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Abstract. In this article, we use Morse theory to investigate a type of Dirich-

let boundary value problem related to the (2, p)-Laplacian operator, where the

nonlinear term is characterized by the first eigenvalue of the Laplace operator.
The investigation is heavily based on a new decomposition about the Banach

space W 1,p
0 (Ω), where Ω ⊂ RN (N > 1) is a bounded domain with smooth

enough boundary.

1. Introduction and statement of main results

Recently, much attention has been paid to the existence of solutions to the
quasilinear elliptic problems of (q, p)-Laplacian type

−∆qu−∆pu = h(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN (N > 1) is a bounded domain with smooth boundary ∂Ω, ∆qu =
div(|∇u|q−2∇u) and ∆pu = div(|∇u|p−2∇u) are respectively the q-Laplacian and
p-Laplacian of u. Solutions to (1.1) are the steady state solutions of the general
reaction-diffusion equation

ut = div (H(u)∇u) + h(x, u), (1.2)

where H(u) = |∇u|q−2+|∇u|p−2. Equation (1.2) has a wide range of applications in
physics and related sciences such as biophysics [6], plasma physics [16] and chemical
reaction design [1]. The stationary solutions to (1.2) have been studied by many
authors using variational methods; see [2, 9, 11, 15, 17, 18].

In this article, we use Morse theory to show the existence of solutions to the
(2,p)-Laplacian equation

−∆u−∆pu = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.3)

where p > 2. This work is motivated by our previous research of (1.3); see [9, 18].
Assume that the nonlinear term f satisfies the following hypotheses.
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(H1) f ∈ C(Ω × R,R), f(x, t) > 0 for all x ∈ Ω, t > 0 and f(x, t) = 0 for all
x ∈ Ω, t 6 0.

(H2) For f0, f∞ <∞, the limits

lim
t→0+

f(x, t)
t

= f0, lim
t→∞

f(x, t)
tp−1

= f∞

exist uniformly for x ∈ Ω.
In [18], we show that if f satisfies (H1) and (H2) with f0 < λ1 and f∞ > µ1, then
(1.3) has a positive solution, where

λ1 = inf
{∫

Ω

|∇u|2 : u ∈ H1
0 (Ω),

∫
Ω

|u|2 = 1
}
,

µ1 = inf
{∫

Ω

|∇u|p : u ∈W 1,p
0 (Ω),

∫
Ω

|u|p = 1
}
.

What about the situation that f0 > λ1 or f∞ < µ1? In [9], we have studied the case
f∞ < µ1 and obtain the existence result of non-negative solutions to (1.3). But we
can not guarantee the existence of nontrivial solutions to (1.3); see [9, Proposition
1.3]. In this article, we pour our attention into the situation that f0 > λ1 and give
some spirit for the existence of nontrivial solutions to (1.3). Now, we give some
assumptions for the nonlinearity f of the present article.

(H3) f ∈ C(Ω×R,R) and there exist a constant C > 0 and q ∈ (p, p∗) such that
for all x ∈ Ω, t ∈ R,

|f(x, t)| 6 C(1 + |t|q−1),

where p∗ = Np/(N − p) if N > p and p∗ =∞ if N 6 p.
(H4) The following limit holds uniformly for x ∈ Ω,

lim
|t|→∞

F (x, t)
|t|p

= +∞,

where F (x, t) =
∫ t

0
f(x, s)ds.

(H5) There exists R > 0 such that for all x ∈ Ω, f(x,t)
|t|p−2t is increasing for t > R

and decreasing for t 6 −R.
(H6) There exists l > 0 such that

lim
t→0

f(x, t)
t

= l

uniformly for x ∈ Ω.
Our main result is the following theorem.

Theorem 1.1. Suppose that (H3)–(H6) are satisfied with l > λ1 and l 6∈ σ(∆),
where σ(∆) is the spectral set of (−∆, H1

0 (Ω)). Then (1.3) has at least one non-
trivial solution.

Let X be a real Banach space and I ∈ C1(X,R). We say that {un} ⊂ X is a
Cerami sequence if {I(un)} is bounded and (1+‖un‖)‖I ′(un)‖ → 0 as n→∞ and I
satisfies the Cerami condition if any Cerami sequence has a convergent subsequence.
Denote by Ck(I, u) and Ck(I,∞) the kth critical group of I at an isolated critical
point u and the kth critical group of I at infinity respectively.

To prove Theorem 1.1, we use the following theorem.
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Theorem 1.2 ([3, 12]). Suppose that I ∈ C1(X,R) satisfies the Cerami condition
and I has only finitely many critical points. Let θ, the zero element of X, be a
critical point of I. If for some k ∈ N we have Ck(I, θ) 6= Ck(I,∞), then I has a
nonzero critical point.

2. Proof of main results

First, we introduce some notation. Let

X = W 1,p
0 (Ω), ‖u‖ =

(∫
Ω

|∇u|p
)1/p

, ‖u‖H =
(∫

Ω

|∇u|2
)1/2

.

X∗ is the dual space of X and c1, c2, . . . denote various positive constants whose
exact values are not essential to the analysis of the relevant problems. |D| means
the Lebesgue measure of Lebesgue measurable set D. Define the energy functional
I : X → R by

I(u) =
1
2

∫
Ω

|∇u|2 +
1
p

∫
Ω

|∇u|p −
∫

Ω

F (x, u), u ∈ X.

It is obvious that the functional I is well defined and belongs to C1(X,R); see
[9, 14]. Furthermore,

〈I ′(u), v〉 =
∫

Ω

∇u · ∇v +
∫

Ω

|∇u|p−2∇u · ∇v −
∫

Ω

f(x, u)v, u, v ∈ X,

where 〈·, ·〉 denotes the duality pairing between X∗ and X. Clearly, critical points
of I are the weak solutions to (1.3).

Lemma 2.1. Assume that (H3)–(H6) are satisfied. Then I satisfies the Cerami
condition.

Proof. By (H3), (H4) and (H6), we know that there exists µ > 0 such that for all
(x, t) ∈ Ω× R,

F (x, t) > −µ|t|p. (2.1)
Letting {un} be a Cerami sequence of I, we first prove that {un} is bounded in
X. If {un} is unbounded, up to a subsequence, then we may assume that for some
c ∈ R,

I(un)→ c, ‖un‖ → ∞, (1 + ‖un‖)‖I ′(un)‖ → 0, n→∞.
In particular,

c = lim
n→∞

(I(un)− 1
p
〈I ′(un), un〉)

= lim
n→∞

((1
2
− 1
p

) ∫
Ω

|∇un|2 +
∫

Ω

(1
p
f(x, un)un − F (x, un)

))
.

(2.2)

Let wn = un/‖un‖. Since {wn} is bounded in X, up to a subsequence, we have as
n→∞,

wn ⇀ w in X,

wn → w in Ls(Ω), s ∈ [1, p∗),

wn(x)→ w(x) a.e. x ∈ Ω.
(2.3)

If w = 0, as in [8], we choose a sequence {tn} ⊂ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).
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For any α > 0, let vn = (2αp)1/pwn. Since vn → 0, n→∞ in Lq(Ω) and

|F (x, t)| 6 C(1 + |t|q),

the continuity of the Nemitskii operator implies that F (·, vn)→ 0, n→∞ in L1(Ω).
For n large enough, since (2αp)1/p‖un‖−1 ∈ (0, 1),

I(tnun) > I(vn) > 2α−
∫

Ω

|F (x, vn)| > α.

We have shown that I(tnun) → ∞. Since I(0) = 0, I(un) → c, we know that
tn ∈ (0, 1) and ∫

Ω

|∇(tnun)|2 +
∫

Ω

|∇(tnun)|p −
∫

Ω

f(x, tnun)tnun

= 〈I ′(tnun), tnun〉 = tn
d

dt

∣∣
t=tn

I(tun) = 0
(2.4)

for n large enough. Let G(x, t) = f(x, t)t− pF (x, t) and

c1 = 1 + sup
Ω×[−R,R]

G(x, t)− inf
Ω×[−R,R]

G(x, t).

By (H5), for any x ∈ Ω, 0 6 s 6 t or t 6 s 6 0,

G(x, s) 6 G(x, t) + c1. (2.5)

It follows from (2.4) that(1
2
− 1
p

) ∫
Ω

|∇un|2 +
∫

Ω

(
1
p
f(x, un)un − F (x, un)

)
>
(1

2
− 1
p

) ∫
Ω

|∇tnun|2 +
∫

Ω

(
1
p
f(x, tnun)tnun − F (x, tnun)

)
− c1

p
|Ω|

=
1
2

∫
Ω

|∇tnun|2 +
1
p

∫
Ω

|∇tnun|p −
∫

Ω

F (x, tnun)− c1
p
|Ω|

= I(tnun)− c1
p
|Ω| → ∞, n→∞.

This contradicts (2.2).
If w 6= 0, then the set Θ := {x ∈ Ω : w(x) 6= 0} has positive Lebesuge measure.

For a.e. x ∈ Θ, we have |un(x)| → ∞ as n→∞. By (f2), as n→∞,

F (x, un(x))
|un(x)|p

|wn(x)|p →∞, a.e. x ∈ Θ.

Using (2.1) and the Fatou lemma, we get∫
Θ

F (x, un(x))
|un(x)|p

|wn(x)|p →∞, n→∞. (2.6)

The Lebegue convergence theorem implies that
∫

w=0
|wn|p → 0 as n → ∞. Com-

bining this with (2.1), we have∫
Ω\Θ

F (x, un(x))
|un(x)|p

|wn(x)|p > −µ
∫

Ω\Θ
|wn|p > −µ

∫
Ω

|wn|p. (2.7)

Since X ↪→ H1
0 (Ω), there exists c2 > 0 such that

‖un‖2H 6 c2‖un‖2.
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It follows that
c2
2
‖un‖2 +

1
p
‖un‖p − c >

1
2
‖un‖2H +

1
p
‖un‖p − c =

∫
Ω

F (x, un) + o(1).

By (2.6), (2.7) and (2.3), we have
c2
2
‖un‖2−p +

1
p
− c

‖un‖p
>
∫

Ω

F (x, un)
‖un‖p

+ o(1)

=
(∫

Θ

+
∫

Ω\Θ

)F (x, un(x))
|un(x)|p

|wn(x)|p + o(1)→∞,

as n→∞. This is impossible.
Secondly, up to a subsequence, we may assume that

un ⇀ u0 in X,

un → u0 in Ls(Ω), s ∈ [1, p∗),

un(x)→ u0(x) a.e. x ∈ Ω.

We will prove un → u0 in X. Defined A : X → X∗ by

〈Au, v〉 =
∫

Ω

∇u · ∇v +
∫

Ω

|∇u|p−2∇u · ∇v, u, v ∈ X.

For any u, v ∈ X, there exists c3 > 0 such that (see [5])
〈Aun −Au0, un − u0〉

=
∫

Ω

|∇(un − u0)|2 +
∫

Ω

(|∇un|p−2∇un − |∇u0|p−2∇u0) · ∇(un − u0)

>
∫

Ω

|∇(un − u0)|2 + c3

∫
Ω

|∇(un − u0)|p

> c3‖un − u0‖p.

(2.8)

By (H3) we know that ∫
Ω

f(x, un)(un − u0)→ 0, n→∞.

According to 〈I ′(un), un − u0〉 → 0 as n → ∞, we have 〈Aun, un − u0〉 → 0 as
n→∞. Then

〈Aun −Au0, un − u0〉 → 0, n→∞.
It follows form (2.8) that un → u0 as n→∞. The proof is complete. �

For the proof of Theorem thm1.1, we assume that I has only finitely many critical
points. Since I satisfies the Cerami condition, the critical group Ck(I,∞), k ∈ N
makes sense.

Lemma 2.2. Assume that (H3)-(H6) hold. Then for any k ∈ N, we have Ck(I,∞) ∼=
0.

Proof. Let S = {u ∈ X : ‖u‖ = 1}. By (H4), we see that for any u ∈ S,

I(tu)→ −∞, t→∞.
Choose a < min{inf‖u‖62 I(u),− 1

pc1|Ω|}. Then for any u ∈ S, there exists t > 1
such that I(tu) 6 a, that is,

I(tu) =
t2

2

∫
Ω

|∇u|2 +
tp

p
−
∫

Ω

F (x, tu) 6 a.
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By (2.5), we can find that G(x, t) > −c1 when s = 0. Therefore,
d

dt
I(tu) = t

∫
Ω

|∇u|2 + tp−1 −
∫

Ω

uf(x, tu)

6
1
t

(
pa+

∫
Ω

pF (x, tu)−
∫

Ω

tuf(x, tu)
)

=
1
t

(
pa−

∫
Ω

G(x, tu)
)

6
1
t
(pa+ c1|Ω|) < 0.

By the implicit function theorem, there exists an unique T ∈ C(S,R) such that for
any u ∈ S, I(T (u)u) = a.

For u 6= 0, set T̃ (u) = 1
‖u‖T ( u

‖u‖ ). Then T̃ ∈ C(X\{θ},R) and for all u ∈ X\{θ},
I(T̃ (u)u) = a. Moreover, if I(u) = a, then T̃ (u) = 1.

We define a function T̂ : X \ {θ} → R as

T̂ (u) =

{
T̃ (u), I(u) > a,

1, I(u) 6 a.

Since I(u) = a implies T̃ (u) = 1, we know that T̂ ∈ C(X\{θ},R).
Finally, we set η : [0, 1]× (X \ {θ})→ X \ {θ} as

η(s, u) = (1− s)u+ sT̂ (u)u.

It is easy to see that η is a strong deformation retract from X \ {θ} to Ia. Thus,

Ck(I,∞) = Hk(X, Ia) ∼= Hk(X,X \ {θ}) = 0, k ∈ N.
Here, Hk(A,B), k ∈ N denotes the kth singular relative homology group of the
topological pair (A,B) with coefficients in a field F. The proof is complete. �

Since l > λ1 and l 6∈ σ(∆), there exists n0 ∈ N such that λ1 < λ2 6 · · · 6 λn0 <
l < λn0+1 6 . . . . Let ϕi be the corresponding eigenfunction of λi with ‖ϕi‖ = 1
and V = span{ϕ1, ϕ2 . . . ϕn0}. Assume W is the complementary space of V in X.
For the details on the term of complementary space we refer the readers to [4, p.94].
Then X = V

⊕
W . We may assume that∫

Ω

|∇u|2 > λn0+1

∫
Ω

u2, u ∈W. (2.9)

In fact, since ∂Ω is smooth enough, span{ϕi : i = 1, 2, . . . } is dense in Hm
ϑ (Ω) with

some m ∈ N and 2m− 2 > N , where

Hm
ϑ (Ω) =

{
u ∈ Hm(Ω) : ∆ju = 0 on ∂Ω for j <

m

2
}

denotes the Hilbert space with the scalar product

(u, v) :=

{∫
Ω

∆ku∆kv, m = 2k,∫
Ω
∇(∆ku) · ∇(∆kv), m = 2k + 1.

Hm
ϑ (Ω) is a closed subspace of Hm(Ω) which satisfies Hm

ϑ (Ω) ⊂ Hm(Ω) with con-
tinuous embedding; see [7] for the details. Since the embedding Hm(Ω) ↪→W 1,p(Ω)
is continuous, we have that span{ϕi : i = 1, 2, . . . } is dense in W 1,p

0 (Ω). Let W =
span{ϕi : i = n0 + 1, n0 + 2, . . . }, the closure of span{ϕi : i = n0 + 1, n0 + 2, . . . } in
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X. Then the continuous embedding W 1,p
0 (Ω) ↪→ H1

0 (Ω) implies the desired result
(2.9).

Lemma 2.3. Assume that (H3)–(H6) are satisfied. Then there exists ρ > 0 such
that

I(u) 6 0, u ∈ V, ‖u‖ 6 ρ,
I(u) > 0, u ∈W, 0 < ‖u‖ 6 ρ.

(2.10)

Proof. Let c4 = min16i6n0

∫
Ω
ϕ2

i . For u =
∑n0

i=1 aiϕi ∈ V , define

|u|21 =
n0∑
i=1

a2
i , |u|pp =

n0∑
i=1

|ai|p, |u|∞ = max
x∈Ω
|u(x)|.

We know that there exist c5, c6, c7 > 0 such that

‖u‖2 6 c5|u|21, |u|pp 6 c6‖u‖p, |u|∞ 6 c7‖u‖.
It follows from (H6) that there exist ε, r > 0 such that λn0 + 2ε < l < λn0+1 − ε
and

(l − ε)t2

2
6 F (x, t) 6

(l + ε)t2

2
, x ∈ Ω, |t| 6 r. (2.11)

Fix 0 < ρ1 6 min{r/c7, (εpc4/(2c5c6))1/(p−2)}. For u =
∑n0

i=1 aiϕi ∈ V with
‖u‖ 6 ρ1, we have

I(u) =
1
2

∫
Ω

|∇u|2 +
1
p

∫
Ω

|∇u|p −
∫

Ω

F (x, u)

6
1
2

n0∑
i=1

a2
iλi

∫
Ω

ϕ2
i +

1
p

n0∑
i=1

|ai|p −
λn0 + ε

2

n0∑
i=1

a2
i

∫
Ω

ϕ2
i

6 −ε
2
c4

n0∑
i=1

a2
i +

1
p

n0∑
i=1

|ai|p

6 −ε
2
c4
c5
‖u‖2 +

1
p
c6‖u‖p 6 0.

By (H3), (2.9) and (2.11), we have the following estimates for u ∈W .

I(u) =
1
2

∫
Ω

|∇u|2 +
1
p

∫
Ω

|∇u|p −
∫

Ω

F (x, u)

=
1
2

∫
Ω

(
|∇u|2 − λn0+1|u|2

)
+

1
p

∫
Ω

|∇u|p

−
∫
|u|6r

(
F (x, u)− λn0+1

2
|u|2
)
−
∫
|u|>r

(
F (x, u)− λn0+1

2
|u|2
)

>
1
p

∫
Ω

|∇u|p − c8
∫

Ω

|u|q

>
1
p
‖u‖p − c9‖u‖q.

Then, there exists ρ2 > 0 such that

I(u) > 0, u ∈W, 0 < ‖u‖ 6 ρ2.

Taking ρ = min{ρ1, ρ2}, the proof is complete. �

Combining Lemma 2.3 with the linking theorem at zero [10], we can get the
following lemma.
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Lemma 2.4. Assume that (H3)–(H6) holds. Then θ, the zero function of X, is a
critical point of I and Cn0(I, θ) 6∼= 0.

Proof of Theorem 1.1. Since f(x, 0) = 0, the zero function θ is a trivial critical
point of I. According to Lemma 2.4, we have Cn0(I, θ) 6∼= 0 while by Lemma 2.2
Ck(I,∞) ∼= 0 for all k ∈ N. Now the desired result of Theorem 1.1 follows from
Theorem 1.2. �

We conclude this article with some remarks. We obtained the existence of non-
trivial solutions for a type of (2,p)-Laplacian equations with the nonlinearity f
having (p − 1)-superlinear and subcritical growth by critical point methods and
Morse theory. In connection with the study, a natural question is what happens if
the (2, p)-Laplacian is replaced by the general (q, p)-Laplacian with 1 < q < p. In
our proof of the main result, the main ingredient is the decomposition X = V ⊕W
with the property ∫

Ω

|∇u|2 > λn0+1

∫
Ω

u2, u ∈W,

which is deduced from the properties of the −∆’s eigenfunctions and some pro-
gresses for the polyharmonic equations with Navier boundary conditions. Recently,
some researches have been obtained for the p-Laplacian type equation by Morse
theory; see [13] for example. We think the question mentioned above deserves a
further investigation with the developments of the spectrum theory of −∆p and
some ideas form the researches of the p-Laplacian type equation by Morse theory.
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