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CHANGE OF HOMOGENIZED ABSORPTION TERM IN
DIFFUSION PROCESSES WITH REACTION ON THE

BOUNDARY OF PERIODICALLY DISTRIBUTED
ASYMMETRIC PARTICLES OF CRITICAL SIZE

JESÚS ILDEFONSO DÍAZ, DAVID GÓMEZ-CASTRO,

TATIANA A. SHAPOSHNIKOVA, MARIA N. ZUBOVA

Abstract. The main objective of this article is to get a complete charac-

terization of the homogenized global absorption term, and to give a rigorous
proof of the convergence, in a class of diffusion processes with a reaction on the

boundary of periodically “microscopic” distributed particles (or holes) given

through a nonlinear microscopic reaction (i.e. under nonlinear Robin micro-
scopic boundary conditions). We introduce new techniques to deal with the

case of non necessarily symmetric particles (or holes) of critical size which leads

to important changes in the qualitative global homogenized reaction (such as
it happens in many problems of the Nanotechnology). Here we shall merely

assume that the particles (or holes) Gjε, in the n-dimensional space, are dif-

feomorphic to a ball (of diameter aε = C0εγ , γ = n
n−2

for some C0 > 0). To

define the corresponding “new strange term” we introduce a one-parametric
family of auxiliary external problems associated to canonical cellular problem

associated to the prescribed asymmetric geometry G0 and the nonlinear mi-

croscopic boundary reaction σ(s) (which is assumed to be merely a Hölder
continuous function). We construct the limit homogenized problem and prove

that it is a well-posed global problem, showing also the rigorous convergence
of solutions, as ε → 0, in suitable functional spaces. This improves many

previous papers in the literature dealing with symmetric particles of critical

size.

1. Introduction

It is well-known that the asymptotic behaviour of the solution of many relevant
diffusion processes with reaction on the boundary of periodically “microscopic” dis-
tributed particles (or holes) is described through the solution of a global reaction-
diffusion problem in which the global reaction term (usually an absorption term if
the microscopic reactions are given by monotone non-decreasing functions) main-
tains the same structural properties as the microscopic reaction (see, for instance,
[3]) and its many references to previous results in the literature).

A certain critical size of the “microscopic particles” may be responsible of a
change in the nature of the homogenized global absorption term, with respect to
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the structural assumptions on the microscopic boundary reaction kinetic. It seems
that the first result in that direction was presented in the pioneering paper by V.
Marchenko and E. Hruslov [15] dealing with microscopic non-homogeneous Neu-
mann boundary condition (see also the study made by E. Hruslov concerning linear
microscopic Robin boundary conditions in [12, 11]). A –perhaps– more popular
presentation of the appearance of some “strange term” was due to D. Cioranescu
and F.Murat [2] dealing with microscopic Dirichlet boundary conditions (see also
[13]).

This change of behavior from the microscopic reaction to the global homo-
geneized reaction term is one of the characteristics of the nanotechnological effects
(see, e.g., [20]) and it does not appear for particles of bigger size (relative to their
repetition) than the critical scale (see, e.g., [6] and the references therein). The to-
tal identification of the new or “strange” reaction term is an important task which
was considered by many authors under different technical assumptions. In the case
of nonlinear microscopic boundary reactions the first result in the literature was
the 1997 paper by Goncharenko [10] (see also the precedent paper [13]). The identi-
fication (and the rigorous proof of the convergence in the homogenization process)
requires to assume that the particles (or holes) are symmetric balls of diameter
aε = C0ε

γ , γ = n
n−2 , for some C0 > 0. Many other researches were developed for

different problems concerning critical sized balls (see [22, 18, 5] and the references
therein). Recently, a unifying study concerning the homogenization for particles
(or holes) given by symmetric balls of critical order was presented in [7]: the treat-
ment was extended to a microscopic reaction given by a general maximal monotone
graph which allows to include, as special problems, the cases of Dirichlet or nonlin-
ear Robin microscopic boundary conditions. The case of particles of general shape
when n = 2 was studied in [19], with the limit behaviour being similar to the case
of spherical inclusions and n ≥ 2.

The main task of this paper is to get a complete characterization of the homog-
enized global absorption term in the class of problems given through a nonlinear
microscopic reaction (i.e. under nonlinear Robin microscopic boundary conditions)
and for non necessarily symmetric particles (or holes). Here we will merely assume
that the particles (or holes) Gjε are a rescaled version of a set G0, diffeomorphic
to a ball (where the scaling factor is aε = C0ε

γ , γ = n
n−2 for some C0 > 0). To

define the corresponding new “strange term” we introduce a one-parametric family
of auxiliary external problems associated to canonic cellular problem, which play
the role of a “nonlinear capacity” of G0 and the nonlinear microscopic boundary
reaction σ(s) (which is assumed to be merely a Hölder continuous function). We
construct the limit homogenized problem and prove that it is well-posed global
problem, showing also the rigorous convergence of solutions, as ε → 0, in suitable
functional spaces.

2. Statement of main results

Let Ω be a bounded domain in Rn n ≥ 3 with a piecewise smooth boundary ∂Ω.
The case n = 2 requires some technical modifications which will not be presented
here. Let G0 be a domain in Y = (− 1

2 ,
1
2 )n, and G0 be a compact set diffeomorphic

to a ball. Let C0, ε > 0 and set

aε = C0ε
α for α =

n

n− 2
. (2.1)
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For δ > 0 and B a set let δB = {x | δ−1x ∈ B }. Assume that ε is small enough so
that aεG0 ⊂ εY . We define Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε }. For j ∈ Zn we define

P jε = εj, Y jε = P jε + εY, Gjε = P jε + aεG0.

We define the set of admissible indexes:

Υε =
{
j ∈ Zn : Gjε ∩ Ω̃ε 6= ∅

}
.

Notice that |Υε| ∼= dε−n where d > 0 is a constant. Our problem will be set in the
following domain:

Gε =
⋃
j∈Υε

Gjε, Ωε = Ω \Gε

Finally, let
∂Ωε = Sε ∪ ∂Ω, Sε = ∂Gε.

We consider the following boundary value problem in the domain Ωε
−∆uε = f, x ∈ Ωε,

∂νuε + ε−γσ(uε) = 0, x ∈ Sε,
uε = 0, x ∈ ∂Ω,

(2.2)

where γ = α = n
n−2 , f ∈ L2(Ω), ν is the unit outward normal vector to the

boundary Sε, ∂νu is the normal derivative of u. Furthermore, we suppose that
the function σ : R → R, describing the microscopic nonlinear Neumann boundary
condition, is nondecreasing, σ(0) = 0, and there exist constants k1, k2 such that

|σ(s)− σ(t)| ≤ k1|s− t|α + k2|s− t| ∀s, t ∈ R, for some 0 < α ≤ 1. (2.3)

Remark 2.1. Condition (2.3) means that σ is locally Hölder continuous, but it
is only sublinear towards infinity. This condition is weaker than u ∈ C0,α(R) or σ
Lipschitz, that correspond, respectively, to k2 = 0 and k1 = 0.

Remark 2.2. Condition (2.3) on σ is a purely technical requirement. This kind
of regularity can probably be improved. In particular, as shown in [4, 7] the kind
of homogenization techniques and result that will be presented later can be expect
for any maximal monotone graph σ.

For any prescribed set G0, as before, and for any given u ∈ R, we define
ŵ(y;G0,u), for y ∈ Rn \G0, as the solution of the following one-parametric family
of auxiliary external problems associated to the prescribed asymmetric geometry
G0 and the nonlinear microscopic boundary reaction σ(s):

−∆yŵ = 0 if y ∈ Rn \G0,

∂νy
ŵ − C0σ(u− ŵ) = 0, if y ∈ ∂G0,

ŵ → 0 as |y| → ∞.
(2.4)

We will prove in Section 4 that the above auxiliary external problems are well
defined and, in particular, there exists a unique solution ŵ(y;G0,u) ∈ H1(Rn \
G0), for any u ∈ R. Concerning the corresponding “new strange term”, for any
prescribed asymmetric set G0, as before, and for any given u ∈ R we introduce the
following definition.
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Definition 2.3. Given G0 we define HG0 : R→R by means of the identity

HG0(u) :=
∫
∂G0

∂νy
ŵ(y;G0,u) dSy

= C0

∫
∂G0

σ(u− ŵ(y;G0,u)) dSy, for any u ∈ R.
(2.5)

Remark 2.4. Let G0 = B1(0) := {x ∈ Rn : |x| < 1} be the unit ball in Rn. We
can find the solution of problem (2.4) in the form ŵ(y;G0,u) = H(u)

|y|n−2 , where, in
this case, H(u) is proportional to HB1(0)(u). We can compute that

HG0(u) =
∫
∂G0

∂νŵ(u, y) dSy

=
∫
∂G0

(n− 2)HG0(u) dSy

= (n− 2)H(u)ω(n),

where ω(n) is the area of the unit sphere. Hence, due to (2.5), H(u) is the unique
solution of the following functional equation

(n− 2)H(u) = C0σ(u−H(u)). (2.6)

In this case, it is easy to prove that H is nonexpansive (Lipschitz continuous with
constant 1). This equation has been considered in many papers (see [7] and the
references therein).

We shall prove several results on the regularity and monotonicity of the homog-
enized reaction HG0(u) in the next section. Concerning the convergence as ε → 0
the following statement collects some of the more relevant aspects of this process:

Theorem 2.5. Let n ≥ 3, aε = C0ε
−γ , γ = n

n−2 , σ a nondecreasing function such
that σ(0) = 0 and that satisfies (2.3). Let uε be the weak solution of (2.2). Then
there exists an extension to H1

0 (Ω), still denoted by uε, such that uε ⇀ u0 in H1(Ω)
as ε→ 0, where u0 ∈ H1

0 (Ω) is the unique weak solution of

−∆u0 + Cn−2
0 HG0(u0) = f Ω,
u0 = 0 ∂Ω.

(2.7)

Remark 2.6. Since |HG0(u)| ≤ C(1 + |u|) it is clear that HG0(u0) ∈ L2(Ω).

3. On the ε-global problem

Some comments on the well-posednes and some a priori estimates concerning
the ε-global problem (2.2), when the nondecreasing function σ ∈ C(R), σ(0) = 0
satisfies (2.3), are collected in this section. We start by introducing some notations:

Definition 3.1. Let U be an open set and Γ ⊂ ∂Ω. We define the functional space

H1(U,Γ) = {f ∈ C∞(U) : f |Γ = 0}
H1(U)

.

Thanks to well-known results (see, e.g. the references given in [7]) there exists a
unique weak solution of problem (2.2): i.e. uε ∈ H1(Ωε, ∂Ω) is the unique function
such that ∫

Ωε

∇uε∇ϕdx+ ε−γ
∫
Sε

σ(uε)ϕdS =
∫

Ωε

fϕdx, (3.1)
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for every ϕ ∈ H1(Ωε, ∂Ω). As a matter of fact, in order to get a proof of the
convergence of uε as ε→ 0, under the general assumption (2.3), it is useful to recall
that, thanks to the monotonicity of σ(u), we can write the weak formulation of
(2.2) in the following equivalent way (for details see [6]):∫

Ωε

∇ϕ · ∇(ϕ− uε) dx+ ε−γ
∫
Sε

σ(ϕ)(ϕ− uε)ds ≥
∫

Ωε

f(ϕ− uε) dx, (3.2)

for every ϕ ∈ H1
0 (Ω).

Concerning some initial apriori estimates, we recall that we can work with ũε ∈
H1

0 (Ω) given as an extension of uε to Ω such that

‖ũε‖H1(Ω) ≤ K‖uε‖H1(Ωε), ‖∇ũε‖L2(Ω) ≤ K‖∇uε‖L2(Ωε), (3.3)

where K does not depend on ε. The construction of such an extension is given,
e.g., in [17] (the W 1,p equivalent, for p 6= 2, can be found in [18]).

Now, considering in the weak formulation (3.1) the test function ϕ = uε, and
using the monotonicity of σ, we obtain

‖∇uε‖2L2(Ωε) ≤ K. (3.4)

where K does not depend on ε. From (3.4) we derive that there are a subsequence
of ũε (still denote by ũε) and u0 ∈ H1

0 (Ω) such that, as ε→ 0, we have

ũε ⇀ u0 weakly in H1
0 (Ω), (3.5)

ũε → u0 strongly in L2(Ω). (3.6)

In Section 4 we characterize the limit function u0 ∈ H1
0 (Ω).

4. On the regularity of the strange term

4.1. Auxiliary function ŵ. The existence and regularity of solution in domains

O = Rn \G0 (4.1)

which are commonly known as exterior domains, has been extensively studied (see,
e.g., [9] and the references therein).

Based on the rate of convergence to 0 as |y| → +∞ we consider the space

X =
{
w ∈ L1

loc(O) : ∇w ∈ L2(O), w|∂G0 ∈ L2(∂G0), |w| ≤ K

|y|n−2

}
(4.2)

It is a standard result, known as Weyl’s lemma, that any harmonic function is
smooth (of class C∞) in the interior of the domain. It was first proved for the whole
space by Hermann Weyl [21], and later extended by others to any open set in Rn
(see, e.g., [14]).

Remark 4.1. Notice that w̃(y;G0, u) = −ŵ(y;G0,−u) is a solution of (2.4) that
corresponds to σ̃(s) = −σ(−s). Hence, any comparison we prove for u ≥ 0 we
automatically prove for u ≤ 0.
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4.1.1. A priori estimates.

Lemma 4.2 (Weak maximum principle in exterior domains). Assume that w ∈ X
is such that

−∆w ≤ 0 D′(O),
w ≤ 0 ∂G0.

Then w ≤ 0 in O.

Proof. Let R > 0. Consider OR = O∩BR. Since w ∈ X then w ≤ K
|y|n−2 . Using the

hypothesis w ≤ 0 on ∂G0 and this fact, K
Rn−2 on ∂OR. We can apply the standard

weak maximum principle for weak solutions in OR to show that w ≤ K
Rn−2 on OR.

As R→ +∞ we prove the result. �

Analogously, we have the strong maximum principle.

Lemma 4.3. Let σ nondecreasing, u ∈ R, ŵ ∈ X be a weak solution of (2.4). Then

min{0, u} ≤ ŵ ≤ max{0, u} (4.3)

Proof. For u = 0, w = 0 follows from a monotonicity argument. Assume u > 0.
Let ψ ∈W 1,∞(R) non-increasing such that

ψ(s) =

{
1 s < 1

2

0 s > 1

and consider the test function ϕ = (w − u)+ψ
(d(·,∂G0)

R

)
. Then∫

O
|∇(w − u)+|2ψ

(d(x, ∂G0)
R

)
dx+

∫
O

(w − u)+

ψ′
(d(x,∂G0)

R

)
R

∇w · ∇ddx

= C0

∫
∂G0

σ(u− w)(w − u)+ dS ≤ 0

and ∣∣∣ ∫
O

(w − u)+

ψ′
(d(x,∂G0)

R

)
R

∇w · ∇ddx
∣∣∣dx

≤ C
∫
{R

2 <d<R}

w

R
|∇w|dx

≤ C
(∫
{R

2 <d<R}

|w|2

R2
dx
)1/2(∫

O
|∇w|2 dx

)1/2

≤ C

R
n−2

2

(∫
O
|∇w|2 dx

)1/2

→ 0,

as R→∞. Therefore,

0 ≤
∫

0≤d<R
2

|∇(w − u)+|2 dx ≤
∫
O
|∇(w − u)+|2ψ

(d(x, ∂G0)
R

)
dx

≤ −
∫
O

(w − u)+

ψ′
(
d(x,∂G0)

R

)
R

∇w · ∇ddx.



EJDE-2017/178 CHANGE OF HOMOGENIZED ABSORPTION TERM 7

As R→ +∞ we obtain that ∫
O
|∇(w − u)+|2 dx = 0. (4.4)

In particular (w − u)+ ≥ 0 is a constant. Since, as |y| → +∞ we show that the
constant must be (−u)+ = 0 we deduce that w − u ≤ 0.

If u < 0 we apply the previous argument with σ̃(s) = −σ(−s). �

Lemma 4.4. Let u ∈ R, w ∈ X such that w ≤ u in ∂G0 and −∆w ≤ 0 and

K0 = max
z∈∂G0

|z|n−2.

Then

w ≤ K0u

|y|n−2
∀y ∈ O.

Proof. Notice that

max
z∈∂G0

w(z)|z|n−2 ≤ u max
z∈∂G0

|z|n−2 = K0u.

Then

w ≤ K0u

|y|n−2
y ∈ ∂G0.

Since w − K0u
|y|n−2 is subharmonic and tends to 0 as |y| → +∞, we can apply the

weak maximum principle to deduce that

w(y) ≤ K0u

|y|n−2
y ∈ Rn \G0.

This proves the result. �

By the same argument it is easy to prove that any classical solution ŵ ∈ C2(O)∩
C(O) is, in fact, in X. Furthermore, we have an explicit expression of the K in the
definition of X for the solutions of (2.4):

Lemma 4.5. Let ŵ ∈ X be a solution of (2.4). Then

|ŵ(y;G0, u)| ≤ K0|u|
|y|n−2

∀y ∈ O. (4.5)

Lemma 4.6. Let R0 = max∂G0 |y|, ŵ ∈ X be a weak solution of (2.4). Then

max
|y|=R

|∇ŵ(y;G0, u)| ≤ K|u|
(R−R0)n−1

∀R > R0 (4.6)

where K does not depend on u or R.

Proof. Let |y0| = R. Let B be a ball centered at y0 of radius R−R0
2 . In B we have

|y| ≥ R−R0
2 . Since ∂ bw

∂xi
is a harmonic function, and applying Lemma 4.5, we have

∂ŵ

∂xi
(y0) =

1
|B|

∫
B

∂ŵ

∂xi
dy =

1
|B|

∫
∂B

ŵνi dS,

∣∣ ∂ŵ
∂xi

(y0)
∣∣ ≤ |∂B|

|B|
K|u|

(R−R0)n−2
≤ K|u|

(R−R0)n−1
.

This completes the proof. �
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4.1.2. Uniqueness, comparison and approximation of solutions.

Lemma 4.7. Let u ∈ R, σ1, σ2 be two nondecreasing functions such that σ1 ≤ σ2

in [0,+∞) and let w1, w2 ∈ X satisfy (2.4). Then w1 ≤ w2.

Proof. We subtract the two weak formulations, and consider ϕ = (w1 − w2)+ as a
test function. We obtain that∫

Rn\G0

|∇(w1 − w2)+|2 dx =
∫
∂G0

(σ1(u− w1)− σ2(u− w2))(w1 − w2)+ dS

Thus, in the set {w2 ≤ w1} we have that u− w2 ≥ u− w1 and, hence,

σ2(u− w2) ≥ σ2(u− w1) ≥ σ1(u− w1),

so
σ1(u− w1)− σ2(u− w2) ≤ 0.

Thus, since (w1 − w2)+ ≥ 0 a.e. in ∂G0, we have that∫
Rn\G0

|∇(w1 − w2)+|2 dx ≤ 0. (4.7)

Hence (w1−w2)+ = c constant. Since (w1−w2)+ → 0 as |y| → +∞, we have that
c = 0 and thus w1 ≤ w2. �

Corollary 4.8. There exists, at most, one solution w ∈ X of (2.4).

Lemma 4.9. Let σ1, σ2 ∈ C(R) be two nondecreasing function. Let ŵi(·;G0, u) ∈ X
be a solution of

−∆yŵi = 0 if y ∈ Rn \G0,

∂νy
ŵi − C0σi(u− ŵi) = 0, if y ∈ ∂G0,

ŵi → 0 as |y| → ∞.
(4.8)

Then
‖∇(ŵ1 − ŵ2)‖2L2(O) ≤ C|u|‖σ1 − σ2‖L∞(I), (4.9)

where
I = {u− ŵ1(y;G0, u) : y ∈ Rn \G0} ⊂ R, (4.10)

and C is independent of u.

Proof. By taking as test function ϕ = ŵ1 − ŵ2 in the weak formulation of these
equations we have that

‖∇(ŵ1 − ŵ2)‖2L2(O) ≤
∫
O
|∇(ŵ1 − ŵ2)|2 dx

+
∫
∂G0

(σ2(u− ŵ2)− σ2(u− ŵ1))(ŵ1 − ŵ2) dS

=
∫
∂G0

(σ1(u− ŵ1)− σ2(u− ŵ1))(ŵ1 − ŵ2) dS

≤ ‖σ1 − σ2‖∞
∫
∂G0

|ŵ1 − ŵ2|dS

≤ C|u|‖σ1 − σ2‖∞.

This completes the proof. �
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4.1.3. Existence and regularity.

Lemma 4.10. Let u ∈ R and σ uniformly Lipschitz. Then, there exists ŵ ∈ X a
weak solution of (2.4). Furthermore, ŵ satisfies (4.5).

Proof. Let us assume that u > 0. Let λ > 0, and consider µ > 0 such that

F : z 7→ C0σ(u− z) + µz

is nondecreasing. Let w0 = 0. We define the sequence wk ∈ H1(O) as the solutions
of

−∆wk+1 + λwk+1 = λwk O,
∂νwk+1 + µwk+1 = F (wk) ∂G0,

wk+1 → 0 |y| → +∞.
This sequence is well defined, since λ > 0 applying the Lax-Milgram theorem.
Indeed, if wk ∈ H1(O) then F (wk) ∈ H1/2(∂G0) so that wk+1 ∈ H1(O).

Let us show that 0 ≤ wk ≤ wk+1 ≤ u a.e. in O and ∂G0 for every n ≥ 1. We
start by showing that 0 ≤ w1. This is immediate because F (0) = C0σ(u) ≥ 0.
Let us now show that, if wk−1 ≤ wk then wk ≤ wk+1. Considering the weak
formulations: ∫

O
∇wk+1∇v dx+ λ

∫
O
wk+1v dx+ µ

∫
∂G0

wkv dS

= λ

∫
O
wk+1v dx+

∫
∂G0

F (wk)v dx
(4.11)

we have that∫
O
∇(wk − wk+1)∇v dx+ λ

∫
O

(wk − wk+1)ϕdx+ µ

∫
∂G0

(wk − wk+1)v dS

= λ

∫
O

(wk−1 − wk)v dx+
∫
∂G0

(F (wk−1)− F (wk))v dS

Consider v = (wk − wk+1)+ ≥ 0. We have that wk−1 ≤ wk therefore wk−1 −
wk, F (wk−1)− F (wk) ≤ 0. Hence∫
O
|∇(wk − wk+1)+|2 dx+ λ

∫
O
|(wk − wk+1)+|2 dx+ µ

∫
∂G0

|(wk − wk+1)+|2 dS

= λ

∫
O

(wk − wk+1)v dx+
∫
∂G0

(F (wk−1)− F (wk))v dS ≤ 0

so that (wk − wk+1)+ = 0. Hence wk ≤ wk+1 a.e. in O and in ∂G0. With an
argument similar to the one in Lemma 4.3, one proves that wk+1 ≤ u a.e. in O and
∂G0.

The sequence wk is pointwise increasing a.e. in O. Therefore, there exists a
function w such that

wk(y)↗ w(y) a.e. O. (4.12)
Taking traces, the same happens in ∂G0. Hence

wk(y)↗ w(y) a.e. ∂G0. (4.13)

Thus F (wk) ↗ F (w) a.e. in L2(∂G0). Since F (w) ≤ F (u) and ∂G0 has bounded
measure, we have that

F (wk)→ F (w) in L2(∂G0). (4.14)
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We have that
−∆wk+1 = λ(wk − wk+1) ≤ 0 O.

Hence, wk are all subharmonic. Then, since wk → 0 as |y| → 0 and wk ∈ X and
wk ≤ u on ∂G0, by Lemma 4.4 we have that

0 ≤ wk ≤
K0u

|y|n−2
.

in particular wn ∈ X. Passing to the limit we deduce that

0 ≤ w ≤ K0u

|y|n−2
y ∈ O

Hence w → 0 as |y| → +∞. Applying an equivalent argument to the one in Lemma
4.9 we have that ∇wk is a Cauchy sequence in L2(O)n. In particular, there exists
ξ ∈ L2(O)n such that

∇wk → ξ in L2(O)n.

Consider O′ ⊂ O open and bounded. Then we have that∫
O′
|∇wk|2 dy ≤

∫
O
|∇wn|2 dy

is bounded, and ∫
O′
|wk|2 dy ≤ |u|2|O′|.

Hence, there is convergent subsequence in H1(O′). Any convergent subsequence
must have the same limit, so wk ⇀ w H1(O′). In particular

ξ = ∇w a.e. O′.

Since this works for every O′ bounded we have that ∇w ∈ L2(O)n, hence w ∈ X,
and

∇wn → ∇w in L2(O)n.

Using this fact and (4.14), we can pass to the limit in the weak formulation to
deduce that

−∆w = 0 O,
∂w

∂n
= C0σ(u− w) ∂G0.

In particular, a solution of (2.4). The same reasoning applies to case u < 0. �

Corollary 4.11. Let σ ∈ C(R) be nondecreasing be such that

|σ(u)| ≤ C(1 + |u|). (4.15)

Then, there exists a unique solution of (2.4).

Proof. Let us assume first that u > 0. Let σm ∈ C1([0, |u|]) be a pointwise in-
creasing sequence that approximates σ uniformly in [0, |u|]. Since σm is Lipschitz,
then ŵm exists by the previous part. Because of Lemma 4.7, the sequence ŵm of
solutions of (2.4) is pointwise increasing. Since we know that, we have that ŵm ≤ u
then, for a.e. y ∈ O, ŵm(y) is a bounded and increasing sequence

ŵm(y)↗ w(y).
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for some w(y). In particular

0 ≤ w(y) ≤ K0u

|y|n−2
y ∈ O.

Applying as in the proof of Lemma 4.10 we deduce that w ∈ X and it is a solution of
(2.4). The proof for u < 0 follows in the same way, by taking a pointwise decreasing
sequence σm. �

With the same techniques we can prove the following (applying that u− w ≥ 0
for u ≥ 0 and u− w ≤ 0 for u ≤ 0):

Lemma 4.12. Let u ∈ R, O′ ⊂ O bounded, σ, σm be nondecreasing continu-
ous functions such that σ(0) = σm(0) = 0 and |σm| ≤ |σ| and σm → σ in
C([−2|u|, 2|u|]). Then:

ŵm(·;G0, u)→ ŵ(·;G0, u) strongly in H1(O′). (4.16)

Furthermore,

(1) If u ≥ 0 then ŵm ↗ ŵ a.e. y ∈ O and y ∈ ∂G0.
(2) If u ≤ 0 then ŵm ↘ ŵ a.e. y ∈ O and y ∈ ∂G0.

4.1.4. Lipschitz continuity with respect to u.

Lemma 4.13. For every y ∈ Rn \ G0, ŵ(y;G0,u) is a nondecreasing Lipschitz-
continuous function with respect to u. In fact,

|ŵ(u1;G0, y)− ŵ(y;G0, u2)| ≤ |u1 − u2| ∀u1, u2 ∈ R, ∀y ∈ Rn \G0. (4.17)

Furthermore, for every y ∈ ∂G0, ∂νŵ(y;G0, u) is also nondecreasing in u.

Proof. Let us consider first that σ ∈ C1(R). We have that ŵ(·;G0, u) ∈ C(O)∩C2(O)
for every u ∈ R and the equation is satisfied pointwise (see [14]).

Let us first consider u1 > u2. We want to prove the following

0 ≤ ŵ(u1;G0, y)− ŵ(y;G0, u2) ≤ u1 − u2 (4.18)

∂νŵ(u1;G0, y) ≥ ∂νŵ(y;G0, u2). (4.19)

That
ŵ(u1;G0, y) ≥ ŵ(y;G0, u2). (4.20)

follows from the comparison principle. Indeed, let us plug ŵ(u1;G0, y) in the equa-
tion for ŵ(y;G0, u2):

−∆ŵ(u1;G0, y) = 0 Rn \G0,

∂νy
ŵ(u1;G0, y)− C0σ(u2 − ŵ(u1;G0, y))

= C0 (σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))) ≥ 0 ∂G0,

ŵ(u1;G0, y)→ 0 |y| → +∞.

(4.21)

Therefore, ŵ(u1;G0, y) is a supersolution of the problem for ŵ(y;G0, u2). Applying
the comparison principle we deduce (4.20).

We define
g(u1, u2, y) = ŵ(u1;G0, y)− ŵ(y;G0, u2) ≥ 0. (4.22)



12 J. I. DÍAZ, D. GÓMEZ-CASTRO, T. A. SHAPOSHNIKOVA, M. N. ZUBOVA EJDE-2017/178

The function g is the solution of the following elliptic problem:

∆yg = 0 if y ∈ Rn \G0,

∂νy
g − C0

(
σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))

)
= 0 if y ∈ ∂G0,

g → 0 as |y| → ∞.

(4.23)

Let us consider the boundary condition for y ∈ ∂G0:

∂νy
g(y) = C0(σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2)))

multiplying by u1 − u2 − g(u1, u2, y), and applying the monotonicity of σ, we have

(∂νg(y))(u1 − u2 − g(y)) ≥ 0 ∀y ∈ ∂G0. (4.24)

Let g(y0) = max∂G0 g for some y0 ∈ ∂G0. By the strong maximum principle
g(y0) = maxRn\G0 g. Hence g(y) ≤ g(y0) for y ∈ Rn \G0 and we have

∂νyg(y0) ≥ 0.

Assume, first, that σ is strictly increasing. We study two cases. If ∂νyg(y0) > 0
then, by (4.24),

u1 − u2 ≥ g(y0) ≥ g(y) ∀y ∈ Rn \G0.

If ∂νg(y0) = 0 then, by (4.23),

σ(u1 − ŵ(y0;G0, u1)) = σ(u2 − ŵ(y0;G0, u2))

u1 − ŵ(y0;G0, u1) = u2 − ŵ(y0;G0, u2)

u1 − u2 = g(y0) ≥ g(y) ∀y ∈ Rn \G0.

Either way, we deduce that (4.18) holds. Hence,

σ(u1 − ŵ(u1;G0, y)) ≥ σ(u2 − ŵ(y;G0, u2)) ∀y ∈ ∂G0

so (4.19) holds. This concludes the proof when σ is strictly increasing.
Let σ be a nondecreasing function and U = max{|u1|, |u2|}. We consider an ap-

proximation sequence σm of σ in [−2U, 2U ] by strictly increasing smooth functions
such that |σm| ≤ |σ|. Consider ŵm as defined in Lemma 5.7. We have that

ui − ŵ(y;G0, ui) ∈ [−2U, 2U ] ∀i = 1, 2,∀y ∈ Rn \G0.

By the previous part ŵm satisfies (4.18) and (4.19). Applying Lemma 4.12 we have
a.e.-pointwise convergence ŵm(ui, y) → ŵ(ui, y) for i = 1, 2, up to a subsequence,
as m → +∞. Therefore (4.18) and (4.19) hold almost everywhere in y. Since ŵ
is continuous, (4.18) and (4.19) hold everywhere. This concludes the proof in the
case u1 > u2.

If u1 < u2 we can exchange the roles of u1 and u2 in (4.18) to deduce (4.17).
This concludes the proof. �

4.1.5. Auxiliary function ŵjε. We conclude this section by introducing the following
function:

Definition 4.14. Let u ∈ R, j ∈ Υε and ε > 0. We define

ŵjε(x;G0, u) = ŵ
(x− P jε

aε
;G0, u

)
. (4.25)
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It is clear that this function is the solution of the problem

−∆ŵjε = 0 Rn \Gjε,
∂nŵ

j
ε − ε−γσ(u− ŵjε) = 0 ∂Gjε

ŵjε → 0 |x| → +∞.
(4.26)

We have the following estimates:

Lemma 4.15. Let ε, r > 0 and x ∈ ∂T jrε. Then

|ŵjε(x;G0, u)| ≤ K|u|∣∣∣x−P j
ε

aε

∣∣∣n−2 ≤
K|u|an−2

ε

rn−2εn−2
≤ K|u|
rn−2

ε2 (4.27)

where K does not depend on r, |u| or ε.

Lemma 4.16. For ε, r > 0 be such that aε < rε
2R0

. Let x ∈ ∂T jrε. Then

|∇ŵjε(x;G0, u)| ≤ K|u|
rn−1

ε, (4.28)

where K does not depend on r, ε or j.

Proof. By the definition of ŵjε we have

∇ŵjε(x;G0, u) = a−1
ε (∇ŵ)

(x− P jε
aε

;G0, u
)

Therefore, for x ∈ ∂T jrε,

|∇ŵjε| = a−1
ε

∣∣∇ŵ(x− P jε
aε

)∣∣ ≤ K|u|a−1
ε(

|x−P
j
ε

aε
| −R0

)n−1

≤ K|u|an−2
ε

(rε− aεR0)n−1 ≤
K|u|an−2

ε(
rε
2

)n−1

≤ K|u|
rn−1

ε.

This completes the proof. �

4.2. Properties of HG0 .

Lemma 4.17. HG0 is a nondecreasing function. Furthermore:

(1) If σ satisfies (2.3), then so does HG0 .
(2) If σ ∈ C0,α(R), then so is HG0 .
(3) If σ ∈ C1(R), then HG0 is locally Lipschitz continuous.
(4) If σ ∈W 1,∞(R), then so is HG0 .

Proof. Let us prove the monotonicity of HG0(u) given by (2.5). Let u1 > u2. By
applying (4.19) we deduce that HG0(u1) ≥ HG0(u2).
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Assume (2.3). Indeed, taking into account (4.17) we deduce

|HG0(u)−HG0(v)|

≤ C0

∫
∂G0

|σ(u− ŵ(y;G0,u))− σ(v − ŵ(y;G0, v))|dSy

≤ C0k1

∫
∂G0

(
|u− v|+ |ŵ(y;G0,u)− ŵ(y;G0, v)|

)α
dSy

+ C0k2

∫
∂G0

(
|u− v|+ |ŵ(y;G0,u)− ŵ(y;G0, v)|

)
dSy

≤ K1|u− v|α +K2|u− v|

(4.29)

In particular, if u ∈ C0,α(R), then k2 = 0 and K2 = 0.
Assume now that σ ∈ C1(R). Let u1, u2 ∈ R. We have that, for y ∈ ∂G0

|∂νy
ŵ(u1;G0, y)− ∂νy

ŵ(u2, y)|
= C0|σ(u1 − ŵ(u1;G0, y))− σ(u2 − ŵ(y;G0, u2))|

≤ C|σ′(ξ)|
(
|u1 − u2|+ |ŵ(u1;G0, y)− ŵ(y;G0, u2)|

)
≤ C|σ′(ξ)||u1 − u2|.

for some ξ between u1 − ŵ(y;G0, u1) and u2 − ŵ(y;G0, u2). Since |ŵ(u, y)| ≤ |u|,
for every K ⊂ R compact there exists a constant CK such that

|∂νy ŵ(y;G0, u1)− ∂νy ŵ(y;G0, u2)| ≤ CK |u1 − u2| ∀u1, u2 ∈ K.
Therefore,

|HG0(u)−HG0(v)| ≤ C̃K |u1 − u2| ∀u1, u2 ∈ K.
Let σ ∈W 1,∞(R). By approximation by nondecreasing functions σn ∈W 1,∞ ∩ C1,
we obtain that

|∂νy
ŵ(y;G0, u1)− ∂νy

ŵ(y;G0, u2)| ≤ 2‖σ′‖∞|u1 − u2|. (4.30)

Therefore,

|HG0(u)−HG0(v)| ≤ 2‖σ′‖∞|∂G0||u1 − u2| ∀u1, u2 ∈ R. (4.31)

This completes the proof. �

Lemma 4.18. Let u ∈ R. Let σ, σm be nondecreasing continuous functions such
that σ(0) = σm(0) = 0 satisfy (2.3) with the same constants k1, k2 and α, |σm| ≤ |σ|
and σm → σ in C([−2U, 2U ]) for some U > 0. Then

HG0,m → HG0 in C([−U,U ]). (4.32)

Proof. Let u ∈ [0, U ]. By Lemma 4.12 we know that

u− ŵm(y;G0, u)↘ u− ŵ(y;G0, u) for a.e. y ∈ ∂G0.

In particular, due to the dominated convergence theorem, HG0,m(u) → HG0(u).
An equivalent argument applies to u ∈ [−U, 0]. Hence

HG0,m → HG0 pointwise in [−U,U ].

Since all σm satisfy (2.3) with the same k1, k2, α, we know that Hm satisfies (4.29)
with the same K1,K2 and α. Hence, HG0,m is an equicontinuous sequence. Ap-
plying the Ascoli-Arzela theorem we know that the sequence is relatively compact
in C([−U,U ]) with the supremum norm. It has, at least, a uniformly convergent
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subsequence. Since every convergent subsequence has to converge to HG0 , we know
that the the whole sequence HG0,m converges to HG0 uniformly in [−U,U ]. �

Remark 4.19. When ∂G0 is assumed C2 it is possible to develop other type of
techniques (which we shall not present in detail here) showing the existence and
uniqueness of solution ŵ(y;G0,u). Indeed, the existence of ŵ(y;G0,u) can be built
through passing to the limit after a truncation of the domain process (with the
artificial boundary condition ŵ(y;G0,u) = 0 on the new truncated boundary).
The maximum principle for classical solutions (see, e.g. [14], [8, p.206] or [1])
allows to get universal a priori estimates which justify the weak convergence and
thanks to the monotonicity of the nonlinear term in the interior boundary condition
the passing to the limit can well-justified. In addition, it can be proved (see the
indicated references) that the limit is also a classical solution on the whole exterior
domain. Moreover, the same technique (i.e. the maximum principle for classical
solutions) implies the comparison, uniqueness and continuous dependence of the
solution ŵ(y;G0, u).

5. Proof in the smooth case σ ∈ C1(R)

5.1. Auxiliary function wjε. To pass to the limit as ε→ 0 in (3.2) we need some
auxiliary functions.

Definition 5.1. Let u ∈ R, ε > 0 and j ∈ Υε. We define the function wjε(·;G0, u)
as the solution of the problem

∆wjε = 0 if x ∈ T jε/4 \G
j
ε,

∂νx
wjε − ε−γσ(u− wjε) = 0 if x ∈ ∂Gjε,

wjε = 0 if x ∈ ∂T jε/4,

(5.1)

where
T jr = {x ∈ Rn : |x− P jε | ≤ r}, (5.2)

P jε is the center of Y jε . Finally, we define

Wε(x;G0, u) =

{
wjε(x;G0, u) if x ∈ T jε/4 \G

j
ε, j ∈ Υε,

0 if x ∈ Rn \ ∪j∈ΥεT
j
ε/4.

(5.3)

Applying the comparison principle we obtain the following result.

Lemma 5.2. Let u ≥ 0. Then 0 ≤ wjε(·;G0, u) ≤ ŵjε(·;G0, u). If u ≤ 0 then
ŵjε(·;G0, u) ≤ wjε(·;G0, u) ≤ 0.

Remark 5.3. Note that, if u = 0, then wjε(·;G0, 0) ≡ 0.

Let us prove some properties of Wε(x;G0, u). First, we introduce the following
lemma.

Lemma 5.4 (Uniform trace constant). There exists a constant CT > 0 such that,
for all ε > 0

ε−γ
∫
∂Gj

ε

|f |2 dS ≤ CT
∫
T j

ε/4\G
j
ε

|∇f |2 dx ∀f ∈ H1
(
T jε/4 \G

j
ε, ∂T

j
ε
4

)
(5.4)
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Proof. First, we extend f to H1
0 (Y jε ) where Y jε = εj + εY . In [17] we find that

ε−γ
∫
∂Gj

ε

|f |2 ≤ C
(∫

Y j
ε

|f |2 +
∫
Y j

ε

|∇f |2
)
. (5.5)

Since f = 0 on ∂Y jε , taking f̃(y) = f(P jε + εy), we have∫
Y

|f̃ |2 dy ≤ C
∫
Y

|∇f̃ |2 dy. (5.6)

Since ∇xf = ε∇y f̃ we have ∫
Y j

ε

|f |2 ≤ ε2

∫
Y j

ε

|∇f |2. (5.7)

Hence, the result is proved. �

We have some precise estimates on the norm of Wε:

Lemma 5.5. For all u ∈ R, we have

‖∇Wε‖2L2(Ωε) ≤ K(|u|+ |u|2), (5.8)

‖Wε‖2L2(Ωε) ≤ K(|u|+ |u|2)ε2. (5.9)

Proof. Let u ∈ R be fixed. If we take wjε as a test function in weak formulation of
problem (5.1) we obtain∫

T j
ε/4\G

j
ε

|∇wjε|2 dx− ε−γ
∫
∂Gj

ε

σ(u− wjε)wjε dS = 0.

We rewrite this as follows:∫
T j

ε/4\G
j
ε

|∇wjε|2 dx+ ε−γ
∫
∂Gj

ε

σ(u− wjε)(u− wjε) dS = ε−γ
∫
∂Gj

ε

σ(u− wjε)udS.

Since σ is nondecreasing we have that

‖∇wjε‖2L2(T j
ε/4\G

j
ε)
≤ ε−γ |u|

∫
∂Gj

ε

|σ(u− wjε)|dS.

Because of (2.3) and that |s|α ≤ 1 + |s| for every s ∈ R, we have

ε−γ
∫
∂Gj

ε

|σ(u− wjε)|dS ≤ k1ε
−γ
∫
∂Gj

ε

|u− wjε|α dS + k2ε
−γ
∫
∂Gj

ε

|u− wjε|dS

≤ k1ε
−γ |∂Gjε|+ (k1 + k2)ε−γ

∫
∂Gj

ε

|u− wjε|dS.

Applying Lemma 5.4 and that, for every a, b, C ∈ R it holds that ab ≤ C2

2 a
2+ 1

2C2 b
2,

we obtain

(k1 + k2)ε−γ
∫
∂Gj

ε

|u− wjε|dS ≤ ε−γC|∂Gjε|+
1

2CT |u|
ε−γ

∫
∂Gj

ε

|u− wjε|2 dS

≤ C|u|ε−γ |∂Gjε|+
1

2CT |u|
‖u− wjε‖2L2(∂Gj

ε)

≤ C|u|εn +
1

2|u|
‖∇(u− wjε)‖2L2(T j

ε/4\G
j
ε)

= C|u|εn +
1

2|u|
‖∇wjε‖2L2(T j

ε/4\G
j
ε)
.



EJDE-2017/178 CHANGE OF HOMOGENIZED ABSORPTION TERM 17

Therefore,

‖∇wjε‖2L2(T j
ε/4\G

j
ε)
≤ K(|u|+ |u|2)εn +

1
2
‖∇wjε‖2L2(∂Gj

ε)
.

Thus, we have
‖∇wjε‖2L2(T j

ε/4\G
j
ε)
≤ K(|u|+ |u|2)εn.

Adding over j ∈ Υε, and taking into account that #Υε ≤ dε−n, we deduce that
(5.8) holds. Using Friedrich’s inequality we obtain

‖wjε‖2L2(T j
ε/4\G

j
ε)
≤ ε2K‖∇wjε‖2L2(T j

ε/4\G
j
ε)
,

so (5.9) holds. This completes the proof. �

5.2. Auxiliary function vjε = wjε − ŵjε. Let us define:

vjε = wjε − ŵjε. (5.10)

This functions is the solution of the problem

∆vjε = 0 if x ∈ T jε/4 \G
j
ε,

∂νv
j
ε − ε−γ(σ(u− wjε)− σ(u− ŵjε)) = 0, if x ∈ ∂Gjε,

vjε = −ŵjε(x;G0, u), if x ∈ ∂T jε/4.

(5.11)

Lemma 5.6. The following estimates hold∑
j∈Υε

‖∇(wjε(x;G0, u)− ŵjε(x;G0, u))‖2
L2(T j

ε
4
\Gj

ε)
≤ K(|u|+ |u|2)ε2, (5.12)

∑
j∈Υε

‖wjε(x;G0, u)− ŵjε(x;G0, u)‖2
L2(T j

ε/4\G
j
ε)
≤ K(|u|+ |u|2)ε4. (5.13)

Proof. From Lemma 5.2 it is clear that

|vjε(x;G0, u)| ≤ |ŵjε(x;G0, u)| ∀x ∈ T jε/4 \G
j
ε. (5.14)

Integrating by parts vjε(∆v
j
ε) and using (5.11) we deduce that∫

T j
ε/4\G

j
ε

|∇vjε|2 dx− ε−γ
∫
∂Gj

ε

(σ(u− wjε)− σ(u− ŵ))vjε dS

= −
∫
∂T j

ε/4

(∂νvjε)ŵ
j
ε(x;G0, u) dS

By the monotonicity of σ and applying Green’s first identity, we have

‖∇vjε‖2L2(T j
ε/4\G

j
ε)
≤ −

∫
∂T j

ε/4

(∂νvjε)ŵ
j
ε(x;G0, u) dS

= −
∫
T j

ε/4\T
j
ε/8

∇vjε∇ŵjε dx+
∫
∂T j

ε/8

(∂νvjε)ŵ
j
ε dS.

Applying Lemmas 4.15 and 4.16 we have

|vjε(x;G0, u)| ≤ |ŵjε(x;G0, u)| ≤ K|u|ε2.

|∇ŵjε(x;G0, u)| ≤ K|u|ε
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for all x ∈ T jε/8, where K does not depend on ε. Since vjε is harmonic, denoting
T xr = {z ∈ Rn : |x− z| < r} we have

|∂v
j
ε

∂xi
(x)| = 1

|T xε/16|

∣∣∣ ∫
Tx

ε/16

∂vjε
∂xi

dx
∣∣∣ =

K

εn

∣∣∣ ∫
∂Tx

ε/16

vjενi dS
∣∣∣ ≤ K|u|ε.

for all x ∈ T jε/4 \ T
j
ε
8
, since T xε/16 ⊂ T

j
ε/4 \ T

j
ε/16. Hence, we have∣∣∣ ∫

T j
ε/4\T

j
ε/8

∇vjε∇ŵjε dx
∣∣∣ ≤ K(|u|+ |u|2)εn+2,

∣∣∣ ∫
∂T j

ε
8

(∂νvjε)ŵ
j
ε dS

∣∣∣ ≤ K(|u|+ |u|2)εn+2.

From this we deduce that

‖∇vjε‖2L2(T j
ε/4\G

j
ε)
≤ K(|u|+ |u|2)εn+2.

From Friedrich’s inequality,

‖vjε‖2L2(T j
ε/4\G

j
ε)
≤ K(|u|+ |u|2)εn+4.

Then, adding over j ∈ Υε we obtain∑
j∈Υε

‖∇vjε‖2L2(T j
ε/4\G

j
ε)
≤ K(|u|+ |u|2)ε2,

∑
j∈Υε

‖vjε‖2L2(T j
ε/4\G

j
ε)
≤ K(|u|+ |u|2)ε4.

This estimates completes the proof. �

5.3. Convergence of integrals over ∪j∈Υε∂T
j
ε/4.

Lemma 5.7. Let HG0(u) be defined by formula (2.5), φ ∈ C∞0 (Ω) and hε, h ∈
H1

0 (Ω) be such that hε ⇀ h in H1
0 (Ω) as ε→ 0. Then, we have that

− lim
ε→0

∑
j∈Υε

∫
∂T j

ε
4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε(x) dS = Cn−2

0

∫
Ω

HG0(φ(x))h(x) dx

(5.15)
where ν is an unit outward normal vector to T jε/4.

Proof. Let us consider the auxiliary problem

∆θjε = µjε x ∈ Y jε \ T
j

ε/4, j ∈ Υε,

−∂νθjε = ∂νŵ
j
ε(x;G0, φ(P jε )) x ∈ ∂T jε ,

−∂νθjε = 0 x ∈ ∂Y jε ,
〈θjε〉Y j

ε \T
j
ε/4

= 0,

(5.16)

where ν is a unit inwards normal vector of the boundary of Y jε \ T
j
ε/4. We choose,

against the convention, the inward normal vector so that it coincides with the unit
outward normal vector of T jε/4 \G

j
ε in their shared boundary. We changed the sign
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accordingly. The constant µjε is given by the compatibility condition of the problem
(5.16):

µjεε
n
∣∣Y \ T 0

1/4

∣∣ =
∫
∂T j

ε/4

∂νŵ
j
ε(x;G0, φ(P jε )) dS

= −
∫
∂Gj

ε

∂νŵ
j
ε(x;G0, φ(P jε )) dS

= −an−2
ε

∫
∂G0

∂νy
ŵ(φ(P jε ), y) dSy,

Therefore,

µjε =
−an−2

ε HG0(φ(P jε ))
|Y \ T 0

1/4|εn
=
−Cn−2

0 HG0(φ(P jε ))
|Y \ T 0

1/4|
,

From the integral identity for the problem (5.16) we obtain

−
∫
Y j

ε \T j
ε

|∇θjε|2 dx = µjε

∫
Y j

ε \T j
ε/4

θjεdx−
∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
θjε dS. (5.17)

Applying Lemma 4.16 and using the estimates from [17], we deduce∫
∂T j

ε/4

∣∣(∂νx
ŵjε(x;G0, φ(P jε ))

)
θjε
∣∣dS

≤ K|φ(P jε )|ε
∫
∂T j

ε/4

|θε|dS

≤ K|φ(P jε )|ε
n−1

2 +1‖θjε‖L2(∂T j
ε/4)

≤ K|φ(P jε )|ε
n+1

2
{
ε−

1
2 ‖θjε‖L2(Y j

ε \T
j
ε/4)

+
√
ε‖∇θjε‖L2(Y j

ε \T
j
ε/4)

}
≤ K|φ(P jε )|ε

n+2
2 ‖∇θjε‖L2(Yε\T

j
ε/4)

.

In particular, since |φ(P jε )| ≤ ‖φ‖∞ we can make a uniform bound, independent of
j and ε. Thus, we have

‖∇θjε‖2L2(Y j
ε \T

j
ε)
≤ Kεn+2. (5.18)

Adding over j ∈ Υε we have∑
j∈Υε

∫
Y j

ε \T
j
ε/4

|∇θjε|2 dx ≤ Kε2. (5.19)

Hence, by the definition of θjε, we obtain∣∣∣ ∑
j∈Υε

∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS −

∑
j∈Υε

∫
Y j

ε \T j
ε/4

µjεhε dx
∣∣∣

=
∣∣∣ ∑
j∈Υε

∫
Y j

ε \T j
ε/4

∇θjε∇hε dx
∣∣∣ ≤ Kε‖hε‖H1(Ω,∂Ω).

Therefore,

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS = lim

ε→0

∑
j∈Υε

∫
Y j

ε \T j
ε/4

µjεhε dx.
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From the definition of µjε we deduce∑
j∈Υε

∫
Y j

ε \T j
ε/4

µjεhε dx+
Cn−2

0

|Y \ T 0
1/4|

∑
j∈Υε

∫
Y j

ε \T j
ε/4

HG0(φ(x))hε dx

= − Cn−2
0

|Y \ T 0
1/4|

∑
j∈Υε

∫
Y j

ε \T j
ε/4

(
HG0(φ(P jε ))−HG0(φ(x))

)
hε dx.

Using (4.17) we obtain∣∣∣ ∑
j∈Υε

∫
Y j

ε \T j
ε/4

(HG0(φ(P jε ))−HG0(φ(x)))hε dx
∣∣∣

≤ K‖hε‖L2(Ω) max
j

∣∣∣ ∫
∂G0

∂νy
ŵ(y;G0, φ(P jε ))− ∂νy

ŵ(y;G0, φ(x)) dSy
∣∣∣

= K‖hε‖L2(Ω) max
j

∣∣∣ ∫
∂G0

σ
(
φ(P jε )− ŵ(y;G0, φ(x))

)
− σ

(
φ(P jε )− ŵ(y;G0, φ(P jε ))

)
dSy

∣∣∣
≤ K max

j

(∣∣∣ŵ(y;G0, φ(P jε ))− ŵ(y;G0, φ(x))
∣∣∣

+
∣∣∣ŵ(y;G0, φ(P jε ))− ŵ(y;G0, φ(x))

∣∣∣α)
≤ K max

j

(
|φ(P jε )− φ(x)|+ |φ(P jε )− φ(x)|α

)
≤ K(aε + aαε )→ 0 as ε→ 0.

Hence

lim
ε→0

∑
j∈Υε

∫
Y j

ε \T j
ε/4

µjεhε dx = − lim
ε→0

Cn−2
0

|Y \ T 0
1/4|

∑
j∈Υε

∫
Y j

ε \T j
ε/4

HG0(φ(x))hε dx.

From [16, Corollary 1.7] we derive

lim
ε→0

Cn−2
0

|Y \ T 0
1/4|

∑
j∈Υε

∫
Y j

ε \T j
ε/4

HG0(φ(x))hε dx = Cn−2
0

∫
Ω

HG0(φ(x))hdx.

This completes the proof. �

Lemma 5.8. Let HG0(u) be defined by formula (2.5), φ ∈ C∞0 (Ω) and hε, h ∈
H1

0 (Ω) be such that hε ⇀ h in H1
0 (Ω) as ε→ 0. Then, we have

− lim
ε→0

∑
j∈Υ

∫
∂T j

ε
4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
hε dS = Cn−2

0

∫
Ω

HG0(φ(x))hdx. (5.20)

Proof. Using Lemma 5.6 and applying Green’s identity we obtain∑
j∈Υε

∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))− ∂νwjε(x;G0, φ(P jε ))

)
hε dS

= −
∑
j∈Υε

∫
∂T j

ε/4

∂νv
j
εhε dS

= −
∑
j∈Υε

∫
T j

ε/4\G
j
ε

∇vjε∇hε dx+
∫
∂Gj

ε

∂νv
j
εhε dS
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= −
∑
j∈Υε

∫
T j

ε/4\G
j
ε

∇vjε∇hε dx

+ ε−γ
∑
j∈Υε

∫
∂Gj

ε

(
σ(φ(P jε )− wjε)− σ(φ(P jε )− ŵ)

)
hε dS.

From Cauchy’s inequality and the properties of vjε we have∣∣∣ ∑
j∈Υε

∫
T j

ε/4\G
j
ε

∇vjε∇hε dx
∣∣∣ ≤ ε−1

∑
j∈Υε

‖∇vjε‖2L2(T j
ε
4

)
+ ε‖∇hε‖2L2(Ωε)

≤ Kε.

Using the estimates from Lemma 5.6 we deduce

ε−γ
∑
j∈Υε

∣∣∣∫
∂Gj

ε

(
σ(φ(P jε )− wjε)− σ(φ(P jε )− ŵjε)

)
hε dS

∣∣∣
≤ ε−γ

∑
j∈Υε

∫
∂Gj

ε

‖σ′‖L∞([−2‖φ‖∞,2‖φ‖∞])|vjε||hε|dS

≤ Kε−γ
∑
j∈Υε

∫
∂Gj

ε

|vjε||hε|dS

≤ Kεε−γ/2‖hε‖L2(Sε)

≤ Kε‖∇hε‖L2(Ω),

where K depends on ‖φ‖∞. Therefore,∣∣∣ ∑
j∈Υε

∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))− ∂νwjε(x;G0, φ(P jε ))

)
hε dS

∣∣∣ ≤ Kε. (5.21)

From this inequality and Lemma 5.7 we deduce that

− lim
ε→0

∑
j∈Υ

∫
∂T j

ε/4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
hε dS

= − lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

(
∂νŵ

j
ε(x;G0, φ(P jε ))

)
hε dS

= Cn−2
0

∫
Ω

HG0(φ(x))hdx.

This completes the proof. �

5.4. Proof of Theorem 2.5 for σ ∈ C1(R). Let φ ∈ C∞0 (Ω). We define

W̃ε(x;φ) =

{
Wε(x;G0, φ(P jε )) Y jε \G

j
ε, j ∈ Υε

0 Ω \ ∪j∈Υε
Y
j

ε, j ∈ Υε.
(5.22)
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We have that W̃ε(·;φ) ∈ H1
0 (Ω) and W̃ε(·;φ) ⇀ 0 in H1(Ω) as ε → 0. Using

ϕ = φ− W̃ε(x;φ) as a test function in inequality (3.2) we obtain∫
Ωε

∇(φ− W̃ε(x;φ))∇(φ− W̃ε(x;φ))− uε) dx

+ ε−γ
∑
j∈Υε

∫
∂Gj

ε

σ(φ− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx.

(5.23)

Taking into account that wjε(x;G0, u) is a solution of the problem (5.1), we can
rewrite this in the form∫

Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx

−
∑
j∈Υε

∫
∂T j

ε
4

∂νw
j
ε(x;G0, φ(P jε ))(φ− uε) dS

− ε−γ
∑
j∈Υε

∫
∂Gj

ε

σ(φ(P jε )− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS

(5.24)

+ ε−γ
∑
j∈Υε

∫
∂Gj

ε

σ(φ− wjε(x;G0, φ(P jε )))(φ− wjε(x;G0, φ(P jε ))− uε) dS (5.25)

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx.

We choose the boundary condition for wjε so that (5.24) cancels (5.25) out in the
limit. We observe that

ρε =
∣∣∣ε−γ ∑

j∈Υε

∫
∂Gj

ε

(
σ(φ(P jε )− wjε(x;G0, φ(P jε )))− σ(φ− wjε(x;G0, φ(P jε )))

)
×
(
φ− wjε(x;G0, φ(P jε ))− uε

)
dS
∣∣∣

≤ ε−γ
∑
j∈Υε

∫
∂Gj

ε

‖σ′‖L∞([−U,U ])‖∇φ‖L∞(Ω)aε|φ− wjε(x;G0, φ(P jε ))− uε|dS

≤ Kaε → 0,

where U = 2‖φ‖∞ and K depends of ‖φ‖∞. Taking this into account we have∫
Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx

−
∑
j∈Υε

∫
∂T j

ε
4

∂νw
j
ε(x;G0, φ(P jε ))(φ− uε) dS

≥
∫

Ωε

f(φ− W̃ε(x;φ)− uε) dx− ρε.

(5.26)

From Lemma 5.5 we have

lim
ε→0

∫
Ωε

∇φ∇(φ− W̃ε(x;φ)− uε) dx =
∫

Ω

∇φ∇(φ− u0) dx, (5.27)
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lim
ε→0

∫
Ωε

f(φ− W̃ε(x;φ)− uε) dx =
∫

Ω

f(φ− u0) dx. (5.28)

Applying Lemma 5.8 for hε = φ− uε we have

− lim
ε→0

∑
j∈Υε

∫
∂T j

ε
4

(
∂νw

j
ε(x;G0, φ(P jε ))

)
(φ−uε) dS = Cn−2

0

∫
Ω

HG0(φ(x))(φ−u0)dx.

Therefore u0 satisfies the inequality∫
Ω

∇φ∇(φ− u0) dx+ Cn−2
0

∫
Ω

HG0(φ(x))(φ− u0) dx ≥
∫

Ω

f(φ− u0) dx.

for any φ ∈ H1
0 (Ω). Therefore, u ∈ H1

0 (Ω) satisfies the identity∫
Ω

∇u0∇φdx+ Cn−2
0

∫
Ω

HG0(u0)φdx =
∫

Ω

fφdx,

where φ ∈ H1
0 (Ω). Thus, u is a weak solution of (2.7). This completes the proof of

the Theorem 2.5 when σ is C1(R). �

6. Proof in the Hölder-continuous case

Let σ ∈ C(Ω) be satisfying (2.3). Applying [6, Lemma 2] we deduce there a
sequence of nondecreasing functions σδ ∈ C1(R) such that σδ(0) = 0, |σδ| ≤ |σ|
and σδ → σ in C(R). Therefore σδ satisfies (2.3). Applying the result in the previous
section, we have that

Pεuε,δ ⇀ uδ in H1(Ω). (6.1)
where uδ is the solution of (2.7) with Hδ instead of HG0 .

By the approximation lemmas in [6] we have

‖∇(uε − uε,δ)‖L2(Ωε) ≤ C‖σδ − σ‖∞ (6.2)

Therefore,
‖∇(u− uδ)‖L2(Ω) ≤ C‖σδ − σ‖∞ (6.3)

Since, by Lemma 4.18, Hδ,G0 converges uniformly over compacts to HG, applying
standard methods (see Lemma 7.1) we deduce that uδ → û0, where û0 is the
solution of (2.7). Notice that, due to Lemma 4.17, we have that, if u0 ∈ L2(Ω)
then HG0(u0) ∈ L2(Ω).

By uniqueness of the limit u0 = û and it is the solution of (2.7). This completes
the proof of Theorem 2.5 in the general case. �

7. Appendix: A convergence lemma

Lemma 7.1. Let Hm, H : R→ R be nondecreasing functions that satisfy (2.3) with
the same constants k1, k2, and such that Hm → H uniformly over compacts. Let
um, u be the corresponding solutions of (2.7) with Hm and H respectively. Then

um ⇀ u in H1
0 (Ω). (7.1)

Proof. We have ∫
Ω

|∇um|2 dx ≤ C
∫

Ω

|f |2 dx (7.2)

Therefore, up to a subsequence, there is a weak limit in H1
0 (Ω), let this be ũ. A

further subsequence guaranties that

um → ũ in L2(Ω),
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um → ũ a.e. Ω.

Let x ∈ Ω such that um(x)→ u(x) in R. In particular the sequence is bounded so
Hm(um(u(x))) → H(u(x)) because of the uniform convergence over compact sets.
Hence

Hm(um)→ H(ũ) a.e. in Ω. (7.3)

On the other hand, we have

|Hm(um)| ≤ k1|um|α + k2|um| ≤ k1 + (k1 + k2)|um|,∫
Ω

|H(um)|2 dx ≤ C
(
|Ω|+

∫
Ω

|um|2 dx
)

≤ C
(
|Ω|+

∫
Ω

|f |2 dx
)

Hence, up to a subsequence, there exists H̃ ∈ L2(Ω) such that

Hm(um) ⇀ H̃ in L2(Ω).

By Egorov’s theorem, we have that, for every δ > 0 there exists Aδ measurable
such that |Aδ| < δ and Hm(um)→ H(ũ) uniformly Ω \Aδ. Since Hm(um) ⇀ H̃ in
L2(Ω \Aδ) we have that H(ũ) = H̃ a.e. in Ω \Aδ. Hence H(ũ) = H̃ in a.e. Ω, so

Hm(um) ⇀ H(ũ) in L2(Ω).

By passing to the limit in the weak formulation we deduce that ũ = u. �
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