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GENERALIZED INVERSE SCATTERING TRANSFORM FOR
THE NONLINEAR SCHRÖDINGER EQUATION FOR BOUND
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Abstract. We consider a generalization of the inverse scattering transform

for the nonlinear Schrödinger (NLS) equation when bound states have multi-
plicities greater than one. This generalization is accomplished by deriving an

explicit compact formula for the time evolution of the norming constants in

the presence of nonsimple bound states. Such a formula helps to find explicit
solutions to the NLS equation and obtain a generalization of soliton solutions.

1. Introduction

The initial-value problem for the focusing nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u = 0, (1.1)

where the subscripts denote partial derivatives, was solved by the inverse scattering
transform method, by Zakharov and Shabat [11] in 1972, although certain details
were filled in later papers [1, 2]. Equation (1.1) has important applications to signal
propagation along optical fibers under conditions of anomalous dispersion ([9], [3,
Ch. 10]) and to 1-D wave propagation on the surface of deep waters [3, Ch. 6].

The inverse scattering transform method consists of converting the initial-value
problem for (1.1) into the elementary initial-value problem for the scattering data
of the focusing Zakharov-Shabat system

d

dx

[
ξ
η

]
=
[
−iλ u(x, t)

−u(x, t)∗ iλ

] [
ξ
η

]
, −∞ < x <∞. (1.2)

To do so, it is important to solve, for each t, the direct scattering problem (con-
verting u(x, t) into scattering data) and the inverse scattering problem (converting
scattering data into u(x, t)), where the scattering data consist of one of the reflec-
tion coefficients, the poles of the transmission coefficient, and the so-called norming
constants. In the case where the poles are all simple, Zakharov and Shabat [11]
have formulated the inverse scattering transform method for (1.1), with one norm-
ing constant for each simple pole. The inverse scattering problem can then be
solved by solving the Marchenko integral equation whose kernel can be written in
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terms of reflection coefficient, poles, and norming constants. They also wrote, for
each pole, the norming constant as the product of the residue of the transmission
coefficient and the proportionality factor between the two Jost solutions of (1.1),
the so-called dependency constant.

An alternative method to solve the inverse scattering problem is called the
Riemann-Hilbert method [1, 2]. It consists of converting algebraic relations be-
tween Jost solutions involving reflection and transmission coefficients into a singu-
lar integral equation whose discrete terms contain poles and norming constants and
whose continuous term contains one of the reflection coefficients. Thus the norming
constants are indispensable to applying the Riemann-Hilbert method.

In the literature, the analysis of the inverse scattering transform with nonsimple
bound states was mainly avoided due to technical complications. For example,
in [11] a single nonsimple bound state was dealt with by coalescing two distinct
simple bound states into one, and they illustrated this by a concrete example. As
pointed out by Olmedilla [10], Zakharov and Shabat’s “limiting process gives the
appropriate value . . . but their final result for the potential is mistaken.” The error
in the example by Zakharov and Shabat certainly does not diminish the importance
of their paper, but rather illustrates the point that dealing with nonsimple bound
state poles was not an easy procedure. It seems as if [10] was one of the few
references in which a systematic method has been sought to determine the time
evolution of the norming constants corresponding to nonsimple bound states. In
[10] formulas were found for a bound state with multiplicities two and three, but
Olmedilla added, “in an actual calculation it is very complex to exceed four or
five.” Using the computer algebra system REDUCE [10] he was able to reach a
multiplicity of nine, but his formulas were too complicated to generalize to a bound
state of any multiplicity.

The goal of this article is to present a complete generalization of the inverse
scattering transform with bound states of any multiplicity by providing a compact
formula for the time evolution of the associated norming constants. The time
evolution of the bound-state norming constant associated with a simple pole λj is
known from [11] to be

cj(t) = cj(0)e−4iλ2
j t. (1.3)

Using matrix exponentials it is possible to obtain a straightforward generalization
of (1.3). As seen in (4.9), such a generalization amounts to replacing the scalar
λj by the matrix Aj defined in (4.8) and replacing the single bound-state norming
constant cj in (1.3) by the row vector

[
cj(nj−1) . . . cj0

]
consisting of the set

of all norming constants associated with λj . At the same time we generalize the
dependency constants. Although these generalizations appear straightforward, the
proofs nevertheless are nontrivial. The work presented here was done in the author’s
thesis [7] and is related to the thesis of Francesco Demontis [8], where dependency
constants were not studied.

This article is organized as follows. In Section 2 we set the notation and briefly
review the transmission and reflection coefficients as well as the dependency con-
stants and norming constants for the Zakharov-Shabat system from [11]. In Section
3 we first obtain (3.1) to define the dependency constants, which relate to the two
types of Jost solutions and their derivatives. We then derive the time evolution of
the dependency constants, which are given in (3.13). We do this using the prop-
erties of the Lax pair associated with the NLS equation from [1]. In Section 4 we
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relate the norming constants to the dependency constants. We then present the
time evolution of the norming constants with the help of the governing evolution
equation for the dependency constants.

2. Preliminaries

The inverse scattering transform associates the NLS equation with the Zakharov-
Shabat system (1.1), where λ is the complex-valued spectral parameter, u(x, t) is
a complex-valued potential integrable in x ∈ R, and the asterisk denotes complex
conjugation. Then for each λ in the closed upper half complex plane there exist
the so-called Jost solutions ϕ(λ, x, t) and ψ(λ, x, t) which satisfy the asymptotic
conditions

ϕ(λ, x, t) =
[
e−iλx

0

]
+ o(1), x→ −∞,

ψ(λ, x, t) =
[

0
eiλx

]
+ o(1), x→ +∞.

Under the assumption that there do not exist discontinuities of ϕ(λ, x, t) and
ψ(λ, x, t) at real values of λ, we obtain the transmission coefficient T (λ, t), the
right reflection coefficient R(λ, t), and the left reflection coefficient L(λ, t), all three
continuous in (λ, t) ∈ R2, such that the Jost solutions satisfy the asymptotic con-
ditions

ϕ(λ, x, t) =

[
1

T (λ,t)e
−iλx

R(λ,t)
T (λ,t)e

iλx

]
+ o(1), x→ +∞,

ψ(λ, x, t) =

[
L(λ,t)
T (λ,t)e

−iλx

1
T (λ,t)e

iλx

]
+ o(1), x→ −∞,

at the other end of the real line. It appears that the transmission coefficient T (λ, t) is
time independent but, generally, the reflection coefficients are not. Besides scatter-
ing solutions to (1.1) there are also square-integrable solutions pertaining to λ in the
upper half complex plane which are known as bound-state solutions. Bound-state
solutions occur at the poles of the transmission coefficient T (λ) in the upper half
complex plane; in these poles (and only there) the Jost solutions are proportional.
We denote these finitely many bound-state poles as λj , where j = 1, 2, . . . , N . We
use nj to denote the algebraic multiplicity of λj . Since the two Jost solutions
ϕ(λ, x, t) and ψ(λ, x, t) are linearly dependent at the bound state corresponding
to λj with algebraic multiplicity nj , for s = 0, 1, . . . , nj − 1 we have the constants
γjs(t) in (3.1) which are called the dependency constants associated with the bound
state λj .

It is known that when u(x, t) is integrable in x for each fixed t, the Jost solutions
ϕ(λ, x, t) and ψ(λ, x, t) are analytic in λ in the upper half complex plane. Hence,
for each fixed x and t, those two Jost solutions have Taylor series expansions at any
point in the upper half of the complex-λ plane [1].

The transmission coefficient T (λ, t) can be expanded around λj as in (4.3), where
tjs are complex-valued parameters and the o(1) indicates the regular part of the
expansion. We will refer to the parameters tjs as generalized residues. It is known
from [11] that T (λ, t) is independent of t and therefore the coefficients tjs are also
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independent of t. From this point on we will refer to the transmission coefficient
simply as T (λ).

Associated with each bound state λj having multiplicity nj is a corresponding
set of bound-state norming constants {cjs}nj−1

s=0 . It is appropriate, as in [6], to
define cjs in terms of the generalized residues tjs and the dependency constants
γjs(t) as in (4.1) so that the kernel of the corresponding Marchenko equation can
be written in a simple form as

Ω(y, t) =
∫ ∞
−∞

R(λ, t)eiλy
dλ

2π
+

N∑
j=1

nj−1∑
m=0

cjm(t)
ym

m!
eiλjy. (2.1)

It will be shown that when the Marchenko integral equation is solved the result will
give the exact solution to the NLS equation for bound states with multiplicity.

3. Dependency constants

In this article we derive the evolution of γjs(t) and cjs(t) from their initial values
γjs(0) and cjs(0), respectively. We begin with the formulation of the dependency
constants γjs(t) associated with a bound state, λj , with higher multiplicity, consider
the case of T (λ) with a set of poles {λj}Nj=1 each with multiplicity nj .

Theorem 3.1. The dependency constants γjk(t) associated with a bound state λj
with multiplicity nj can be expressed for l = 0, 1, . . . , nj − 1 as

ϕ(l)(λj , x, t) =
l∑

k=0

(
l

k

)
γj(l−k)(t)ψ(k)(λj , x, t). (3.1)

where the superscript denotes the λ-derivative and the constants γjk(t) are the
bound-state dependency constants.

Proof. For the case of simple poles it is known from [11] that

ϕ(λ, x, t) = γj0(t)ψ(λ, x, t). (3.2)

The goal is to have a similar representation for ϕ(λj , x, t) and its derivatives. To
find this we consider the expansion of 1/T (λ) about λj . By letting

a(λ) = 1/T (λ)

we obtain

a(λ) = a(λj) + ȧ(λj)(λ− λj) +
ä(λj)

2!
(λ− λj)2 + · · ·+ a(nj)(λj)

(nj)!
(λ− λj)nj + . . . ,

where the overdot denotes the λ-derivative. Since λj is a pole of T (λ) with multi-
plicity nj , it is a zero of a(λ) with multiplicity nj . Therefore

a(λj) = ȧ(λj) = · · · = a(nj−1)(λj) = 0. (3.3)

It is known [11] that a(λ) can be written as the Wronskian of the Jost solutions,

Let us define the Wronskian of the solutions ζ =
[
ζ1
ζ2

]
and η =

[
η1
η2

]
as

[ζ; η] := ζ1η2 − η1ζ2
That is,

a(λ) = [ϕ(λ, x, t);ψ(λ, x, t)] (3.4)
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where ϕ(λ, x, t) and ψ(λ, x, t) are the Jost solutions. Consider the expansions of
ϕ(λ, x, t) and ψ(λ, x, t) about the value λ = λj and we have

ϕ(λ, x, t) = ϕ(λj , x, t) + ϕ̇(λj , x, t)(λ− λj) +
ϕ̈(λj , x, t)

2!
(λ− λj)2 + . . . ,

ψ(λ, x, t) = ψ(λj , x, t) + ψ̇(λj , x, t)(λ− λj) +
ψ̈(λj , x, t)

2!
(λ− λj)2 + . . . .

For notational simplicity we use ϕ(λ, x, t) as ϕ and ψ(λ, x, t) as ψ. Similarly
ϕ(λj , x, t) will be denoted as ϕ(λj) and ψ(λj , x, t) as ψ(λj). We will let

ϕ =
[
ϕ1

ϕ2

]
, ψ =

[
ψ1

ψ2

]
,

and hence the subscript relates to the appropriate component of the Jost solution.
We then have

a(λ) =
[
ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj)] + (λ− λj)[ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)

− ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇(λj)] + (λ− λj)2[ϕ1(λj)
ψ̈(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)
2!

+ ϕ̇1(λj)ψ̇2(λj)− ψ1(λj)
ϕ̈(λj)

2!
− ϕ2(λj)

ψ̈1(λj)
2!

− ψ̇1(λj)ϕ̇(λj)] + . . . .

Using this equality and (3.3), we obtain

0 = a(λj) = ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj).

This can be expressed as ∣∣∣∣ϕ1(λj) ψ2(λj)
ϕ2(λj) ψ2(λj)

∣∣∣∣ = 0.

Hence we find that ϕ(λj) and ψ(λj) are linearly dependent, therefore there exists
a value γj0(t) such that

ϕ(λj) = γj0(t)ψ(λj). (3.5)

Similarly from (3.3),

0 = ȧ(λj) = ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇(λj). (3.6)

By substituting (3.5) into (3.6) we find

γj0(t)ψ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− γj0(t)ψ2(λj)ψ̇1(λj)ψ1(λj)ϕ̇1(λj) = 0.

This can be written as∣∣∣∣ϕ̇1(λj)− γj0(t)ψ̇1(λj) ψ1(λj)
ϕ̇2(λj)− γj0(t)ψ̇2(λj) ψ2(λj)

∣∣∣∣ = 0. (3.7)

From (3.7) we see that ϕ̇(λj)−γj0(t)ψ̇(λj) and ψ(λj) are linearly dependent. There-
fore there exists a value γj1(t) such that

ϕ̇(λj)− γj0(t)ψ(λj) = γj1(t)ψ(λj). (3.8)

We rewrite (3.8) as
ϕ̇(λj) = γj0(t)ψ(λj) + γj1(t)ψ(λj). (3.9)
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Again from (3.3),

0 = ä(λj) = ϕ1(λj)
ψ̈(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)
2!

+ ϕ̇1(λj)ψ̇2(λj)

− ψ1(λj)
ϕ̈(λj)

2!
− ϕ2(λj)

ψ̈1(λj)
2!

− ψ̇1(λj)ϕ̇(λj).

(3.10)

By substituting (3.5) and (3.9) into (3.10) we have

0 = γj0(t)ψ1(λj)
ψ̈2(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)
2!

+ γj0(t)ψ1(λj)ψ̇2(λj)

+ γj2(t)ψ1(λj)ψ̇2(λj)− ψ2
ϕ̈2(λj)

2!
− γj0(t)ψ2(λj)

ψ̈1(λj)
2!

− ψ̇(λj)γj0(t)ψ̇2(λj)− ψ̇1(λj)γj1(t)ψ2(λj).

This can be written in terms of a determinant as∣∣∣∣ϕ̈1(λj)− 2γj1(t)ψ̇1(λj)− γj0(t)ψ̈1(λj) ψ1(λj)
ϕ̈2(λj)− 2γj1(t)ψ̇2(λj)− γj0(t)ψ̈2(λj) ψ2(λj)

∣∣∣∣ = 0. (3.11)

From (3.11) we can see that ϕ̈(λj) − 2γj1(t)ψ̇(λj) − γj0(t)ψ̈(λj) and ψ(λj) are
linearly dependent. Therefore, there exists a value, γj2(t), such that

ϕ̈(λj)− 2γj1(t)ψ̇(λj)− γj0(t)ψ̈(λj) = γj2(t)ψ(λj),

or equivalently

ϕ̈(λj) = γj0(t)ψ̈(λj) + 2γj1(t)ψ̇(λj) + γj2(t)ψ(λj).

Now we must prove that there is a similar representation for ϕ(nj−1)(λj). For
n = 0, 1, . . . , nj − 1 from (3.4) we will use the identities

0 = a(n)(λj) =
n∑
l=0

(
n

l

)
[ϕ(n−l)(λj), ψ(l)(λj)]. (3.12)

Using the following identities for k = 0, 1, . . . nj − 1

[ψ(k);ψ(k)] = 0,

[ψ(k);ψ(j)] = −[ψ(j);ψ(k)],

n!
k!(n− k)!

(n− k)!
(n− p)!(p− k)!

=
n!

(p− k)!(n− p+ k)!
(n− p+ k)!
(n− p)!k!

,

where we recall that [∗; ∗] is used to denote the Wronskian and ψ(k) denotes
∂k

∂λkψ(λ, x, t), we see that all but a select few of the terms in (3.12) are zero. There-
fore

0 =
[
ϕ(n) −

(
n

1

)
γj,n−1(t)ψ(1) −

(
n

2

)
γj,n−2(t)ψ(2) − · · · −

(
n

n

)
γj0(t)ψ(n);ψ(0)

]
.

Hence there exists a value γj,n+1(t) such that

ϕ(n)−
(
n

1

)
γj,n−1(t)ψ(1)−

(
n

2

)
γj,n−2(t)ψ(2)−· · ·−

(
n

n

)
γj0(t)ψ(n) = γj,n+1(t)ψ(0),

or equivalently

ϕ(n) =
(
n

1

)
γj,n−1(t)ψ(1) +

(
n

2

)
γj,n−2(t)ψ(2) + · · ·+

(
n

n

)
γj0(t)ψ(n) +γj,n+1(t)ψ(0).
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Since this is true for any n = 1, . . . , nj − 1, there exists a value γj,nj
(t) such that

ϕ(nj−1) =
(
nj − 1

1

)
γj,nj−2(t)ψ(1) +

(
nj − 1

2

)
γj,nj−3(t)ψ(2) + . . .

+
(
nj − 1
nj − 1

)
γj0(t)ψ(nj−1) + γj,nj

(t)ψ(0).

Thus (3.1) holds. �

Recall that we are seeking to obtain the time dependence of the dependency
constants, γjs(t), and norming constants, cjs for j = 1, . . . , N and s = 0, . . . , nj−1.
Using the representation of the dependency constants in (3.1), the time evolution
of the dependency constants γjs(t) is described in the next theorem.

Theorem 3.2. The time evolution of the dependency constants γjk(t) is governed
by the recursive formula

d

dt
(γjk(t)) = 4iλ2

jγjk(t) + 8ikλjγj(k−1)(t) + 4ik(k − 1)γj(k−2)(t), (3.13)

for j = 1, 2, . . . , N and k = 0, 1, . . . , nj − 1.

Proof. Using induction we will show (3.13) to be true. Let us use the subscript t
to denote the time-derivative. First consider (3.2) evaluated at λj , we find

ϕ(λj , x, t) = γj0(t)ψ(λj , x, t). (3.14)

Taking the time derivative of (3.14) we have

ϕt(λ, x, t) = γj0(t)ψt(λ, x, t) + (γj0(t))tψ(λ, x, t). (3.15)

The Lax pair L and A associated with (1.1) is given by [11],

L := i

[
1 0
0 −1

]
∂x − i

[
1 0
0 −1

] [
0 q
−q∗ 0

]
,

A := 2i
[
1 0
0 −1

]
∂2
x +

[
0 −2iq

−2iq∗ 0

]
∂x +

[
iqq∗ −qx
−iq∗x −iqq∗

]
.

It is known from [1] that the time evolution of the two Jost solutions is given by

ψt −Aψ = −2iλ2ψ,

ϕt −Aϕ = 2iλ2ϕ.
(3.16)

Now using both equations in (3.16) we can write (3.15) as

2iλ2
jγj0(t)ψ +Aγj0(t)ψ = γj0(t)Aψ − 2iλ2

jγj0(t)ψ + (γj0(t))tψ,

which is equivalent to
(γj0(t))t = 4iλ2

jγj0(t). (3.17)
The λ-derivative of ϕ can be expressed as

ϕ̇ = γj0(t)ψ̇ + γj1(t)ψ. (3.18)

Consider the time derivative of (3.18), we find

ϕ̇t = γj0(t)ψ̇t + (γj0(t))tψ̇ + γj1(t)ψt + (γj0(t))tψ. (3.19)

The λ-derivative of the identities in (3.16) can now be written as

ϕ̇t −Aϕ̇ = 2iλ2ϕ̇+ 4iλϕ,

ψ̇t −Aψ̇ = −2iλ2ψ̇ − 4iλψ.
(3.20)
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By using (3.17), (3.19), and (3.20), we can write (3.18) as

(γj1(t))t = 4iλ2
jγj1(t) + 8iλjγj0(t). (3.21)

Performing similar calculations for higher derivatives, from (3.1) we have

ϕ̈ = γj0(t)ψ̈ + 2γj1(t)ψ̇ + γj2(t)ψ. (3.22)

Taking the λ-derivative of (3.20),

ϕ̈t −Aϕ̈ = 2iλ2ϕ̈+ 8iλϕ̇+ 4iϕ,

ψ̈t −Aψ̈ = −2iλ2ψ̈ − 8iλψ̇ − 4iψ.
(3.23)

We can write (3.22) using (3.17), (3.19), (3.20), (3.21), and (3.23) as

(γj2(t))t = 4iλ2
jγj2(t) + 16iλjγj1(t) + 8iγj0(t). (3.24)

Then (3.24) satisfies the recursive formula, which is the base case for induction.
Assume the recursive formula in (3.13) is true for k and considering higher order
λ-derivatives of (3.16), for m = 0, 1, . . . , nj − 1,

ϕ
(m)
t −Aϕ(m) = 2iλ2ϕ(m) +

(
m

1

)
4iλϕ(m−1) +

(
m

2

)
4iϕ(m−2),

ψ
(m)
t −Aψ(m) = −2iλ2ψ(m) −

(
m

1

)
4iλψ(m−1) −

(
m

2

)
4iψ(m−2).

(3.25)

Take the time derivative of (3.1),

ϕ
(l)
t (λj , x, t) =

l∑
k=0

(
l

k

)
γj(l−k)(t)ψ

(k)
t (λj , x, t) +

l∑
k=0

(
l

k

)
(γj(l−k)(t))tψ(k)(λj , x, t).

(3.26)
From (3.1) and (3.26),

ϕ
(l)
t (λj)−Aϕ(l)(λj)

=
l∑

k=0

(
l

k

)
γj(l−k)(t)ψ

(k)
t (λj) +

l∑
k=0

(
l

k

)
(γj(l−k)(t))tψ(k)(λj)

−A
l∑

k=0

(
l

k

)
γj(l−k)(t)ψ(k)(λj).

(3.27)

By substituting (3.1) and (3.25) in (3.27) we have

l∑
k=0

(
l

k

)
(γj(l−k)(t))tψ(k)(λj)

= 4iλ2
j

l∑
k=0

(
l

k

)
γj(l−k)(t)ψ(k)(λj) + 4iλj

l−1∑
k=0

2l!
k!(l − k − 1)!

γj(l−k)(t)ψ(k−1)(λj)

+ 2i
l−2∑
k=0

2l!
k!(l − k − 2)!

γj(l−k)(t)ψ(k−2)(λj).
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Multiplying both sides of (3.13) by the term
(
k+1
s

)
ψ(k+1−s)(λj) and applying the

summation over s = 0, . . . , k we obtain

k∑
s=0

(
k + 1
s

)
(γjk(t))tψ(k+1−s)(λj)

=
k∑
s=0

(
k + 1
s

)
4iλ2

jγjk(t)ψ(k+1−s)(λj)

+
k∑
s=0

(
k + 1
s

)
8ikλjγj(k−1)(t)ψ(k+1−s)(λj)

+
k∑
s=0

(
k + 1
s

)
4ik(k − 1)γj(k−2)(t)ψ(k+1−s)(λj).

(3.28)

Thus, (3.13) can then be rewritten as

(γj(k+1)(t))tψ(0)(λj) +
k∑
s=0

(
k + 1
s

)
(γjs(t))tψ(k+1−s)(λj)

= 4iλ2
j

k+1∑
s=0

(
k + 1
s

)
γjs(t)ψ(k−s+1)(λj)

+ 4iλj
k∑
s=0

2(k + 1)!
s!(k − s)!

γjs(t)ψ(k−s)(λj)

+ 2i
k−1∑
s=0

2(k + 1)!
s!(k − s− 1)!

γjs(t)ψ(k−s−1)(λj).

(3.29)

By substituting (3.28) into the second term of (3.29) and rearranging terms, we
obtain

(γj(k+1)(t))tψ(0)(λj) = 4iλ2
j

[
γj(k+1)(t)ψ(0)(λj)

]
+ 8iλj

[
(k + 1)γjk(t)ψ(0)(λj)

]
+ 4i

[
(k + 1)kγj(k−1)(t)ψ(0)(λj)

]
.

Therefore,

(γj(k+1)(t))t = 4iλ2
jγj(k+1)(t) + 8iλj(k + 1)γjk(t) + 4i(k + 1)kγj(k−1)(t).

Hence the theorem is proved. �

Using the recursive formula for the time derivatives for γjk(t) we can now consider
the norming constants cjk and the time evolution of these constants in the next
section.

4. Bound-state norming constants

This section begins by considering the representation of the bound-state norming
constants, {cjs}

nj−1
s=0 , in the presence of poles λj with multiplicity nj . Then as in

the previous section, the time evolution of these constants is considered.
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Theorem 4.1. The bound state norming constants associated with the bound state
at λj of multiplicity nj for m = 0, 1, . . . , nj − 1 and j = 1, 2, . . . , N can be written
as

cjm :=
nj−1∑
k=0

γjk(t)
k!

imtj(m+k+1). (4.1)

Proof. We look at the formulation of the norming constants associated with bound
state poles of higher multiplicity with respect to the Marchenko integral equation
since they arise in the formulation of the kernel of this integral equation. Consid-
ering the Marchenko integral equation for simple poles in [1, section 1.3], the only
term that will be affected by the presence of bound state poles of higher multiplicity
is ∫ ∞

−∞
[T (λ)− 1]ϕ(λ, x)eiλy

dλ

2π
. (4.2)

In the case of simple bound state poles this term can be found by evaluating the
residue of T (λ) at λj . However when a bound state pole λj has multiplicity greater
than one consider the expansions of the three functions that make up this integral
term about λj .

T (λ)− 1 =
tjnj

(λ− λj)nj
+

tj(nj−1)

(λ− λj)nj−1
+ · · ·+ tj1

(λ− λj)
+O(1), (4.3)

eiλy = eiλjy
(

1 + iy(λ− λj) + · · ·+ (iy)nj−1

(nj − 1)!
(λ− λj)nj−1 +O(1)

)
,

ϕ(λ, x, t) = ϕ(λj , x, t) + ϕ̇(λj , x, t)(λ− λj) + . . .

+
ϕ(nj−1)(λj , x, t)

(nj − 1)!
(λ− λj)nj−1 +O(1).

When the terms of (4.3) are multiplied and integrated, only the coefficient of 1
(λ−λj)

will be nonzero. Then (4.2) can be written as∫ ∞
−∞

[T (λ)− 1]ϕ(λ, x, t)eiλy
dλ

2π

=
N∑
j=1

ieiλjy
[
ϕ(λj , x, t)

(
tj1 + · · ·+ tjnj

(iy)nj−1

(nj − 1)!

)
+
ϕ̇(λj , x, t)

1!

(
tj2 + · · ·+ tjnj

(iy)nj−2

(nj − 2)!

)
+ · · ·+ ϕ(nj−1)(λj , x, t)

(nj − 1)!
tjnj

]
.

Rewriting this in matrix form we have∫ ∞
−∞

[T (λ)− 1]ϕ(λ, x, t)eiλy
dλ

2π
=

N∑
j=1

ieiλjyΦjFjTjYj ,

where the matrices Φj , Fj , Tj , and Yj are defined as

Φj :=
[
ϕ(λj) ϕ̇(λj) . . . ϕ(nj−1)(λj)

]
,
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Fj :=


1
0! 0 0 . . . 0
0 1

1! 0 . . . 0
0 0 1

2! . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
(nj−1)!

 ,

Tj :=


tj1
0!

tj2
1! . . .

tj(nj−1)

(nj−2)!

tjnj

(nj−1)!
tj2
0!

tj3
1! . . .

tjnj

(nj−2)! 0
...

...
. . .

...
...

tjnj

0! 0 . . . 0 0

 , Yj :=


1

(iy)1
...

(iy)nj−1

 .
We can now express (3.1) in matrix form as

Φj = ΨjΓj ,

where Ψj and Γj are defined as

Ψj :=
[
ψ(λj) ψ̇(λj) . . . ψ(nj−1)(λj)

]
,

Γj :=


γj0(t) γji(t) . . . γj,nj−1(t)

0
(
1
1

)
γj0(t) . . .

(
nj−1

1

)
γj,nj−2(t)

...
...

. . .
...

0 . . .
(
nj−1
nj−1

)
γj0(t)

 . (4.4)

Using (4.4), we can write (4.2) as∫ ∞
−∞

[T (λ)− 1]ϕ(λ, x, t)eiλy
dλ

2π
=

N∑
j=1

ieiλjyΨjΓjFjTjYj . (4.5)

Recall the representation of the Jost solution ψ(λj , x, t) (2.1),

ψ(λj , x, t) =
[

0
eiλjx

]
+
∫ ∞
−∞

K(x, z, t)eiλjz dz, (4.6)

where

K(x, z, t) =
∫ ∞
−∞

(
ψ(λ, x, t)−

[
0
eiλx

])
e−iλy

dλ

2π
.

Taking the λ-derivative of (4.5) for any n, we get

ψ(n)(λj , x, t) =
[

0
(ix)neiλjx

]
+
∫ ∞
−∞

K(x, z, t)eiλjz(iz)n dz.

Now Ψj can be expressed as

Ψj =
[

0
eiλjx

]
Xj +

∫ ∞
−∞

K(x, z, t)eiλjzZj dz, (4.7)

where the matrices Xj and Zj are defined as

Xj :=
[
1 ix · · · (ix)nj−1

]
, Zj :=

[
1 iz · · · (iz)nj−1

]
.

Then (4.2) can be written as∫ ∞
−∞

[T (λ)− 1]ϕ(λ, x)eiλy
dλ

2π
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=
N∑
j=1

ieiλj(x+y)XjΓjFjTjYj

[
0
1

]
+

N∑
j=1

i

∫ ∞
−∞

K(x, z)eiλj(x+z)ZjΓjFjTjYj dz.

Define the matrix, ΓjFjTj = Λj , where

Λj :=



∑nj−1
k=0

γjk(t)
k! tj(k+1)

∑nj−1
k=0

γjk(t)
k! tj(k+2) . . .

∑nj−1
k=0

γjk(t)
k! tj(k+nj)∑nj−1

k=0
γjk(t)
k! tj(k+2)

(
2
1

)∑nj−1
k=0

γjk(t)
k! tj(k+3) . . . 0∑nj−1

k=0
γjk(t)
k! tj(k+3)

(
3
2

)∑nj−1
k=0

γjk(t)
k! tj(k+4) . . . 0

...
...

. . .
...∑nj−1

k=0
γjk(t)
k! tj(k+nj) 0 . . . 0

 .

With the help of the entries from the matrix Λj , we have the norming constants
cjm associated with bound state pole λj of multiplicity nj as in (4.1). �

Next we consider the relationship of the norming constants for any t and the
initial value of the norming constants at t = 0 that are dependent on the matrix
Aj which is defined as

Aj :=



−λj −1 0 . . . 0 0
0 −λj −1 . . . 0 0
0 0 −λj . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −λj −1
0 0 0 . . . 0 −λj


. (4.8)

Theorem 4.2. The time evolution of the norming constants cjk is[
cj(nj−1)(t) cj(nj−2)(t) . . . cj0(t)

]
=
[
cj(nj−1)(0) cj(nj−2)(0) . . . cj0(0)

]
e−4iA2

j t.
(4.9)

Proof. First rewrite (4.1) in matrix form as

Cj = ΓjPj , (4.10)

where
Cj :=

[
cj(nj−1) . . . cj0

]
, Γj :=

[
γj(nj−1)(t) . . . γj0(t)

]
,

Pj :=



0 0 . . . 0
tjnj

i−1

(nj−1)!

0 0 . . .
tjnj

i0

(nj−2)!

tj(nj−1)i
−1

(nj−2)!

...
... . . .

...
...

0
tjnj

inj−3

1! . . .
tj3i

0

1!
tj2i
−1

1!
tjnj

inj−2

0!

tj(nj−1)i
nj−3

0! . . .
tj2i

0

0!
tj1i
−1

0!


(4.11)

and the entries of Cj and Γj are dependent on t. Since tjk is independent of time
for all k values the time derivative of (4.10) becomes

(Cj)t = (Γj)tPj . (4.12)

Therefore, [
(cj(nj−1))t (cj(nj−2))t . . . (cj0)t

]
=
[
(γj(nj−1)(t))t (γj(nj−2)(t))t . . . (γj0(t))t

]
Pj .
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Rewriting (4.1) in matrix form as

(Γj)t = ΓjMj , (4.13)

where the matrix Mj is defined as

Mj :=



4iλ2
j 0 0 . . . 0 0

(nj − 1)8iλj 4iλj 0 . . . 0 0
(nj − 2)(nj − 1)4i (nj − 2)8iλj 4iλj . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 4iλj 0
0 0 0 . . . 8iλj 4iλj


and substituting (4.13) into (4.12) we obtain

(Cj)t = ΓjMjPj . (4.14)

Since a permutation of columns converts Pj into an upper triangular matrix with
nonzero diagonal entries, it is invertible. Then (4.14) is equivalent to

(Cj)t = ΓjPjP−1
j MjPj . (4.15)

Using (4.10), (4.15) can be written as

(Cj)t = CjP
−1
j MjPj .

Solving the above differential equation gives the expression

Cj(t) = Cj(0)eP
−1
j MjPjt. (4.16)

Upon calculation we see that

P−1
j MjPj = −4iA2

j . (4.17)

Hence (4.9) follows from (4.17) in (4.16). �

5. Conclusion

The goal of this paper is to describe a method to solve the NLS equation with
bound states with multiplicity using the inverse scattering transform. Recall that
both Zakharov and Shabat in [11] and Olmedilla [10] attempted to deal with non-
simple bound state poles, but were not able to obtain the results for arbitrary
multiplicity. In this paper we established expressions for the dependency constants
γjs(t) and the norming constants cjs(t) and the time evolution of each given their
initial values in Theorems 3.2 and 4.2. This result has been used [4, 5], however
the proof is never provided in the literature.

The newly established expressions now enable us to create the Marchenko in-
tegral equation which will give an exact solution to the NLS equation. We begin
with the formulation of the Marchenko integral equation for a set of N bound state
poles, each of arbitrary order nj . Using the representation for the time evolution of
the norming constants in (4.9) to construct the Marchenko integral equation ker-
nel associated with bound state poles of higher multiplicities results in a compact,
easily usable form. From [6] the inner most summation in (2.1) can be written as

nj−1∑
m=0

cjm(t)
ym

m!
eiλjy = −i

∫ ∞
−∞

Cj(λ− iAj)−1Bje
iλy dλ

2π
, (5.1)
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with the matrix Aj defined as in (4.8), the matrix Cj defined as in (4.11), and the
matrix Bj defined as

Bj :=


0
0
...
1

 .
Defining the matrices A, B, and C as

A :=


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN

 , B := [


B1

B2

...
BN

 ,
C :=

[
C1 C2 . . . CN

]
,

we can then rewrite the kernel of the integral equation as

Ω(y, t) =
∫ ∞
−∞

R(λ, t)eiλy
dλ

2π
+ Ce−Ay−4iA2tB.

An immediate consequence from [6] is that the exact solution to the NLS equation
for the n-soliton solution with bound states λj with multiplicity nj can be written
as

u(x, t) = −2B†e−A
†xG(x, t)−1e−A

†x+4i(A†)2tC†,

where the dagger denotes the matrix adjoint and G(x, t) is defined as

G(x, t) := I +
(∫ ∞

x

e−A
†s+4i(A†)2tC†Ce−AxG(x, t)−1e−Ax+4i(A†)2tdz

)
×
(∫ ∞

x

e−AzBB†e−A
†xdz

)
.
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