εN−s). (2.8)

It follows from {uε} that it is bounded in L2∗(RN ) and uε → 0 a.e. in RN as ε→ 0
that for any ϕ ∈ L

2∗
2∗−1 (RN ),∣∣∣ ∫

RN
uεϕ

∣∣∣ ≤ (∫
RN

u2∗

ε

) 1
2∗
(∫

RN
|ϕ|

2∗
2∗−1

) 2∗−1
2∗ → 0,

i.e., uε ⇀ 0 weakly in L2∗(RN ). Hence, u2
ε ⇀ 0 weakly in L

2∗
2 (RN ). Since |A|2 ∈

L
N
2

loc(RN ) =
(
L

2∗
2

loc(RN )
)′, the dual space of L

2∗
2

loc(RN ), we obtain∫
RN
|Auε|2 = 〈|A|2, u2

ε〉 → 0,
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where the duality product is taken with respect to L
N
2 (RN ) and L

2∗
2 (RN ). Simi-

larly, we have
∫

RN |Bvε|
2 → 0 as ε→ 0. Let δ > 0. For ε small enough, noting that

uε and vε are real-valued, by (2.4)–(2.8), we have

µ̄A,Bs (RN ) ≤
|∇Auε|22,RN + |∇Bvε|22,RN( ∫

RN
(
µ1
|uε|2∗(s)
|x|s + µ2

|vε|2∗(s)
|x|s + γ |uε|

α|vε|β
|x|s

)) 2
2∗(s)

=

∫
RN
(
|∇uε|2 + |Auε|2 + |∇vε|2 + |Bvε|2

)( ∫
RN
(
µ1
|uε|2∗(s)
|x|s + µ2

|vε|2∗(s)
|x|s + γ |uε|

α|vε|β
|x|s

)) 2
2∗(s)

≤
∫

RN
(
|∇U |2 + |∇V |2 + |Auε|2 + |Bvε|2

)
+O(εN−2)( ∫

RN
(
µ1
|U |2∗(s)
|x|s + µ2

|V |2∗(s)
|x|s + γ |U |

α|V |β
|x|s

)
+O(εN−s)

) 2
2∗(s)

≤ µ̄s(RN ) + δ,

which implies that µ̄A,Bs (RN ) ≤ µ̄s(RN ). Therefore, µ̄A,Bs (RN ) = µ̄s(RN ). �

Lemma 2.4. The following conclusions hold.
(i) µAs (RN ) is attained if and only if (1.1) has a nontrivial ground state solu-

tion;
(ii) µA,λs (Ω) is attained if and only if (1.2) has a nontrivial ground state solu-

tion;
(iii) µ̄A,Bs (RN ) is attained by (u, v) ∈ DA,B with u 6≡ 0, v 6≡ 0 if and only if

(1.3) has a nontrivial ground state solution;
(iv) µ̄A,Bs (Ω) is attained by (u, v) ∈ HA,B with u 6≡ 0, v 6≡ 0 if and only if (1.4)

has a nontrivial ground state solution.

Proof. We only prove (iv). Setting

F (u, v) :=
‖(u, v)‖2HA,B( ∫

Ω

(
µ1
|u|2∗(s)
|x|s + µ2

|v|2∗(s)
|x|s + γ |u|

α|v|β
|x|s

)) 2
2∗(s)

,

then µ̄A,Bs (Ω) = inf(u,v)∈HA,B\{(0,0)} F (u, v) and F (tu, tv) = F (u, v) for any t ∈ R.
Obviously, for any (u, v) ∈ HA,B \ {(0, 0)}, there exists an unique

tu,v =
( ‖(u, v)‖2HA,B
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω
|u|α|v|β
|x|s

) 1
2∗(s)−2

such that (tu,vu, tu,vv) ∈M. Therefore,

µ̄A,Bs (Ω) = inf
(u,v)∈HA,B\{(0,0)}

F (tu,vu, tu,vv)

= inf
(u,v)∈M

F (u, v) = inf
(u,v)∈M

‖(u, v)‖
2∗(s)−2
2∗(s)

HA,B
.

Noting that M = 2−s
2(N−s) inf(u,v)∈M ‖(u, v)‖2HA,B , we see that µ̄A,Bs (Ω) is attained if

and only if M is attained. Assume that (1.4) has a nontrivial ground state solution,
i.e., M is attained by a nontrivial element in HA,B . Then, µ̄A,Bs (Ω) is attained by
some (u, v) ∈ HA,B with u 6≡ 0 and v 6≡ 0. On the other hand, assume that µ̄A,Bs (Ω)
is achieved by a nontrivial element in HA,B . Then, there exists (u, v) ∈ HA,B with
u 6≡ 0 and v 6≡ 0 such that M = infME = E(u, v). It remains to show that (u, v)
is a solution of (1.4). It is easy to see that E|M ∈ C1(M,R) is bounded below.
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By Ekeland’s variational principle (e.g. [24]), for ε, δ > 0, there exists (u′, v′) ∈M
such that

E(u′, v′) ≤ E(u, v)+2ε, ‖E′(u′, v′)‖H′A,B <
8ε
δ
, ‖(u′, v′)− (u, v)‖HA,B ≤ 2δ. (2.9)

Choosing εn = 1
n and δn = 1√

n
in (2.9), there exists {(un, vn)} such that (un, vn)→

(u, v) in HA,B , E′(un, vn) → 0 in H ′A,B , and E(un, vn) → E(u, v), as n → ∞.
Hence, E′(u, v) = 0 in H ′A,B , that is (u, v) is a solution of (1.4). �

3. Attainability of the infimum

Since the proofs of Theorems 1.1 and 1.2 are similar to that of [2, Theorems 1.1
and 1.2] and easier than that of Theorems 1.3 and 1.4 in the present paper, we only
prove Theorems 1.3 and 1.4 here. Note that systems are not treated in [2] and the
concentration-compactness arguments therein, going back to Willem [24], has to be
combined with new arguments in order to treat these systems.

Proof of Theorem 1.3. (Necessary condition) Let (u, v) be a minimizer of µ̄A,Bs (RN )
normalized by µ1|u|2∗(s),s,RN + µ2|v|2∗(s),s,RN + γ

∫
RN
|u|α|v|β
|x|s = 1. By the diamag-

netic inequality and Lemma 2.3, we have

µ̄A,Bs (RN ) =
∫

RN

(
|∇Au|2 + |∇Bv|2

)
≥
∫

RN

(∣∣∇|u|∣∣2 +
∣∣∇|v|∣∣2)

≥ µ̄s(RN ) = µ̄A,Bs (RN ),

which means the above inequality must be equality and

|∇Au| =
∣∣∇|u|∣∣ =

∣∣∣Re
(
∇u u
|u|

)∣∣∣ =
∣∣∣Re

(
(∇u+ iAu)

u

|u|

)∣∣∣,
|∇Bv| =

∣∣∇|v|∣∣ =
∣∣∣Re

(
∇v v
|v|

)∣∣∣ =
∣∣∣Re

(
(∇v + iBv)

v

|v|

)∣∣∣.
Then, we deduce that Im

(
∇u u
|u|
)

= 0 and Im
(
∇v v
|v|
)

= 0, which are equivalent to
A = − Im

(∇u
u

)
and B = − Im

(∇v
v

)
. Since curl

(∇u
u

)
= 0 and curl

(∇v
v

)
= 0, we

infer that curlA = 0 and curlB = 0.
(Sufficient condition) Assume that curlA = 0 and curlB = 0. By [17, Lemma

1.1], there exist ϕ,ψ ∈W 1,N
loc (RN ,R) such that ∇ϕ = A,∇ψ = B. Let(

uε(x), vε(x)
)

=
(
Uε(x)e−iϕ(x), Vε(x)e−iψ(x)

)
,

where ε > 0 and (Uε, Vε) is defined in (2.3). It follows from Lemma 2.3 that (uε, vε)
is a minimizer for µ̄A,Bs (RN ). �

Lemma 3.1. If (A1) or (A2) holds, N ≥ 4, and σ(−∆A − λ1), σ(−∆B − λ2) ⊂
(0,+∞), then µ̄A,Bs (Ω) < min

{
µ
− 2

2∗(s)
1 µA,λ1

s (Ω), µ
− 2

2∗(s)
2 µB,λ2

s (Ω)
}

.

Proof. By Theorem 1.2, we assume that uµ1 achieves µA,λ1
s (Ω) with |uµ1 |2∗(s),s =(µA,λ1

s (Ω)
µ1

) 1
2∗(s)−2 . Define t(ε) := tuµ1 ,εuµ1

, i.e.,

t(ε) =
( ‖uµ1‖2HA + ε2‖uµ1‖2HB(
µ1 + µ2|ε|2∗(s) + γ|ε|β

)
|uµ1 |

2∗(s)
2∗(s),s

) 1
2∗(s)−2

,



10 Z. GUO, M. MELGAARD, W. ZOU EJDE-2017/199

where ‖u‖2HA := |∇Au|22 − λ1|u|22 and ‖u‖2HB := |∇Bu|22 − λ2|u|22. It is easy to see

that
(
t(ε)uµ1 , t(ε)εuµ1

)
∈ M. Noting that ‖uµ1‖2HA = µ1|uµ1 |

2∗(s)
2∗(s),s and t(0) = 1,

we deduce that

lim
ε→0

t′(ε)
|ε|β−2ε

= − γβ(
2∗(s)− 2

)
µ1

,

that is,

t′(ε) = − γβ|ε|β−2ε(
2∗(s)− 2

)
µ1

(
1 + o(1)

)
, as ε→ 0.

Then

t(ε) = 1− γ|ε|β(
2∗(s)− 2

)
µ1

(
1 + o(1)

)
, as ε→ 0,

and hence,

t(ε)2∗(s) = 1− 2∗(s)γ|ε|β(
2∗(s)− 2

)
µ1

(
1 + o(1)

)
, as ε→ 0.

Thus, we have

t(ε)2∗(s)
(
µ1 + µ2|ε|2

∗(s) + γ|ε|β
)
|uµ1 |

2∗(s)
2∗(s),s

=
(

1− 2∗(s)γ|ε|β(
2∗(s)− 2

)
µ1

(
1 + o(1)

))(
µ1 + µ2|ε|2

∗(s) + γ|ε|β
)
|uµ1 |

2∗(s)
2∗(s),s

= µ1|uµ1 |
2∗(s)
2∗(s),s −

γ|ε|β

2∗(s)
|uµ1 |

2∗(s)
2∗(s),s + o(|ε|β)

< µ1|uµ1 |
2∗(s)
2∗(s),s for |ε| small enough.

Therefore,

µ̄A,Bs (Ω) = inf
(u,v)∈M

(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2∗(s)−2

2∗(s)

≤
(
t(ε)2∗(s)

(
µ1 + µ2|ε|2

∗(s) + γ|ε|β
)
|uµ1 |

2∗(s)
2∗(s),s

) 2∗(s)−2
2∗(s)

< µ
2∗(s)−2
2∗(s)

1 |uµ1 |
2∗(s)−2
2∗(s),s

= µ
− 2

2∗(s)
1 µA,λ1

s (Ω).

Similarly, µ̄A,Bs (Ω) < µ
− 2

2∗(s)
2 µB,λ2

s (Ω). �

Proof of Theorem 1.4. Since the proof under the assumption (A4) is similar to that
of Theorem 1.3, we only prove it under the assumption (A5). Setting

θ(x) := −
N∑
j=1

Aj(0)xj , ϑ(x) := −
N∑
j=1

Bj(0)xj ,

we have

∇θ(x) =
(
−A1(0), . . . ,−AN (0)

)
= −A(0),

∇ϑ(x) =
(
−B1(0), . . . ,−BN (0)

)
= −B(0),
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which imply that (∇θ+A)(0) = 0 and (∇ϑ+B)(0) = 0. Then, continuity ensures
that there exists δ > 0 satisfying∣∣(∇θ +A)(x)

∣∣2 ≤ λ3

2
,
∣∣(∇ϑ+B)(x)

∣∣2 ≤ λ3

2
, ∀|x| < δ, (3.1)

where λ3 = min{λ1, λ2}. There exists ρ > 0 such that Bρ ⊂ Ω. Let 2r := min{δ, ρ}
and (

uε(x), vε(x)
)

=
(
φ(x)Uε(x)eiθ(x), φ(x)Vε(x)eiϑ(x)

)
,

where φ ∈ C1
0 (B2r) is a cut-off function such that φ(x) = 1 in Br and (Uε, Vε) is

defined by (2.3). By (2.4), (2.5) and (3.1), we deduce that∫
Ω

(
|∇Auε|2 − λ1|uε|2 + |∇Bvε|2 − λ2|vε|2

)
=
∫

Ω

(
|∇(φUε)|2 + φ2U2

ε |∇θ +A|2 − λ1φ
2U2

ε

)
+
∫

Ω

(
|∇(φVε)|2 + φ2V 2

ε |∇ϑ+B|2 − λ2φ
2V 2
ε

)
≤
∫

RN

(
|∇U |2 + |∇V |2

)
+O(εN−2) +

λ3

2

∫
B2r

φ2U2
ε

− λ1

∫
B2r

φ2U2
ε +

λ3

2

∫
B2r

φ2V 2
ε − λ2

∫
B2r

φ2V 2
ε

≤
∫

RN

(
|∇U |2 + |∇V |2

)
+O(εN−2)− λ3

2

∫
Br

(U2
ε + V 2

ε ).

Since ∫
Br

|Uε|2 ≥
∫
|x|≤r

ε2−N ∣∣U(x
ε

)∣∣2dx

= ε2

∫
RN
|U(y)|2dy − ε2

∫
|y|≥ rε

|U(y)|2dy

≥ Cε2 − Cε2

∫
|y|≥ rε

|y|4−2Ndy

= Cε2 +O(εN−2),

(3.2)

and ∫
Br

|Vε|2 ≥ Cε2 +O(εN−2),

by (2.6)–(2.8), we have

µ̄A,Bs (Ω) ≤
∫

Ω

(
|∇Auε|2 − λ1|uε|2 + |∇Bvε|2 − λ2|vε|2

)(
µ1|uε|2

∗(s)
2∗(s),s + µ2|vε|2

∗(s)
2∗(s),s + γ

∫
Ω
|uε|α|vε|β
|x|s

) 2
2∗(s)

≤
∫

RN
(
|∇U |2 + |∇V |2

)
− Cε2 +O(εN−2)( ∫

RN
(
µ1
|U |2∗(s)
|x|s + µ2

|V |2∗(s)
|x|s + γ |U |

α|V |β
|x|s

)
+O(εN−s)

)N−2
N−s

< µ̄s(RN ).

(3.3)

Let {(un, vn)} be a minimizing sequence for µ̄A,Bs (Ω) normalized as

µ1|un|2
∗(s)

2∗(s),s + µ2|vn|2
∗(s)

2∗(s),s + γ

∫
Ω

|un|α|vn|β

|x|s
= 1;
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that is,
|∇Aun|22 − λ1|un|22 + |∇Bvn|22 − λ2|vn|22 = µ̄A,Bs (Ω) + o(1). (3.4)

Noting that {un} is bounded in H1
A(Ω) and {vn} is bounded in H1

B(Ω), by Lemma
2.1, we may extract two subsequences-still denoted by {un} and {vn}-such that

un ⇀ u weakly in H1
A(Ω),

vn ⇀ v weakly in H1
B(Ω)

un → u, vn → v strongly in L2(Ω),
un → u, vn → v a.e. on Ω,

with

µ1|u|2
∗(s)

2∗(s),s + µ2|v|2
∗(s)

2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
≤ 1.

Setting wn := un − u and zn := vn − v, then wn ⇀ 0 weakly in H1
A(Ω), zn ⇀ 0

weakly in H1
B(Ω) and wn → 0, zn → 0 a.e. on Ω. It follows from diamagnetic

inequality and (3.4) that

|∇Aun|22 + |∇Bvn|22 ≥
∣∣∇|un|∣∣22 +

∣∣∇|vn|∣∣22 ≥ µ̄s(RN ),

µ̄A,Bs (Ω) + λ1|un|22 + λ2|vn|22 + o(1) ≥ µ̄s(RN ).

By (3.3), we see that λ1|u|22 + λ2|v|22 ≥ µ̄s(RN ) − µ̄A,Bs (Ω) > 0, which means that
(u, v) 6≡ (0, 0). Since wn ⇀ 0 weakly in H1

A(Ω) and zn ⇀ 0 weakly in H1
B(Ω), we

have

|∇Aun|22 =
∫

Ω

|∇Awn|2 +
∫

Ω

|∇Au|2 + 2 Re
(∫

Ω

∇Awn · ∇Au
)

= |∇Awn|22 + |∇Au|22 + o(1),

|∇Bvn|22 = |∇Bzn|22 + |∇Bv|22 + o(1).

Then, (3.4) yields

µ̄A,Bs (Ω) = |∇Awn|22 + |∇Au|22 − λ1|u|22 + |∇Bzn|22 + |∇Bv|22 − λ2|v|22 + o(1). (3.5)

The Brezis-Lieb Lemma guarantees that

1 = µ1|u+ wn|2
∗(s)

2∗(s),s + µ2|v + zn|2
∗(s)

2∗(s),s + γ

∫
Ω

|u+ wn|α|v + zn|β

|x|s

= µ1|u|2
∗(s)

2∗(s),s + µ2|v|2
∗(s)

2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s

+ µ1|wn|2
∗(s)

2∗(s),s + µ2|zn|2
∗(s)

2∗(s),s + γ

∫
Ω

|wn|α|zn|β

|x|s
+ o(1).

Noting

µ1|u|2
∗(s)

2∗(s),s + µ2|v|2
∗(s)

2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
≤ 1,

µ1|wn|2
∗(s)

2∗(s),s + µ2|zn|2
∗(s)

2∗(s),s + γ

∫
Ω

|wn|α|zn|β

|x|s
≤ 1,

we have

1 ≤
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2

2∗(s)
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+
(
µ1|wn|2

∗(s)
2∗(s),s + µ2|zn|2

∗(s)
2∗(s),s + γ

∫
Ω

|wn|α|zn|β

|x|s
) 2

2∗(s)
+ o(1)

≤
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2

2∗(s)

+
1

µ̄s(RN )
(∣∣∇|wn|∣∣22 +

∣∣∇|zn|∣∣22)+ o(1)

≤
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2

2∗(s)

+
1

µ̄s(RN )
(
|∇Awn|22 + |∇Bzn|22

)
+ o(1).

It follows from (3.3), (3.5) and µ̄A,Bs (Ω) > 0 that

|∇Au|22 − λ1|u|22 + |∇Bv|22 − λ2|v|22

≤ µ̄A,Bs (Ω)
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2

2∗(s)

+
( µ̄A,Bs (Ω)
µ̄s(RN )

− 1
)(
|∇Awn|22 + |∇Bzn|22

)
+ o(1)

< µ̄A,Bs (Ω)
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
) 2

2∗(s)
+ o(1),

which, combining with (u, v) 6≡ (0, 0), implies

|∇Au|22 − λ1|u|22 + |∇Bv|22 − λ2|v|22(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω
|u|α|v|β
|x|s

) 2
2∗(s)

≤ µ̄A,Bs (Ω).

Then, µ̄A,Bs (Ω) is attained by (u, v). It remains to show that (u, v) can not be the
type of (u, 0) or (0, v). Suppose by contradiction that µ̄A,Bs (Ω) is attained by (u, 0).
Then

µ̄A,Bs (Ω) =
|∇Au|22 − λ1|u|22
µ

2
2∗(s)
1 |u|22∗(s),s

≥ µ
− 2

2∗(s)
1 µA,λ1

s (Ω),

which contradicts to Lemma 3.1. Hence, (u, v) can not be the type of (u, 0). Simi-
larly, it can not be (0, v), which completes the proof. �

Remark 3.2. Even if µ̄A,Bs (Ω) ≤ 0, it is also attained. Indeed, by (3.5) and
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω
|u|α|v|β
|x|s ≤ 1, we obtain

|∇Au|22 − λ1|u|22 + |∇Bv|22 − λ2|v|22
≤ µA,Bs (Ω)

≤ µA,Bs (Ω)
(
µ1|u|2

∗(s)
2∗(s),s + µ2|v|2

∗(s)
2∗(s),s + γ

∫
Ω

|u|α|v|β

|x|s
)
.

4. Ground states for the equations

By Lemma 2.4, Theorems 1.5–1.8, follow from Theorems 1.1–1.4 respectively.
Considering (1.3), by Theorem 1.5, we assume that uµ1 and vµ2 are ground

state solutions of −∆Au = µ1
|u|2
∗(s)−2u
|x|s and −∆Bv = µ1

|v|2
∗(s)−2v
|x|s , respectively. It
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follows from Lemma 2.3 that the ground state energies are

Mµ1 :=
2− s

2(N − s)
µ
−N−2

2−s
1

(
µs(RN )

)N−s
2−s , Mµ2 :=

2− s
2(N − s)

µ
−N−2

2−s
2

(
µs(RN )

)N−s
2−s .

We claim that if γ < 0, then (1.3) has no nontrivial ground state solution, which
is the reason that we only consider the case γ > 0 in this paper. In fact, if γ < 0,
then

|∇Au|22,RN − µ1|u|2
∗(s)

2∗(s),s,RN =
αγ

2∗(s)

∫
RN

|u|α|v|β

|x|s
≤ 0,

which implies

µ1|u|2
∗(s)

2∗(s),s,RN ≥ |∇Au|
2
2,RN ≥ µ

A
s (RN )|u|22∗(s),s,RN .

If u ∈ D1,2
A (RN ) \ {0}, then |u|2∗(s),s,RN ≥

(µAs (RN )
µ1

) 1
2∗(s)−2 , which yields that

|∇Au|22,RN ≥ µ
A
s (RN )

(µAs (RN )
µ1

) 2
2∗(s)−2 . Therefore,

Mµ1 =
2− s

2(N − s)
µ
−N−2

2−s
1

(
µAs (RN )

)N−s
2−s ≤ 2− s

2(N − s)
|∇Au|22,RN .

Similarly, Mµ2 ≤ 2−s
2(N−s) |∇Bv|

2
2,RN for any v ∈ D1,2

B (RN ) \ {0}. Suppose that (u, v)
is a ground state solution of (1.3). Then

M0 = I(u, v) =
2− s

2(N − s)
(
|∇Au|22,RN + |∇Bv|22,RN

)
≥


Mµ2 , if u = 0, v 6= 0,
Mµ1 +Mµ2 , if u 6= 0, v 6= 0,
Mµ1 , if u 6= 0, v = 0.

It can be seen that M0 ≤ min{Mµ1 , Mµ2}, which means that (1.3) has no nontrivial
ground state solution. Define

N ′ :=
{

(u, v) ∈ DA,A : u 6≡ 0, v 6≡ 0,

|∇Au|22,RN = µ1|u|2
∗(s)

2∗(s),s,RN +
αγ

2∗(s)

∫
RN

|u|α|v|β

|x|s
,

|∇Av|22,RN = µ2|v|2
∗(s)

2∗(s),s,RN +
βγ

2∗(s)

∫
RN

|u|α|v|β

|x|s
}
,

M′ :=
{

(u, v) ∈ HA,A : u 6≡ 0, v 6≡ 0,

|∇Au|22 − λ|u|22 = µ1|u|2
∗(s)

2∗(s),s +
αγ

2∗(s)

∫
Ω

|u|α|v|β

|x|s
,

|∇Av|22 − λ|v|22 = µ2|v|2
∗(s)

2∗(s),s +
βγ

2∗(s)

∫
Ω

|u|α|v|β

|x|s
}
,

M ′0 := inf(u,v)∈N ′ I(u, v) and M ′ := inf(u,v)∈M′ E(u, v). It can be seen from Theo-
rems 1.5 and 1.6 that

|∇Au|22,RN ≥
(2(N − s)

2− s
M1

) 2−s
N−s |u|22∗(s),s,RN , ∀u ∈ D1,2

A (RN ) (4.1)
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and

|∇Au|22 − λ|u|22 ≥
(2(N − s)

2− s
M2

) 2−s
N−s |u|22∗(s),s, ∀u ∈ H1

A(Ω).

Define functions:

F1(k, l) := µ1k
2∗(s)−2

2 +
αγ

2∗(s)
k
α−2

2 lβ/2 − 1, k > 0, l ≥ 0;

F2(k, l) := µ2l
2∗(s)−2

2 +
βγ

2∗(s)
k
α
2 l

β−2
2 − 1, k ≥ 0, l > 0.

(4.2)

Following the arguments as in [8, Lemma 2.4] or [14, Proposition 2.2], we have the
following result.

Proposition 4.1. If (A6) holds, then

k + l ≤ k0 + l0,

F1(k, l) ≥ 0, F2(k, l) ≥ 0,

k, l ≥ 0, (k, l) 6= (0, 0)
(4.3)

has a unique solution (k, l) = (k0, l0), where (k0, l0) is defined by (1.6).

Proof of Theorem 1.10. Recalling (1.5), we see that (
√
k0U,

√
l0U) ∈ N ′, that

(
√
k0U,

√
l0U) is a nontrivial solution of (1.3), and that

M ′0 ≤ I(
√
k0U,

√
l0U) =

(1
2
− 1

2∗(s)

)
(k0 + l0)|∇AU |22,RN = (k0 + l0)M1. (4.4)

On the other hand, assume that {(un, vn)} ⊂ N ′ is a minimizing sequence for
M ′0, that is, I(un, vn)→M ′0 as n→∞. Define

cn = |un|22∗(s),s,RN , dn = |vn|22∗(s),s,RN ,

and by (4.1), we obtain(2(N − s)M1

2− s

) 2−s
N−s

cn ≤ |∇Aun|22,RN

= µ1|un|2
∗(s)

2∗(s),s,RN +
αγ

2∗(s)

∫
RN

|un|α|vn|β

|x|s

≤ µ1c
2∗(s)

2
n +

αγ

2∗(s)
c
α
2
n d

β/2
n ,(2(N − s)M1

2− s

) 2−s
N−s

dn ≤ |∇Avn|22,RN

= µ2|vn|2
∗(s)

2∗(s),s,RN +
βγ

2∗(s)

∫
RN

|un|α|vn|β

|x|s

≤ µ2d
2∗(s)

2
n +

βγ

2∗(s)
c
α
2
n d

β/2
n .

(4.5)

Dividing both sides of the inequalities by
( 2(N−s)M1

2−s
) 2−s
N−s cn and

( 2(N−s)M1
2−s

) 2−s
N−s dn,

respectively, and setting

c̃n =
cn( 2(N−s)M1

2−s
)N−2
N−s

, d̃n =
dn( 2(N−s)M1

2−s
)N−2
N−s

,



16 Z. GUO, M. MELGAARD, W. ZOU EJDE-2017/199

we have

µ1c̃
2∗(s)−2

2
n +

αγ

2∗(s)
c̃
α−2

2
n d̃β/2n ≥ 1,

µ2d̃
2∗(s)−2

2
n +

βγ

2∗(s)
c̃
α
2
n d̃

β−2
2

n ≥ 1,

i.e., F1(c̃n, d̃n) ≥ 0 and F2(c̃n, d̃n) ≥ 0. Then, Proposition 4.1 ensures that c̃n+d̃n ≥
k0 + l0, which means that

cn + dn ≥ (k0 + l0)
(2(N − s)M1

2− s

)N−2
N−s

. (4.6)

It follows from (4.4), (4.5) and I(un, vn) = 2−s
2(N−s)‖(un, vn)‖2DA,A that(2(N − s)M1

2− s

) 2−s
N−s

(cn + dn) ≤ 2(N − s)
2− s

I(un, vn)

=
2(N − s)

2− s
M ′0 + o(1)

≤ 2(N − s)
2− s

(k0 + l0)M1 + o(1).

Combining this with (4.6), we obtain

cn + dn → (k0 + l0)
(2(N − s)M1

2− s

)N−2
N−s

, as n→∞.

Therefore,

M ′0 = lim
n→∞

I(un, vn)

≥ lim
n→∞

2− s
2(N − s)

(2(N − s)B1

2− s

) 2−s
N−s

(cn + dn) = (k0 + l0)M1.

By (4.4), we have
M ′0 = (k0 + l0)M1 = I(

√
k0U,

√
l0U). (4.7)

Theorem 1.7 ensures that M0 is attained by a nontrivial ground state solution
(u, v) ∈ N of (1.3) with B = A. It is easy to see that (u, v) ∈ N ′, which implies
that

M0 = I(u, v) ≥ inf
(ũ,ṽ)∈N ′

I(ũ, ṽ) = M ′0.

Obviously, M0 ≤ M ′0 follows from N ′ ⊂ N . Therefore, M0 = M ′0, and combining
this with (4.7), we see that (

√
k0U,

√
l0U) is a ground state solution of (1.3). By

(4.7), Theorem 1.5 and Lemma 2.3, we have

M0 =
2− s

2(N − s)
(k0 + l0)

(
µs(RN )

)N−s
2−s .

�

The proof Theorem 1.11 is similar to that of Theorem 1.10, it is omitted.

5. Application in three dimensions

In this section, we consider a constant magnetic field in dimension 3 as an ap-
plication of Theorems 1.1 and 1.3.
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Constant magnetic field. Let Ã : R3 → R3 by Ã(x1, x2, x3) := (−x2, x1, 0),
which is called constant magnetic potential as curl Ã = 2 6= 0. Theorem 1.1 guar-
antees that µrÃs (R3) is not achieved, and then

(−i∇+ rÃ)2u =
|u|2∗(s)−2u

|x|s
, u ∈ D1,2

Ã
(RN )

has no ground state solution, where r is a nonzero real number. By Theorem 1.3,
we obtain that under condition (A3), µ̄r1Ã,r2Ãs (R3) is not attained, and thus,

(−i∇+ r1Ã)2u = µ1
|u|2∗(s)−2u

|x|s
+

αγ

2∗(s)
|u|α−2u|v|β

|x|s
,

(−i∇+ r2Ã)2v = µ2
|v|2∗(s)−2v

|x|s
+

βγ

2∗(s)
|u|α|v|β−2v

|x|s
,

u, v ∈ D1,2

Ã
(R3)

has no ground state solution, where r1 and r2 are nonzero real numbers.
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