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Abstract. This article presents sufficient conditions for the existence of so-
lutions of the anisotropic quasilinear elliptic equation with variable exponent

and nonlinear Robin boundary conditions,

−
NX

i=1

∂

∂xi

“˛̨ ∂u
∂xi

˛̨pi(x)−2 ∂u

∂xi

”
+

NX
i=1

|u|pi(x)−2u+ λ|u|m(x)−2u = γg(x, u)

in Ω,

NX
i=1

˛̨ ∂u
∂xi

˛̨pi(x)−2 ∂u

∂xi
υi = µ|u|q(x)−2u on ∂Ω.

Under appropriate assumptions on the data, we prove some existence and

multiplicity results. The methods are based on Mountain Pass and Fountain

theorems.

1. Introduction

Many problems in physics and mechanics can be modeled with sufficient accuracy
using classical Lebesgue and Sobolev spaces, Lp(Ω) and W 1,p(Ω), where p is a fixed
constant and Ω is an appropriate domain. But for the electrorheological fluids
(Smart fluids), this is not adequate but rather, the exponent should be able to
vary. This leads to study the problem in the frame-work of variable exponent
Lebesgue and Sobolev spaces, Lp(·)(Ω) and W 1,p(·)(Ω), where p(·) is a real-valued
function; see, e.g. [12, 13].

On the other hand, it has been experimentally shown that the above-mentioned
fluids may have their viscosity undergoing a significant change; see, e.g. [3]. Con-
sequently, the mathematical modelling of such fluids requires the introduction of
the so-called anisotropic variable spaces.Indeed, there is by now a large number of
papers and increasing interest about anisotropic problems. With no hope of be-
ing complete, let us mention some pioneering works on anisotropic Sobolev spaces
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[20, 24] and some more recent regularity results for minimizers of anisotropic func-
tionals [1, 6, 21].

Therefore, in the recent years, the study of various mathematical problems mod-
eled by quasilinear elliptic and parabolic equations with both anisotropic and vari-
able exponent has received considerable attention. Let us mention many works in
that direction by Antontsev and Shmarev; see, e.g. [2] and the references therein.

Our paper is mainly devoted to the existence and multiplicity of solutions of
quasilinear elliptic equations under nonlinear Robin boundary condition such as

−
N∑
i=1

∂

∂xi

(∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi

)
+

N∑
i=1

|u|pi(x)−2u+ λ|u|m(x)−2u

= γg(x, u) in Ω,
N∑
i=1

∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi
υi = µ|u|q(x)−2u on ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with n ≥ 2, with smooth boundary ∂Ω and
υi are the components of the outer normal unit vector and for i ∈ {1, . . . , N},
pi,m ∈ C(Ω̄), q ∈ C(∂Ω). The functions pi and g are supposed to satisfy some
conditions to be specified below, while λ, γ, and µ are real parameters, with γ, µ > 0.

We shall give conditions under which problem (1.1) has infinitely many solutions.
According to the behaviour of g and to the kind of results we want to prove,
variational methods turn out to be more appropriate.
When lims→0 g(x, s)/|s|σ = 0, σ to be made precise later, Mountain Pass theorem
provides the existence of at least a solution of (1.1) and, on the other hand, when
g is an odd function, Fountain’s theorem yields the existence of infinitely many
solutions.

A host of publications exist for this type of problems when the boundary con-
dition is replaced by ∂u

∂ν = 0 on ∂Ω and γ = 0 ; see, e.g. [16] and the references
therein, where the authors obtained existence results by means of standard varia-
tional tools. The associated problem with Dirichlet boundary conditions has also
been treated by many authors; see, e.g. [3, 15]. Furthermore, existence of positive
solutions for nonlinear Robin problem involving the p(x)-Laplacian have been stud-
ied by S. G. Deng; in [9], by using the sub-super solutions and variational methods.
We consider here the case where µ is positive and g satisfies more hypotheses than
in [17], to use the Mountain Passe and Fountain theorems. It turns out that the
condition q− > P+

+ plays an important role in the proofs of our main results.
This article is divided into four sections. In the second section, we introduce

some basic properties of the generalized Lebesgue-Sobolev space W 1,p(x)(Ω) and
anisotropic Sobolev spaces W 1,−→p (x)(Ω) , and state the existence and multiplicity
results concerning the problem (1.1). The third section is devoted to the proofs
of the main results and finally, in the fourth section we deal with a generalized
equation related to our problem (1.1).

2. Preliminaries and main results

To study problem (1.1), we need to introduce the notions of Sobolev space
W 1,p(x)(Ω) and anisotropic Sobolev spaces W 1,−→p (x)(Ω), with variable exponent.
For convenience, we only recall some basic facts which will be used later. Let
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Ω ⊂ RN be a measurable subset with meas(Ω) > 0. We write

C(Ω̄) = {u : u is a continuous function in Ω̄},
C+(Ω̄) = {u ∈ C(Ω̄) : ess infΩ u ≥ 1}.

Suppose that Ω is a bounded domain of RN with a smooth boundary ∂Ω, and
p ∈ C(Ω̄,R) with p(x) > 1, for any x ∈ Ω.

Denote p− = infx∈Ωp(x) and p+ = supx∈Ωp(x); then we have, p− > 1 and
p+ <∞. Denote by M be either Ω or ∂Ω. Define the variable exponent Lebesgue
space

Lp(x)(M) =
{
u | u :M→ R is measurable and

∫
M
|u(x)|p(x) dx <∞

}
,

endowed with the Luxembourg norm

|u|p(x) = |u|Lp(x)(M) = inf
{
τ > 0;

∫
M

∣∣u(x)
τ

∣∣p(x) dx ≤ 1
}
.

Proposition 2.1 ([8]). Let ρ(u) =
∫
M

∣∣u(x)
τ

∣∣p(x) dx. For u, uk ∈ Lp(x)(M)(k =
1, 2, . . . ), we have:

(1) |u|Lp(x)(M) ≤ 1⇒ |u|p
+

Lp(x)(M)
≤ ρ(u) ≤ |u|p

−

Lp(x)(M)
.

(2) |u|Lp(x)(M) > 1⇒ |u|p
−

Lp(x)(M)
≤ ρ(u) ≤ |u|p

+

Lp(x)(M)
.

(3) |uk|Lp(x)(M) → 0⇔ ρ(uk)→ 0.
(4) |uk|Lp(x)(M) →∞⇔ ρ(uk)→∞.

We define the variable exponent Sobolev space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
endowed with the norm

‖u‖ = inf
{
τ > 0;

∫
Ω

(∣∣∇u(x)
τ

∣∣p(x) +
∣∣u(x)
τ

∣∣p(x)
)

dx ≤ 1
}
.

Proposition 2.2 (See [12]). Both (Lp(x)(M)), | · |p(x)) and (W 1,p(x)(Ω), ‖ · ‖) are
separable, reflexive and uniformly convex Banach spaces.

Proposition 2.3 (See [12]). The Hölder inequality holds, namely∫
M
|uv|dx ≤ 2|u|p(x)|v|q(x); ∀u ∈ Lp(x)(M), ∀v ∈ Lq(x)(M),

where 1
p(x) + 1

q(x) = 1.

Proposition 2.4 (See [8]). Let ρ(u) =
∫

Ω
(|∇u(x)|p(x) + |u(x)|p(x)) dx. For u, uk ∈

W 1,p(x)(Ω)(k = 1, 2, . . . ), we have

(1) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− .
(2) ‖u‖ > 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ .
(3) ‖uk‖ → 0⇔ ρ(uk)→ 0.
(4) ‖uk‖ → ∞⇔ ρ(uk)→∞.

Let −→p (·) : Ω→ RN be a vectorial function, −→p (·) = (p1(·), p2(·), . . . , pN (·)) such
that 2 ≤ pi ≤ N and put

pM (x) = max{p1(x), . . . , pN (x)}.
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The anisotropic Sobolev space with variable exponent is defined by

W 1,−→p (x)(Ω) = {u ∈ LpM (x)(Ω) :
∂u

∂xi
∈ Lpi(·)(Ω),∀i ∈ {1, . . . , N}},

endowed with the norm

‖u‖−→p (·) =
N∑
i=1

∣∣ ∂u
∂xi

∣∣
pi(·)

+
N∑
i=1

|u|pi(·) .

For convenience, we denote:

P−− = inf{p−1 , p
−
2 , . . . , p

−
N}, P+

+ = sup{p+
1 , p

+
2 , . . . , p

+
N}

and write X = W 1,−→p (x)(Ω). We know that X is reflexive if P−− > 1, (see e.g [22]).
We define

J(u) =
∫

Ω

( N∑
i=1

1
pi(x)

∣∣ ∂u
∂xi

∣∣pi(x) +
N∑
i=1

1
pi(x)

|u|pi(x)
)

dx,

G(x, u) =
∫ u

0

g(x, s)ds.

We have

(J ′u, v) =
∫

Ω

( N∑
i=1

∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi

∂v

∂xi
+

N∑
i=1

|u|pi(x)−2uv
)

dx,

for all v ∈ X. In all this paper C, Ci(i = 0, 1, 2, . . . ) represents different positive
real constants.

We make the following assumptions on the functions q and g.

(H0) q ∈ C(∂Ω) satisfies : 1 ≤ q(x) ≤ (N−1)P−−
N−P−−

for all x ∈ ∂Ω and q− < P+
+ .

(H1) g : Ω× R→ R is a Caratheodory type function and there exist a constant

C > 0 and a function α ∈ C(Ω̄) such that: 1 < α(x) <
NP−−
N−P−−

, for all x ∈ Ω̄

and

|g(x, s)| ≤ C(1 + |s|α(x)−1) for all (x, s) ∈ Ω× R.

(H2) There exists M > 0 and θλ ≥ m+ (resp θλ ≤ m− ) if λ ≥ 0 (resp λ < 0 ).
such that for all s with |s| ≥M and x ∈ Ω, we have

0 < θλG(x, s) ≤ sg(x, s).

(H3) g(x, s) = ◦(|s|P
+
+ ) as s→ 0 and uniformly for x ∈ Ω,

(H4) g(x,−s) = −g(x, s), x ∈ Ω, s ∈ R.

We say that u ∈ X is a weak solution of (1.1) if∫
Ω

( N∑
i=1

∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi

∂v

∂xi
+

N∑
i=1

|u|pi(x)−2uv
)

dx+ λ

∫
Ω

|u|m(x)−2uv dx

=
∫

Ω

γg(x, u)v dx+ µ

∫
∂Ω

|u|q(x)−2uv dx,

for all v ∈ X.



EJDE-2017/188 EXISTENCE AND MULTIPLICITY OF SOLUTIONS 5

The energy functional associated with problem (1.1) is

Φ(u) =
∫

Ω

( N∑
i=1

1
pi(x)

∣∣ ∂u
∂xi

∣∣+
N∑
i=1

1
pi(x)

|u|pi(x)
)

dx

+ λ

∫
Ω

1
m(x)

|u|m(x) dx− γ
∫

Ω

G(x, u) dx− µ
∫
∂Ω

1
q(x)
|u|q(x) dx.

(2.1)

Proposition 2.5 (See [14, 11]).
(1) L ≡ J ′ : X → X∗ is a continuous, bounded and strictly monotone operator;
(2) L is a mapping of type (S+), i.e. if un ⇀ u in X, and limn→+∞(L(un)−

L(u), un − u) ≤ 0, then un → u in X;
(3) L : X → X∗ is a homeomorphism.

The following are embedding results on anisotropic generalized Sobolev spaces
and will be used later.

Proposition 2.6 (See [21]). Suppose Ω ⊂ RN is a bounded domain with smooth

boundary. For any q ∈ C+(Ω) satisfying q(x) <
NP−−
N−P−−

for all x ∈ Ω, the embedding

W 1,−→p (x)(Ω) ↪→ Lq(x)(Ω)

is continuous and compact.

Proposition 2.7 (See [21]). Assume that the boundary of Ω possesses the cone
property and pi ∈ C(Ω), 2 ≤ pi < N for all i ∈ {1, 2, . . . , N}. If q ∈ C(∂Ω) satisfies

the hypothesis 1 < q(x) <
(N−1)P−−
N−P−−

for all x ∈ ∂Ω, then the embedding

W 1,−→p (x)(Ω) ↪→ Lq(x)(∂Ω)

is continuous and compact.

The main results of this article are as follows:

Theorem 2.8. Suppose that (H0)–(H2), (H4) hold with m+ <
NP−−
N−P−−

and P+
+ <

min(α−,m−). Then, for any λ ∈ R and µ, γ > 0, problem (1.1) has at least a
nontrivial weak solution.

Theorem 2.9. Suppose that (H0)–(H2) , (H5) hold with m+ <
NP−−
N−P−−

and P+
+ <

min(α−,m−). Then, for any λ ∈ R and µ, γ > 0, problem (1.1) has infinite many
pairs of weak solutions.

3. Proofs of main results

To prove Theorem 2.8, we shall use the Mountain Pass theorem [25]. We first
start with the following lemmas.

Lemma 3.1. If (H0)–(H2) hold, then for any λ ∈ R, the functional Φ satisfies the
Palais Smale condition (PS).

Proof. Suppose that (un) ⊂ X is a Palais Smale sequence , ie,

sup |Φ(un)| ≤ C,Φ′(un)→ 0, as n→∞.
We shall prove that (un) has a convergent subsequence.
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Let us show that (un) is bounded in X. Denote by m̃ :≡ m+ if λ > 0 and
m̃ :≡ m− if λ ≤ 0. Since Φ(un) is bounded, then by using (H1), we have for large
n,

C + C‖un‖ ≥ Φ(un)− θλΦ′(un)

≥
( 1
P+

+

− 1
θλ

) N∑
i=1

∫
Ω

(∣∣ ∂u
∂xi

∣∣pi(x) + |un|pi(x)
)

dx

+ λ
( 1
m̃
− 1
θλ

)∫
Ω

|un|m(x) dx− γ
∫

Ω

(G(x, un)− θλg(x, un)un) dx

− 1
θλ
〈Φ′(un), un〉+ µ

∫
∂Ω

( 1
θλ
− 1
q(x)

)
|un|q(x) dx

≥
( 1
P+

+

− 1
θλ

) N∑
i=1

∣∣ ∂u
∂xi

∣∣P−−
pi(x)

− 1
θλ

(Φ′(un), un)

+ µ
( 1
θλ
− 1
q−

)∫
∂Ω

|un|q(x) dx.

Now, according to [4, page 6], we have

‖u‖P
−
−
−→p (·)

2P
−
−−1NP−−−1

≤
N∑
i=1

(∣∣ ∂u
∂xi

∣∣P−−
pi(·)

+ |u|P
−
−
pi(·)

)
≤

N∑
i=1

∫
Ω

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx.

Then,

C + C‖un‖ ≥
1

2P
−
−−1NP−−−1

( 1
P+

+

− 1
θλ

)
‖un‖

P−−
−→p (·) −

C1

θλ
‖un‖−→p (·) − C.

Since µ > 0, then by using condition (H2) and the inequality above, we deduce that
un is bounded in X. The proof is complete. �

Lemma 3.2. There exist r1, C
′ > 0 such that Φ(u) ≥ C ′, for all u ∈ X such that

‖u‖ = r1.

Proof. Conditions (H0), (H1) and (H2) ensure that, for any ε > 0, we have

|G(x, s)| ≤ ε|s|P
+
+ + C(ε)|s|α(x), for all (x, s) ∈ Ω× R.

For ‖u‖ small enough, we thus obtain

Φ(u) ≥ 1
P+

+

N∑
i=1

∫
Ω

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx+ λ

∫
Ω

1
m(x)

|u|m(x) dx

−
∫

Ω

(ε|u|P
+
+ + C(ε)|u|α(x)) dx− µ

q−

∫
∂Ω

|u|q(x) dx

≥ 1

P+
+ 2P

+
+−1NP+

+−1
‖u‖P

+
+
−→p (·) −

|λ|
m−

∫
Ω

|u|m(x) dx−
∫

Ω

ε|u|P
+
+ dx

−
∫

Ω

C(ε)|u|α(x) dx− µ

q−

∫
∂Ω

|u|q(x) dx.

(3.1)
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Since P+
+ < α− ≤ α(x) <

NP−−
N−P−−

, for all x ∈ Ω and q(x) <
(N−1)P−−
N−P−−

, for all x ∈ ∂Ω;

then, we have

W 1,−→p (x)(Ω) ↪→ LP
+
+ (Ω) and W 1,−→p (x)(Ω) ↪→ Lq(x)(∂Ω),

with continuous and compact embeddings. Consequently, there exist two constants
C ′1 > 0 and C ′2 > 0 such that

|u|
L
P

+
+ (Ω)

≤ C ′2‖u‖, |u|Lq(x)(Ω) ≤ C ′1‖u‖, for all u ∈ X. (3.2)

By using (3.2) for ‖u‖ small enough, we obtain from (3.1) that

Φ(u) ≥ 1

P+
+ 2P

+
+−1NP+

+−1
‖u‖P

+
+ − |λ|

m−
max{|u|m

+

Lm(x)(Ω), |u|
m−

Lm(x)(Ω)}

− εC ′2‖u‖P
+
+ − C(ε)C ′3‖u‖α

−
− µ

q−
C ′1‖u‖q

−
.

Since W 1,−→p (Ω) ↪→ Lm
+

(Ω), we have

Φ(u) ≥ 1

P+
+ 2P

+
+−1NP+

+−1
‖u‖P

+
+ − |λ|C

m−
max{‖u‖m

+
, ‖u‖m

−
}

− εC ′2
P+

+ ‖u‖P
+
+ − C(ε)C ′3‖u‖α

−
− µ

q−
C ′1‖u‖q

−
.

Now, let ε > 0 be small enough so that:

0 < εC ′2
P+

+ ≤ 1

2P+
+ 2P

+
+−1NP+

+−1
=: c0.

We have

Φ(u) ≥ c0‖u‖P
+
+ − |λ|C

m−
max{‖u‖m

+
, ‖u‖m

−
} − C(ε)‖u‖α

−
− µC ′1

q−
‖u‖q

−

≥ ‖u‖P
+
+

(
c0 −

|λ|C
m−

max{‖u‖m
+−P+

+ , ‖u‖m
−−P+

+ }
)

− ‖u‖P
+
+

(
C(ε)‖u‖α

−−P+
+ +

µC ′1
q−
‖u‖q

−−P+
+

)
.

Since P+
+ < min (α−,m−, q−), then there exist r1 > 0 and C ′ > 0 such that

Φ(u) ≥ C ′ > 0, for any u ∈ X.

Hence, the proof is complete. �

Proof of Theorem 2.8. To apply the Mountain Pass theorem ([25]), we have to
prove that Φ(tu) → −∞ as t → +∞, for some u ∈ X. From (H2), it follows
that

G(x, s) ≥ C|s|θλ , ∀x ∈ Ω̄,∀|s| ≥M.

For u ∈ X and t > 1, we have

Φ(tu) ≤ 1
P−−

N∑
i=1

∫
Ω

(∣∣∂(tu)
∂xi

∣∣pi(x) + |tu|pi(x)
)

dx+ λ

∫
Ω

1
m(x)

|tu|m(x) dx

−
∫

Ω

G(x, tu) dx− µ

q+

∫
∂Ω

|tu|q(x) dx
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≤ tP
+
+

P−−

N∑
i=1

∫
Ω

(∣∣∂(tu)
∂xi

∣∣pi(x) + |u|pi(x)
)

dx+ λtem ∫
Ω

1
m(x)

|u|m(x) dx

− Ctθλ
∫

Ω

|u|θλ dx− µtq
−

q+

∫
∂Ω

|u|q(x) dx,

where again m̃ = m+ if λ > 0 and m̃ = m− if λ ≤ 0.
By (H0) and (H2), it follows that, for any λ ∈ R, Φ(tu) → −∞ as (t → +∞).

Since Φ(0) = 0, it follows that Φ satisfies the condition of the Mountain Pass lemma,
and so Φ admits at least one nontrivial critical point u0 ∈ X; which is characterized
by

τ = inf
h∈Γ

sup
t∈[0,1]

Φ(h(t)),

where

Γ = {h ∈ C([0, 1], X);h(0) = 0 and h(1) = e}.

�

Proof of Theorem 2.9. Let X be a reflexive and separable Banach space. It is
well know (see, e.g. [1]) that there are {ej}∞j=1 ⊂ X and {e∗j}∞j=1 ⊂ X∗ (where X∗

is the topological dual of X) such that

X = span{ej : 1, 2, . . . }, X∗ = span{e∗j : 1, 2, . . . },

and

〈e∗j , ei〉 =

{
1 if i = j,

0 if i 6= j.
(3.3)

For convenience, we write Xj = span{ej}, Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Denote

p∗(x) =

{
Np(x)/(N − p(x)) if p(x) < N,

+∞ if p(x) ≥ N.

Lemma 3.3 (See [8, 10]). Let β(x) ∈ C+(Ω̄), with β(x) < p∗(x) for x ∈ Ω̄ and
αk := sup{|u|Lβ(x)(Ω); ‖u‖ = 1, u ∈ Zk}. Then, we have limk→∞ αk = 0.

To prove Theorem 2.9, we shall use the Fountain theorem (see [25, Theorem 3.6]
). Obviously, Φ ∈ C1(X,R) is an even functional. By using (H0) and (H1) we first
prove that if k is large enough, then there exist ρk > νk > 0 such that

bk := inf{Φ(u)/u ∈ Zk, ‖u‖ = νk} → +∞ as k → +∞; (3.4)

ak := max{Φ(u)/u ∈ Yk, ‖u‖ = ρk} → 0 as k → +∞. (3.5)
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Proof of (3.4): For any u ∈ Zk, |u| = rk > 1, we have

Φ(u) ≥ 1
P+

+

N∑
i=1

∫
Ω

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− |λ|
m−

∫
Ω

|u|m(x) dx

− C
∫

Ω

(1 + |u|α(x)) dx− µ

q−

∫
∂Ω

|u|q(x) dx

≥ 1
P+

+

N∑
i=1

∫
Ω

∣∣ ∂u
∂xi

∣∣P−− dx− |λ|
m−

∫
Ω

|u|m(x) dx

− C
∫

Ω

(1 + |u|α(x)) dx− µ

q−

∫
∂Ω

|u|q(x) dx

≥ 1

P+
+ 2P

−
−−1NP−−−1

‖u‖p
−
− − C|λ|

m−
|u|m(ξ)

Lm(x)

− C1|u|α(ξ)
α(x) −

µ

q−
|u|q(ξ)

Lq(x)(∂Ω)
− C2, for some ξ ∈ Ω.

(3.6)

So, for the study of the previous inequality, we only need to consider either the case
where m(x) ≥ α(x) or the case where m(x) < α(x) for all x ∈ Ω.

Let us assume that m(x) ≤ α(x) for all x ∈ Ω. Then, we have Lα(x)(Ω) ⊂
Lm(x)(Ω). Thus, there is a positive constant C3 > 0 such that

|u|Lm(x)(Ω) ≤ C3|u|Lα(x)(Ω) for all u ∈ X.

So, for any ξ ∈ Ω, we have

|u|m(ξ)

Lm(x)(Ω)
≤ Cm(ξ)|u|m(ξ)

Lα(x)(Ω)
.

Let us denote e := 1/(2P
−
−−1NP−−−1). Then, for any ξ ∈ Ω, we have

Φ(u)

≥ e

P+
+

‖u‖P
−
− − C ′|u|m(ξ)

Lα(x) − C1|u|α(ξ)

Lα(x)(Ω)
− µ

q−
|u|q(ξ)

Lq(x)(∂Ω)
− C2

≥ e

P+
+

‖u‖P
−
− − C max{|u|α(ξ)

Lα(x)(Ω)
, |u|m(ξ)

Lα(x)(Ω)
} − µ

q−
|u|q(ξ)

Lq(x)(∂Ω)
− C2.

(3.7)

Denote

E = Lα(x)(Ω) ∩ Lq(x)(∂Ω),

A = {u ∈ E : |u|Lα(x)(Ω) ≤ 1, |u|Lq(x)(∂Ω) ≤ 1},
B = {u ∈ E : |u|Lα(x)(Ω) > 1, |u|Lq(x)(∂Ω) ≤ 1},
C = {u ∈ E; |u|Lα(x)(Ω) ≤ 1, |u|Lq(x)(∂Ω) > 1},
D = {u ∈ E; |u|Lα(x)(Ω) ≥ 1, |u|Lq(x)(∂Ω) > 1}.

From (3.7), we have

Φ(u) ≥



e
P+

+
‖u‖P

−
− − C1 if u ∈ A,

e
P+

+
‖u‖P

−
− − C1(αk|u|)α

+ − C2 if u ∈ B,
e
P+

+
‖u‖P

−
− − µ

q− (βk|u|)q
+ −−C1 if u ∈ C,

e
P+

+
‖u‖P

−
− − C1(αk|u|)α

+ − µ
q− (βk|u|)q

+ − C2, if u ∈ D,
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where βk = sup{|u|Lq(x)(∂Ω); ‖u‖ = 1, u ∈ Zk}. It is obvious that Φ(u) → +∞ as
‖u‖ → +∞ in A.

For u ∈ B ∪ C, we have

Φ(u) ≥ e

P+
+

‖u‖P
−
− − C2(α̃k|u|)eα+

− C3,

By taking α̃k to be either αk or βk and α̃ = α+ or q+, we obtain

Φ(u) ≥ e
( 1
P+

+

− 1
α̃+

)(C2

e
α̃+α̃k

eα+
) P

−
−

P
−
−−eα+

− C3.

Since α̃k → 0 as k →∞ and α̃+ > P+
+ , then

(
C2
e α̃

+α̃k
eα+
) 1
P
−
−−eα+ →∞ as k →∞.

Consequently, we have

Φ(u)→ +∞ as ‖u‖ → +∞, u ∈ Zk.

If u ∈ D, then

Φ(u) ≥ e

P+
+

‖u‖P
−
− − C(αα

+

k |u|α
+

)− µ

q−
(βq

+

k |u|
q+)− C1.

By assuming α+ ≤ q+, we obtain

Φ(u) ≥ e

P+
+

‖u‖P
−
− − C(αα

+

k |u|q
+

)− µ

q−
(βq

+

k |u|
q+)− C1

≥ e

P+
+

‖u‖P
−
− − (Cαα

+

k +
µ

q−
βq

+

k )|u|q
+
− C1

≥ e

P+
+

‖u‖P
−
− − C3(αα

+

k + βq
+

k )|u|q
+
− C1

≥ e
( 1
P+

+

− 1
q+

) [
C3q

+(αα
+

k + βq
+

k )
] P

−
−

P
−
−−q

+ − C1.

Since q+ > P+
+ , we then have [C3q

+(αα
+

k + βq
+

k )]
1

P
−
−−q

+ → ∞, as k → ∞. Conse-
quently, we obtain Φ(u)→ +∞ as ‖u‖ → +∞, u ∈ Zk. Now, from condition (H2),
we have

G(x, s) ≥ C1|s|θλ − C2, for any (x, s) ∈ Ω× R.
Then there exist constants C ′1, C

′
3 > 0 such that

Φ(u) ≤ C ′1
P−−

N∑
i=1

∫
Ω

∣∣ ∂u
∂xi

∣∣pi(x) dx+
λ

m̂

∫
Ω

|u|m(x) dx− C ′2‖u‖θλ − C ′3,

where m̂ = m− if λ > 0 and m̂ = m+ if λ ≤ 0. Hence, we obtain the inequality
N∑
i=1

∣∣ ∂u
∂xi

∣∣P+
+

Lpi(x)(Ω)
≤ C

( N∑
i=1

∣∣ ∂u
∂xi

∣∣
Lpi(x)(Ω)

)P+
+
,

Where C is a positive constant.
In the case λ > 0, we obtain

Φ(u) ≤ C ′

P−−
‖u‖P

+
+ +

C4λ

m̂
‖u‖m

+
− C ′2‖u‖θλ − C ′3.



EJDE-2017/188 EXISTENCE AND MULTIPLICITY OF SOLUTIONS 11

But we have W 1,−→p (x)(Ω) ↪→ Lm(x)(Ω), and W 1,−→p (x)(Ω) ↪→ Lq(x)(∂Ω). Then,
as θλ > max(P+

+ ,m
+) and dimYk = k, it is easy to see that

Φ(u)→ −∞ as ‖u‖ → +∞ for u ∈ Yk.

For the case λ ≤ 0, we have

Φ(u) ≤ C ′

P−−
‖u‖P

+
− C ′2‖u‖θλ − C ′3.

Now, as we have θλ > P+
+ and dimYk = k, it is also easy to see that

Φ(u)→ −∞ as ‖u‖ → +∞ for u ∈ Yk.

4. A generalized equation

We shall now consider the generalized equation

−
n∑
i=1

∂u

∂xi

(∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi

)
+

n∑
i=1

|u|pi(x)−2u

= λg1(x, u) + νg2(x, u) in Ω,
n∑
i=1

∣∣ ∂u
∂xi

∣∣pi(x)−2 ∂u

∂xi
υi = µf(x, u) on ∂Ω,

(4.1)

where λ, ν, µ > 0 are real numbers, pi(x) ∈ C(Ω̄) with 2 ≤ pi(x) ≤ N for all
i ∈ {1, 2, . . . , N}, and g1, g2 : Ω×R→ R are two functions of class C1 with respect
to the Ω-variable, and f : ∂Ω×R→ R is of class C1 with respect to the ∂Ω-variable.
We make the following assumptions on the functions q, g1, g2 and f .

(H5) For i = 1, 2, qi ∈ C(Ω̄) satisfies 1 < qi(x) <
NP−−
N−P−−

for all x ∈ Ω.

(H6) (i) For i = 1, 2, gi : Ω×R→ R satisfies the Caratheodory condition, and
there exist some positive constant Ci such that

|gi(x, s)| ≤ C1 + C2|s|qi(x)−1 for (x, s) ∈ Ω× R.

(ii) There exists M > 0, σ > P+
+ such that for all |s| ≥M and x ∈ Ω,

0 < σG2(x, s) ≤ g2(x, s)s.

(H7) There exist δ1 > 0, C3 > 0 and q3 ∈ C(Ω̄) such that

G1(x, s) ≥ C3|s|q3(x),∀(x, s) ∈ Ω× (0, δ1],

where max(q−3 , q
+
1 ) < P−− < P+

+ < q−2 .
(H8) g2(x, s) = ◦(|s|P

+
+−1) as s→ 0 uniformly for x ∈ Ω.

(H9) (i) f : ∂Ω× R→ R satisfies the Caratheodory condition and there exists
a constant C > 0 such that

|f(x, s)| ≤ C(1 + |s|β(x)−1), ∀(x, s) ∈ ∂Ω× R;

where β(x) ∈ C(∂Ω) with 1 < β− ≤ β+ < P−− and β(x) <
(N−1)P−−
N−P−−

for all x ∈ ∂Ω.
(ii) There exist R > 0, such that for all |s| ≥ R and x ∈ ∂Ω

0 < σF (x, s) ≤ f(x, s)s.
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(H10) There exist δ2 > 0, C4 > 0 and q4(x) ∈ C(∂Ω) such that

F (x, s) ≥ C4|s|q4(x), ∀x ∈ ∂Ω, ∀|s| ≤ δ2,

where 1 < q4 <
(N−1)P−−
N−P−−

and q+
4 < P−− for all x ∈ ∂Ω.

(H11) For i = 1, 2, gi(x,−s) = −gi(x, s) for all (x, s) ∈ Ω × R, and f(x,−s) =
−f(x, s) for all (x, s) ∈ ∂Ω× R.

We denote

g(x, s) = λg1(x, s) + γg2(x, s), Gi(x, s) =
∫ s

0

gi(x, t) dt (i = 1, 2),

G(x, s) =
∫ s

0

g(x, t) dt, F (x, s) =
∫ s

0

f(x, t) dt;

and the associated functional

Φ(u) =
N∑
i=1

∫
Ω

1
pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx−
∫

Ω

G(x, u) dx− µ
∫
∂Ω

F (x, u) dx.

Proposition 4.1. If (H5), (H6) and (H9) hold, then for every λ, γ, µ ≥ 0 the
functional Φ satisfies the Palais Small condition (PS).

Proof. We use the following inequalities: For x ∈ Ω, s ∈ R
σG2(x, s) ≤ g2(x, s)s+ C3,

σG(x, s)− g(x, s)s ≤ [σG1(x, s)− sg1(x, s)] + [σG2(x, s)− sg2(x, s)]

≤ (C1 + C2|s|q1(x)) + C3.

Suppose that (un) ⊂ X is a (PS) sequence ; i.e,

sup |Φ(un)| ≤ C,Φ′(un)→ 0, as n→∞.
Let us show that (un) is bounded in X. Since Φ(un) is bounded, then by using
hypothesis (H6) and (H9), we have for n large enough

C + C‖un‖ ≥ σΦ(un)− Φ′(un)

≥
( 1
P+

+

− 1
σ

) N∑
i=1

∫
Ω

(∣∣ ∂u
∂xi

∣∣pi(x) + |un|pi(x)
)

dx

−
∫

Ω

(σG(x, un)− g(x, un)un) dx

− µ
∫
∂Ω

(σf(x, un)− f(x, un)un) dx

≥ 1

2P
−
−−1NP−−−1

( 1
p+

+

− 1
σ

)
‖un‖

P−−
−→p (·) − C

′
∫

Ω

|un|q1 dx

− C ′ −
∫
∂Ω

(σf(x, un)− f(x, un)un) dx.

(4.2)

Applying (H9) for ‖un‖ large enough, we then get

C + C‖un‖ ≥
1

2P
−
−−1NP−−−1

( 1
p+

+

− 1
σ

)
‖un‖P

−
− − C ′‖un‖q

+
1 − C ′3.

Now, as W 1,−→p (x)(Ω) ↪→ Lq
+
1 (Ω) is a continuous and compact embedding, from the

inequality above, we deduce that un is bounded in X. The proof is complete. �
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Remark 4.2. It follows from (H6) that

G2(x, s) ≥ C5|s|1/σ − C6, ∀x ∈ Ω, ∀s ∈ R.

The main results of this section are as follows:

Proposition 4.3 ([14]). Assume that ψ : X → R is weakly-strongly continuous
and that ψ(0) = 0. Let ν > 0 be given. Set

βk = βk(ν) = sup
u∈Zk,‖u‖≤ν

|ψ(u)|.

Then βk → 0 as k →∞.

Theorem 4.4. Assume that (H5), (H6) and (H9) hold.
(1) If in addition, (H10) holds, then for every γ, µ > 0, there exists r0(γ) > 0

such that when 0 ≤ λ, µ ≤ r0(γ), problem (4.1) has a nontrivial solution u1

such that Φ(u1) > 0.
(2) If in addition, (H7) and (H10) hold, then for every γ, µ > 0, there exists

r0(γ) > 0 such that when 0 ≤ λ, µ ≤ r0(γ), problem (4.1) has two nontrivial
solutions u1, v1 such that Φ(u1) > 0 and Φ(v1) < 0.

(3) If in addition, (H7), (H10) and (H11) hold, then for every λ, γ, µ > 0,
problem (4.1) has a sequence of solutions {±uk} such that Φ(±uk)→ +∞
as k → +∞.

Proof. (1) We denote

ψ1(u) = λ

∫
Ω

G1(x, u(x)) dx, ψ2(u) = γ

∫
Ω

G2(x, u(x)) dx.

When the assumptions in (1) hold, then for sufficiently small ‖u‖, we get

G2(x, u) ≤ ε|u|P
+
+ + C(ε)|u|q2 , ∀(x, s) ∈ Ω× R,

Then
ψ2(u) ≤ γε

∫
Ω

|u|P
+
+ dx+ γC(ε)

∫
Ω

|u|q2(x) dx.

Since 1 < q2 <
NP−−
N−P−−

, for all x ∈ Ω, then we have

W 1,−→p (x)(Ω) ↪→ LP
+
+ (Ω), and W 1,−→p (x)(Ω) ↪→ Lq2(x)(Ω),

with continuous and compact embeddings. This implies the existence of C1, C2 > 0
such that

ψ2(u) ≤ γεC1‖u‖P
+
+ + γC(ε)C2‖u‖q

−
2 .

Choose ε > 0 small enough so that 0 < γεC2 <
1

2
P

+
+−1

N
P

+
+−1

. Then, we have

N∑
i=1

∫
Ω

1
pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− ψ2(u)

≥ 1

2P
+
+NP+

+−1
‖u‖P

+
+ − γC(ε)C2‖u‖q

−
2 .

Since q−2 > P+
+ , there exist r1 > 0 and α > 0 such that

N∑
i=1

∫
Ω

1
pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− ψ2(u) ≥ α > 0, for ‖u‖ = r1.
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We can find r0(γ) > 0 such that when µ, λ ≤ r0(γ), we obtain

ψ1(u) ≤ α

2
, ∀u ∈ Sr1 = {u ∈ X; ‖u‖ = r1}.

Therefore, λ, µ ≤ r0(γ). So, we obtain

Φ(u) ≥ α

2
> 0, ∀u ∈ Sr1 .

Let u ∈ X and t > 1, we have

Φ(tu) =
N∑
i=1

∫
Ω

tpi(x)

pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− λ
∫

Ω

G1(x, tu) dx

− γ
∫

Ω

G2(x, tu) dx− µ
∫
∂Ω

F (x, tu) dx.

(4.3)

From Remark 4.2, we obtain

Φ(tu) ≤ tP
+
+

N∑
i=1

∫
Ω

1
pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− λ
∫

Ω

G1(x, tu) dx

− γC5t
1/σ

∫
Ω

|u|1/σ dx− µ
∫
∂Ω

F (x, tu) dx.

(4.4)

Now, since

G1(x, tu) = o((t|u|)q
+
1 ), F (x, tu) = o((t|u|)β

+
) when t→ +∞,

(because P+
+ ≤ q+

1 and β+ < P+
+ < 1

σ ), we obtain

Φ(tu)→ −∞, when t→ +∞.

Hence, It follows that there exist u0 ∈ X such that ‖u0‖ > r1 and Φ(u0) < 0.
Therefore, By the Mountain Pass theorem, problem (4.1) has a nontrivial solution
u1 such that Φ(u1) > 0.

(2) Under the assumpti9ns in (2) hold, (1), we know that there exist r0(γ) > 0
such that when 0 ≤ λ, µ ≤ r0(γ), problem has a nontrivial solution u1 such that
Φ(u1) > 0. For t ∈ (0, 1) small enough, and v0 ∈ C∞0 (Ω) such that 0 ≤ v0(x) ≤
min{δ1, δ2}, we have

Φ(tv0)

=
N∑
i=1

∫
Ω

1
pi(x)

(∣∣∂(tv0)
∂xi

∣∣pi(x) + |tv0|pi(x)
)

dx− λ
∫

Ω

G1(x, tv0) dx

− γ
∫

Ω

G2(x, tv0) dx− µ
∫
∂Ω

F (x, tv0) dx

≤ tP
−
−

N∑
i=1

∫
Ω

1
pi(x)

(∣∣∂v0

∂xi

∣∣pi(x) + |v0|pi(x)
)

dx− λC3

∫
Ω

|tv0|q3(x) dx

− γ
∫

Ω

G2(x, tv0) dx− µC4

∫
∂Ω

|tv0|q4(x) dx.

(4.5)

For t ∈ (0, 1) small enough, we obtain

G2(x, tv0) = o(|tv0|P
+
+ ), as t→∞
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So, we have

Φ(tv0)

≤ tP
−
−

N∑
i=1

∫
Ω

1
pi(x)

(∣∣∂tv0

∂xi

∣∣pi(x) + |tv0|pi(x)
)

dx− λC3t
q+3

∫
Ω

|v0|q3(x) dx

− γMtP
+
+

∫
Ω

v0 dx− µC4t
q+4

∫
∂Ω

|v0|q4(x) dx.

(4.6)

Since min(q+
3 , q

+
4 ) < P−− , by factoring the right side of (4.6) by tq

+
3 if q+

4 > q+
3 , and

by tq
+
4 if q+

3 > q+
4 , we obtain

lim
t→0

Φ(tv0) < 0.

Then there exist w ∈ X such that ‖w‖ ≤ r1, and Φ(w) < 0.
(3) Φ is an even functional. We denote

ψ(u) = λ

∫
Ω

G1(x, u) dx+ γ

∫
Ω

G2(x, u) dx+ µ

∫
∂Ω

F (x, u) dx

As βk(ν) is defined in Proposition 2.6, for each positive integer, there exist
a positive integer k0 such that βk(n) ≤ 1 for all k ≥ k0(n). We can assume
k0(n) < k0(n+ 1) for each n. We define {νk : k = 1, 2, . . . } by

νk =

{
n if k0 ≤ k < k0(n+ 1),
1 if 1 ≤ k < k0.

(4.7)

We see that νk →∞ when k →∞, then for u ∈ Zk with ‖u‖ = νk, we obtain

Φ(u) =
N∑
i=1

∫
Ω

1
pi(x)

(∣∣ ∂u
∂xi

∣∣pi(x) + |u|pi(x)
)

dx− ψ(u)

≥ 1

P+
+ 2P

−
−−1NP−−−1

(νk)P
−
− − 1.

Consequently,
inf

u∈Zk,‖u‖=νk
Φ(u)→∞ as k →∞.

So the hypotheses (3.5) of Fountain theorem are satisfied. Indeed, by (H6), (H9)
and Remark 4.2, for ‖u‖ ≥ 1 we obtain

Φ(u) ≤ C

P−−
‖u‖P

+
+ + C1λ|u|

q+1
q1(x) − C5γ|u|1/σ1

σ

+ C6µ|u|β
+

β(x) + C7.

As the space Yk has finite dimension i.e all norms are equivalents, we then have

Φ(u) ≤ C

P−−
‖u‖P

+
+ + C ′1λ‖u‖q

+
1 − C ′5γ‖u‖1/σ + C ′µ‖u‖β

+
+ C7.

Since min(q+
1 , q

+
2 ) < P+

+ < 1
σ , we obtain Φ(u) → −∞ as ‖u‖ → +∞, u ∈ Yk.

Finally, the proof of (3) is complete. �
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