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GENERAL FORM OF THE EULER-POISSON-DARBOUX
EQUATION AND APPLICATION OF THE TRANSMUTATION

METHOD
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Communicated by Ludmila S. Pulkina

Abstract. In this article, we find solution representations in the compact

integral form to the Cauchy problem for a general form of the Euler-Poisson-
Darboux equation with Bessel operators via generalized translation and spheri-

cal mean operators for all values of the parameter k, including also not studying

before exceptional odd negative values. We use a Hankel transform method
to prove results in a unified way. Under additional conditions we prove that

a distributional solution is a classical one too. A transmutation property for

connected generalized spherical mean is proved and importance of applying
transmutation methods for differential equations with Bessel operators is em-

phasized. The paper also contains a short historical introduction on differential

equations with Bessel operators and a rather detailed reference list of mono-
graphs and papers on mathematical theory and applications of this class of

differential equations.

1. Introduction

The classical Euler-Poisson-Darboux (EPD) equation is defined by

∂2u

∂t2
+
k

t

∂u

∂t
=

n∑
i=1

∂2u

∂x2
i

, u = u(x, t; k), x ∈ Rn, t > 0, −∞ < k <∞. (1.1)

The operator acting by variable t is the Bessel operator and we will be denoted by
(see, for example, [36, p. 3])

(Bk)t =
∂2

∂t2
+
k

t

∂

∂t
.

When n = 1 equation (1.1) appeared in Leonard Euler’s work (see [19, p. 227])
and later was studied by Siméon Denis Poisson [48], by Gaston Darboux [15] and
by Bernhard Riemann [52].

For the Cauchy problem corresponding to (1.1) we add initial conditions

u(x, 0; k) = f(x),
∂u(x, t; k)

∂t

∣∣∣
t=0

= 0. (1.2)
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Interest in the multidimensional equation (1.1) has increased significantly after
Alexander Weinstein’s papers [70]–[74]. There the Cauchy problem for (1.1) is
considered with k ∈ R, the first initial condition being non-zero and the second
initial condition equal zero. A solution to the Cauchy problem (1.1)–(1.2) in the
classical sense was obtained in [70]–[75], and in the distributional sense in [6, 7, 11].
Tersenov [67] solved the Cauchy problem for (1.1) in the general form where the first
and the second conditions are non-zero. Different problems for the equation (1.1)
with many applications to gas dynamics, hydrodynamics, mechanics, elasticity and
plasticity and so on were also studied in [2, 3, 5], [8]–[10], [13]–[18], [20]–[24], [27]–
[35], [37], [41]–[43], [46, 47, 50, 51], [62]–[68], [76]. Of course this list of references
is incomplete.

In this article we consider the singular hyperbolic differential equation, with
respect to all variables, which is a generalization of multidimensional Euler-Poisson-
Darboux (EPD) equation (1.1):

∂2u

∂t2
+
k

t

∂u

∂t
= (∆γ)x u, u = u(x, t; k), k ∈ R, t > 0, (1.3)

with the singular elliptic operator defined by

(∆γ)x =
n∑
i=1

(Bγi)xi =
n∑
i=1

( ∂2

∂x2
i

+
γi
xi

∂

∂x

)
=

n∑
i=1

1
xγii

∂

∂xi
xγii

∂

∂xi
(1.4)

under the natural restrictions

γi > 0, x = (x1, . . . , xn), xi > 0, i = 1, 2, . . . , n,

together with initial conditions (1.2).
We call equation (1.3) the Euler-Poisson-Darboux equation in general form.
Let us emphasize that singular differential equations with the operator (1.4)

including equations (1.1) and (1.3) were thoroughly studied in many papers by
Kipriyanov’s school, the results are partially systemized in his monograph [36].
In accordance with Kipriyanov’s terminology the operator (1.4) is classified as B-
elliptic operator (sometimes also the term Laplace-Bessel operator is used), and
equations (1.1) and (1.3) are classified as B-hyperbolic equations. In connection
with results of this scientific school let us mention papers of Ivanov [31, 32, 37] in
which important problems for EPD equation were solved, such as generalizations to
homogeneous symmetric Riemann spaces, energy equipartition property, equations
with a product of EPD-type multipliers. Also note papers [3, 45, 46] on application
of spherical mean and generalized translation operators, generalized mean value
theorems. Differential equations of EPD type are applied in the study of fractional
powers of EPD, generalized EPD operators and connected generalized Riesz–type
potentials, cf. [53]–[55].

Another important approach to differential equations with Bessel operators is
based on application of the transmutation theory. This method is essential in the
study of singular problems with use of special classes of transmutations such as
Sonine, Poisson, Buschman–Erdélyi ones and different forms of fractional integrod-
ifferential operators, cf. [8]–[12], [33]–[35], [38]–[40], [57]–[61]. Abstract differential
equations with Bessel operators were studied, and in fact were mostly initiated, in
the famous monograph [11]. See also recent papers [26]–[28].

Considering the Cauchy problem (1.3)–(1.2) in more details, David Fox in [21]
(cf. also [11, p. 243] and [66]) proved solution uniqueness for k ≥ 0 and find a
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solution representation in the explicit form for all k except odd negative values.
The explicit solution was found via Lauricella functions in fact as n-times series,
which is not convenient for applications and numerical solving. In all the above
references the case k 6= −1,−3,−5, . . . was expelled and not studied. So in [3],
[45]–[46] different approaches from those used in [21] to the solution of this Cauchy
problem were considered.

In this paper we find solution representations to the above Cauchy problem in
the compact integral form via generalized translation and spherical mean operators
for all values of the parameter k, including also not studying before exceptional
odd negative values. We use a Hankel transform method to prove results in a
unified way. Under additional conditions we prove that a distributional solution is
a classical one too.

2. Definitions and propositions

We use the subset of the Euclidean space

Rn+ = {x = (x1, . . . , xn) ∈ Rn : x1 > 0, . . . , xn > 0}.

Let |x| =
(∑n

i=1 x
2
i

)1/2 and Ω be bounded or unbounded open set in Rn symmetric
with respect to each hyperplane xi = 0, i = 1, . . . , n, Ω+ = Ω∩Rn+ and Ω+ = Ω∩Rn+
where

Rn+ = {x = (x1, . . . , xn) ∈ Rn : x1≥0, . . . , xn≥0}.
We consider the class Cm(Ω+) consisting of m-times differentiable on Ω+ functions
and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all deriva-
tives of these functions with respect to xi for any i = 1, . . . , n are continuous up
to xi = 0. Function f ∈ Cm(Ω+) we will call even with respect to xi, i = 1, . . . , n
if ∂2k+1f

∂x2k+1
i

∣∣∣
x=0

= 0 for all nonnegative integer k ≤ m−1
2 (see [36, p. 21]). The class

Cmev(Ω+) consists of functions from Cm(Ω+) even with respect to each variable xi,
i = 1, . . . , n. In the following we will denote Cmev(R

n

+) by Cmev. We set

C∞ev (Ω+) = ∩Cmev(Ω+)

with intersection taken for all finite m and C∞ev (R+) = C∞ev . Let C̊∞ev (Ω+) be the
space of all functions f∈C∞ev (Ω+) with a compact support. Elements of C̊∞ev (Ω+)
we will call test functions and use the notation C̊∞ev (Ω+) = D+(Ω+).

As the space of basic functions we will use the subspace of the space of rapidly
decreasing functions:

Sev(Rn+) =
{
f ∈ C∞ev : sup

x∈Rn+
|xαDβf(x)| <∞,∀α, β ∈ Zn+

}
,

where α = (α1, . . . , αn), β = (β1, . . . , βn), α1, . . . , αn, β1, . . . , βn are integer non-
negative numbers, xα = xα1

1 xα2
2 . . . xαnn , Dβ = Dβ1

x1
. . . Dβn

xn , Dxj = ∂
∂xj

.
We deal with multi-index γ = (γ1, . . ., γn) consists of positive fixed reals γi > 0,

i = 1, . . ., n, |γ| = γ1+. . .+γn. Let Lγp(Ω+), 1≤p<∞, be the space of all measurable
in Ω+ functions even with respect to each variable xi, i = 1, . . . , n such that∫

Ω+

|f(x)|pxγdx <∞,
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where

xγ =
n∏
i=1

xγii .

For a real number p ≥ 1, the Lpγ(Ω+)-norm of f is defined by

‖f‖Lpγ(Ω+) =
(∫

Ω+

|f(x)|pxγdx
)1/p

.

The weighted measure of Ω+ is denoted by measγ(Ω) and is defined by

measγ(Ω+) =
∫

Ω+

xγdx.

For every measurable function f(x) defined on Rn+ we consider

µγ(f, t) = measγ{x ∈ Rn+ : |f(x)| > t} =
∫
{x: |f(x)|>t}+

xγdx

where {x : |f(x)| > t}+ = {x∈Rn+ : |f(x)| > t}. We will call the function µγ =
µγ(f, t) a weighted distribution function |f(x)|.

The space L∞
γ(Ω+) is defined as a set of measurable on Ω+ and even with

respect to each variable functions f(x) such as

‖f‖L∞γ(Ω+) = ess supx∈Ω+,γ |f(x)| = inf
a∈Ω+

{µγ(f, a) = 0} <∞.

For 1 ≤ p ≤ ∞ the Lp,loc
γ(Ω+) is the set of functions u(x) defined almost ev-

erywhere in Ω+ such that uf ∈ Lp
γ(Ω+) for any f ∈ C̊∞ev (Ω+). Each function

u(x) ∈ L1,loc
γ(Ω+) will be identified with the functional u ∈ D′+(Ω+) acting ac-

cording to the formula

(u, f)γ =
∫

Rn+
u(x) f(x)xγ dx, f ∈ C̊∞ev (Rn+). (2.1)

Functionals u ∈ D′+(Ω+) acting by the formula (2.1) will be called regular weighted
functionals. All other functionals u ∈ D′+(Ω+) will be called singular weighted
functionals.

We will use the regular weighted functional (t2 − |x|2)λ+,γ defined by

((t2 − |x|2)λ+,γ , ϕ)γ =
∫
{x∈Rn+:|x|<t}

(t2 − |x|2)λϕ(x)xγdx, ϕ ∈ Sev, λ∈C. (2.2)

The symbol jν is used for the normalized Bessel function:

jν(t) =
2νΓ(ν + 1)

tν
Jν(t),

where Jν(t) is the Bessel function of the first kind of order ν (see [69]). The function
jν(t) is even by t.

We use the multidimensional Hankel (Fourier-Bessel) transform. The multidi-
mensional Hankel transform of a function f(x) is given by (see [4]):

FB [f ](ξ) = (FB)x[f(x)](ξ) = f̂(ξ) =
∫

Rn+
f(x) jγ(x; ξ)xγdx,

where

jγ(x; ξ) =
n∏
i=1

j γi−1
2

(xiξi), γ1 > 0, . . . , γn > 0.
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For f ∈ Sev inverse multidimensional Hankel transform is defined by

F−1
B [f̂(ξ)](x) = f(x) =

2n−|γ|∏n
j=1 Γ2

(
γj+1

2

) ∫
Rn+

jγ(x, ξ)f̂(ξ)ξγ dξ.

We will deal with the singular Bessel differential operator Bν (see, for example,
[36, p. 5]):

(Bν)t =
∂2

∂t2
+
ν

t

∂

∂t
=

1
tν
∂

∂t
tν
∂

∂t
, t > 0.

and the elliptical singular operator or the Laplace-Bessel operator ∆γ :

∆γ = (∆γ)x =
n∑
i=1

(Bγi)xi =
n∑
i=1

( ∂2

∂x2
i

+
γi
xi

∂

∂x

)
=

n∑
i=1

1
xγii

∂

∂xi
xγii

∂

∂xi
. (2.3)

The operator (2.3) belongs to the class of B-elliptic operators by Kipriyanovs’ clas-
sification (see [36]).

The B–polyharmonic of order p function f = f(x) is the function f∈C2p
ev (R +

n )
such that

∆p
γf = 0, (2.4)

where ∆γ is operator (2.3). The operator (2.4) was considered in [36]. The B-
polyharmonic of order 1 function we will call B-harmonic.

Using [1, formulas 9.1.27] we obtain

(Bν)tj ν−1
2

(τt) = −τ2j ν−1
2

(τt). (2.5)

We will use the generalized convolution operator defined by

(f ∗ g)γ =
∫

Rn+
f(y)(γT yg)(x)yγdy,

where γT y is multidimensional generalized translation
γT y =γ1 T y1x1

. . .γn T ynxn ,

each one-dimensional operator γiT yixi , i = 1, . . . , n acts according to (see [42])
γiT yixi f(x)

=
Γ(γi+1

2 )
Γ(γi2 )Γ( 1

2 )

∫ π

0

f(x1, . . . , xi−1,
√
x2
i + y2

i − 2xiyi cosαi, xi+1, . . . , xn)

× sinγi−1 αi dαi .

Based on the multidimensional generalized translation γT y the weighted spherical
mean Mγ

t [f(x)] of a suitable function is defined by the formula

Mγ
t [f(x)] =

1
|S+

1 (n)|γ

∫
S+

1 (n)

γT tθx f(x)θγdS, (2.6)

where

θγ =
n∏
i=1

θγii , S+
1 (n) = {θ : |θ| = 1, θ∈Rn+}, |S+

1 (n)|γ =
∏n
i=1 Γ

(
γi+1

2

)
2n−1Γ

(n+|γ|
2

) .
It is easy to see that

Mγ
0 [f(x)] = f(x),

∂

∂t
Mγ
t [f(x)]

∣∣∣
t=0

= 0. (2.7)
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Lemma 2.1. Let u ∈ Sev then

FB [∆γf ](ξ) = −|ξ|2FB [f ](ξ). (2.8)

Proof. We have

FB [∆γf ](ξ) =
∫

Rn+
[∆γf(x)] jγ(x; ξ)xγdx

=
n∑
i=1

∫
Rn+

[ 1
xγii

∂

∂xi
xγii

∂

∂xi
f(x)

]
jγ(x; ξ)xγdx.

Integrating by parts by variable xi and using formula (2.5), we obtain

FB [∆γf ](ξ) =
n∑
i=1

∫
Rn+
f(x)

[ 1
xγii

∂

∂xi
xγii

∂

∂xi
jγ(x; ξ)

]
xγdx

=
n∑
i=1

(−ξ2
i )
∫

Rn+
f(x)jγ(x; ξ)xγdx

= −|ξ|2
∫

Rn+
f(x) jγ(x; ξ)xγdx = −|ξ|2FB [f ](ξ).

�

Lemma 2.2. We have the formula

(FB)x(t2 − |x|2)
k−n−|γ|−1

2
+,γ

Γ
(k−n−|γ|+1

2

) =
tk−1

∏n
i=1 Γ

(
γi+1

2

)
2nΓ

(
k+1

2

) j k−1
2

(t|x|), (2.9)

where (t2 − |x|2)
k−n−|γ|−1

2
+,γ is defined by (2.2).

Formula (2.9) is obtained similarly as [25, (5) p. 291].

Lemma 2.3. Let u = u(x, t; k) denote the solution to (1.3). Then the solution
satisfies the next two important recursion formulas:

u(x, t; k) = t1−ku(x, t; 2− k), (2.10)

ut(x, t; k) = tu(x, t; 2 + k). (2.11)

This is particular cases of Weinstein’s formulas which state that for any equation
of the form utt + k

t ut = X(u), in which X is an operator does not depend on t the
relations (2.10) and (2.11) hold (see [21]).

Lemma 2.4. The weighted spherical mean Mγ
t [f(x)] is the transmutation operator

(see the definition of transmutation operators in [8, 9, 10] or [58, 59]) intertwining
(∆γ)x and (Bn+|γ|−1)t for the f ∈ C2

ev:

(Bn+|γ|−1)tM
γ
t [f(x)] = Mγ

t [(∆γ)xf(x)]. (2.12)

Proof. First of all we note that the function f ∈ C2
ev satisfies the equation∫

B+
t (n)

f(x)xγ dx =
∫ t

0

λn+|γ|−1 dλ

∫
S+

1 (n)

f(λθ)θγdSθ, (2.13)
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which can be easy obtained by passing to spherical coordinates x = λθ, |θ| = 1 in
the left hand of (2.13). From (2.13) we obtain

|S+
1 (n)|γ

∫ t

0

λn+|γ|−1Mγ
λ [f(x)]dλ

=
∫ t

0

λn+|γ|−1dλ

∫
S+

1 (n)

(Tλyf)(x) yγdSy

=
∫
B+
r (n)

(T zf)(x)zγdz.

(2.14)

Let us apply the operator ∆γ to both sides of (2.14) with respect to x, then we
obtain

|S+
1 (n)|γ

n∑
i=1

∫ t

0

λn+|γ|−1BγiM
γ
λ [f(x)]dλ

=
n∑
i=1

∫
B+
t (n)

(Bγi)xi(T
zf)(x)zγdz

=
n∑
i=1

∫
B+
t (n)

(Bγi)ziT
z
xf(x)zγdz.

(2.15)

We have the Green formula∫
Ω

+
(v∆γw − w∆γv)xγdx =

∫
Γ=∂Ω

+

(
v
∂w

∂~ν
− w∂v

∂~ν

)
xγ dΓx , (2.16)

where w, v ∈ C2
ev(Ω

+
), ~ν is the outward normal to the boundary Γ = ∂Ω

+
of the

Ω
+

. This formula was presented in [45].
By applying formula (2.16) to the right-hand side of (2.15), we obtain

n∑
i=1

∫
B+
t (n)

(Bγi)zi(T
zf)(x)zγdz =

n∑
i=1

∫
S+
t (n)

∂

∂zi
(T zf)(x) cos(~ν,~ei)zγ dSz,

where ~ei is the direction of the axis Ozi, i = 1, . . . , n.
Now, by using the fact that the direction of the outward normal to the boundary

of a ball with center the origin coincides with the direction of the position vector
of the point on the ball, we obtain the relation

n∑
i=1

∫
B+
t (n)

(Bγi)zi(T
zf)(x)zγdz = tn+|γ|−1

∫
S+

1 (n)

∂

∂t
(T tθf)(x)θγdSθ

= |S+
1 (n)|γtn+|γ|−1 ∂

∂t
Mγ
t [f(x)].

Returning to (2.15), we obtain
n∑
i=1

∫ t

0

λn+|γ|−1BγiM
γ
λ [f(x)]dλ = tn+|γ|−1 ∂

∂t
Mγ
t [f(x)]. (2.17)

By differentiating relation (2.17) with respect to t, we obtain
n∑
i=1

tn+|γ|−1BγiM
γ
t [f(x)] = (n+ |γ|−1)tn+|γ|−2 ∂

∂t
Mγ
t [f(x)]+tn+|γ|−1 ∂

2

∂t2
Mγ
t [f(x)]
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or
n∑
i=1

BγiM
γ
t [f(x)] =

n+ |γ| − 1
t

∂

∂t
Mγ
t [f(x)] +

∂2

∂t2
Mγ
t [f(x)],

and so

(∆γ)xM
γ
t [f(x)] =

n+ |γ| − 1
t

∂

∂t
Mγ
t [f(x)] +

∂2

∂t2
Mγ
t [f(x)]. (2.18)

Now let us consider (∆γ)xM
γ
t [f(x)]. Using the commutativity of Bγi and T tθixi

(see [36]) we obtain

(∆γ)xM
γ
t [f(x)] =

1
|S+

1 (n)|γ
(∆γ)x

∫
S+

1 (n)

γT tθx f(x)θγdSθ

=
1

|S+
1 (n)|γ

∫
S+

1 (n)

γT tθx [(∆γ)xf(x)]θγdSθ = Mγ
t [(∆γ)xf(x)].

which with (2.18) gives (2.12). �

A similarly proof can be found in [45].

3. Transmutation method

An important and powerful approach to differential equations with Bessel oper-
ators is based on application of the transmutation theory. This method is essential
in the study of singular problems with use of special classes of transmutations
such as Sonine, Poisson, Buschman-Erdélyi ones and different forms of fractional
integrodifferential operators, cf. [8]–[12], [33]–[35], [38]–[40], [57]–[61].

In this section we show how the transmutation method can be used to find the
solution of the Cauchy problem for the general Euler-Poisson-Darboux equation

(Bk)tu = (∆γ)xu, u = u(x, t; k), x ∈ Rn+, t > 0, k ∈ R, (3.1)

u(x, 0; k) = f(x), ut(x, 0; k) = 0. (3.2)

Theorem 3.1. Let f = f(x), x ∈ Rn+ be twice continuous differentiable function
even with respect of each variable. Then for the case k > n+ |γ| − 1 the function

u(x, t; k) =
2nΓ

(
k+1

2

)
Γ
(k−n−|γ|+1

2

)∏n
i=1 Γ

(
γi+1

2

) ∫
B+

1 (n)

[γT tyf(x)](1−|y|2)
k−n−|γ|−1

2 yγ dy

(3.3)
is the solution to problem (3.1)–(3.2). The solution to (3.1)–(3.2) for the case
k = n+|γ|−1 is the weighted spherical mean Mγ

t [f(x)].

Proof. Using Lemma 2.4 we obtain that the weighted spherical mean of any twice
continuously differentiable function f = f(x) even with respect to each of the
independent variables x1, . . . , xn on Rn+ satisfies the general Euler-Poisson-Darboux
equation

(Bk)tM
γ
t [f(x)] = (∆γ)xM

γ
t [f(x)] , k = n+ |γ| − 1

and initial conditions (see (2.7))

Mγ
0 [f(x)] = f(x), Mγ

t [f(x)]
∣∣∣
t=0

= 0.

It means the the weighted spherical mean Mγ
t [f(x)] is the solution to the problem

(3.1)-(3.2) for the k = n+ |γ| − 1.
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To obtain the solution to (3.1)–(3.2) for k > n+ |γ| − 1 we will use the method
of descent. First, we will seek solution to the Cauchy problem (3.1)–(3.2) for the
case k > n+ |γ|.

Let γ′ = (γ1, . . . , γn, γ
′
n+1), γ′n+1 > 0, x′ = (x1, . . . , xn+1) ∈ Rn+1

+ and

(∆γ′)x′ = (Bγ1)x1 + · · ·+ (Bγn)xn + (Bγ′n+1
)xn+1 .

Consider the equation of type (3.1),

(Bk)tu = (∆γ′)x′u, u = u(x′, t; k), x′ ∈ Rn+1
+ , t > 0

with the initial conditions

u(x′, 0; k) = f1(x′), ut(x′, 0; k) = 0.

When k = n + |γ′| = n + |γ| + γ′n+1 the weighted spherical mean Mγ
t [f1(x′)] is a

solution to this Cauchy problem:

u(x′, t; k)

=
1

|S+
1 (n+ 1)|γ′

∫
S+

1 (n+1)

[γ1T ty1 . . . γnT tynγ
′
n+1T tyn+1f1(x)](y′)γ

′
dSy′ ,

(3.4)

y′ = (y1, . . . , yn, y
′
n+1) ∈ Rn+1

+ ,

|S+
1 (n+ 1)|γ′ =

∏n
i=1 Γ

(
γi+1

2

)
Γ
(γ′n+1+1

2

)
2nΓ

(n+1+|γ|+γ′n+1
2

) =
∏n
i=1 Γ

(
γi+1

2

)
Γ
(k−n−|γ|+1

2

)
2nΓ

(
k+1

2

) .

Let us put f1(x1, . . . , xn, 0) = f(x1, . . . , xn), where f is the function which appears
in initial conditions (3.2). In this way the u defined by (3.4) becomes a function
only of x1, . . . , xn which satisfies equation (3.1) and initial conditions (3.2). We
have

u(x, t; k) =
1

|S+
1 (n+ 1)|γ′

∫
S+

1 (n+1)

[γT tyf(x)](y′)γ
′
dSy′ , γ′n+1 = k − n− |γ|.

Now we rewrite the integral over the part of the sphere S+
1 (n + 1) as an integral

over the part of ball B+
1 (n) = {y∈Rn+ :

∑n
i=1 y

2
i ≤ 1}. We write the surface integral

over multiple integral:∫
S+

1 (n+1)

[γT tyf(x)](y′)γ
′
dSy′ =

∫
B+

1 (n)

[γT tyf(x)](1− y2
1 − · · · − y2

n)
γ′n+1−1

2 yγdy

=
∫
B+

1 (n)

[γT tyf(x)](1− |y|2)
k−n−|γ|−1

2 yγdy,

where B+
1 (n) is a projection of the S+

1 (n + 1) on the equatorial plane xn+1 = 0.
We have

u(x, t; k) =
2nΓ

(
k+1

2

)∏n
i=1 Γ

(
γi+1

2

)
Γ
(k−n−|γ|+1

2

) ∫
B+

1 (n)

[γT tyf(x)](1−|y|2)
k−n−|γ|−1

2 yγdy.

Although (3.3) was obtained as the solution to (3.1)–(3.2) for the case k > n+|γ|
the integral on its right-hand side converges and for k > n+|γ|−1. We can verify by
direct substitution (3.3) in (3.1)–(3.2) that (3.3) satisfies to the differential equation
(3.1) and to the initial conditions (3.2) for all values of k which are greater than
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n + |γ| − 1. Let show it. Changing coordinates from y to y/t and using that
(Bγi)

γi
xiT

yi
xi = (Bγi)

γi
yiT

yi
xi (see [42]) we obtain

I = (∆γ)x
∫
B+

1 (n)

[γT tyf(x)](1− |y|2)
k−n−|γ|−1

2 yγdy

=
n∑
i=1

(Bγi)xi

∫
B+

1 (n)

[γT tyf(x)](1− |y|2)
k−n−|γ|−1

2 yγdy

= t1−k
n∑
i=1

∫
B+
t (n)

[(Bγi)
γ
xiT

yf(x)](t2 − |y|2)
k−n−|γ|−1

2 yγdy

= t1−k
n∑
i=1

∫
B+
t (n)

[(Bγi)
γ
yiT

yf(x)](t2 − |y|2)
k−n−|γ|−1

2 yγdy,

(3.5)

where B+
t (n) = {y∈Rn+ :

∑n
i=1 y

2
i ≤ t}.

For integration over Ω
+

the functions w, v∈C2
ev(Ω

+
) we have the Green formula

(2.16). By applying (2.16) to the right-hand side of (3.5), we obtain

I = t1−k
n∑
i=1

∫
S+
t (n)

[ ∂
∂yi

γ

T yf(x)
]
(t2 − |y|2)

k−n−|γ|−1
2 cos(~ν,~ei) yγ dS,

where ~ei is the direction of the axis Oyi, i = 1, . . . , n, and thus cos(~ν,~ei) = yi
t .

Now, by using the fact that the direction of the outward normal to the boundary
of a ball with center the origin coincides with the direction of the position vector
of the point on the ball, we obtain the relation

I =
1
tk
∂

∂t
tk
∂

∂t

∫
B+

1 (n)

[
γT tyf(x)

]
(1− |y|2)

k−n−|γ|−1
2 yγ dy.

Given (3.5) and that 1
tk

∂
∂t t

k ∂
∂t = (Bk)t, we have

(∆γ)x
∫
B+

1 (n)

[γT tyf(x)](1− |y|2)
k−n−|γ|−1

2 yγdy

= (Bk)t
∫
B+

1 (n)

[
γT tyf(x)

]
(1− |y|2)

k−n−|γ|−1
2 yγ dy.

It means that u(x, t; k) defined by the formula (3.3) indeed satisfies to equation
(3.1) for k > n + |γ| − 1. Validity of the first and the second initial conditions
follows from [42, (5.20) and (5.21)] respectively. �

Theorem 3.2. Let f = f(x), f ∈ C [
n+|γ|−k

2 ]+2
ev . Then for k < n + |γ| − 1, k 6=

−1,−3,−5, . . . the function

u(x, t; k) = t1−k
( ∂

t∂t

)m
(tk+2m−1u(x, t; k + 2m)), (3.6)

is the solution to (3.1)–(3.2), where m is a minimum integer such that m ≥
n+|γ|−k−1

2 and u(x, t; k + 2m) is the solution to the Cauchy problem

(Bk+2m)tu = (∆γ)xu, (3.7)

u(x, 0; k + 2m) =
f(x)

(k + 1)(k + 3). . .(k + 2m− 1)
, ut(x, 0; k + 2m) = 0. (3.8)
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Proof. To proof that (3.6) is a solution of (3.1)–(3.2) when k < n+ |γ|−1, k 6= −1,
−3, −5, . . . , we use the recursion formulas (2.10) and (2.11). Let choose minimum
integer m such that k + 2m ≥ n + |γ| − 1. Now we can write the solution of the
Cauchy problem

(Bk+2m)tu = (∆γ)xu,

u(x, 0; k + 2m) = g(x), ut(x, 0; k + 2m) = 0, g ∈ C2
ev

by (3.3). We have

u(x, t; k + 2m)

=
2nΓ

(
k+2m+1

2

)∏n
i=1 Γ

(
γi+1

2

)
Γ
(k+2m−n−|γ|+1

2

) ∫
B+

1 (n)

[γT tyg(x)](1− |y|2)
k+2m−n−|γ|−1

2 yγdy,

and, using (2.10) we obtain

tk+2m−1u(x, t; k + 2m) = u(x, t; 2− k − 2m).

Applying (2.11) to the last formula m times we obtain( ∂

t∂t

)m
(tk+2m−1u(x, t; k + 2m) = u(x, t; 2− k).

Applying again (2.10) we can write

u(x, t; k) = t1−k
( ∂

t∂t

)m
(tk+2m−1u(x, t; k + 2m)), (3.9)

which gives the solution to (3.7). Now we obtain the function g such that the (3.8)
is true. From (3.6) we have asymptotic relation

u(x, t; k) = (k+ 1)(k+ 3) . . . (k+ 2m−1)u(x, t; k+ 2m) +Ctu(x, t; k+ 2m) +O(t2),

as t→ 0, where C is a constant. Therefore, if

g(x) =
f(x)

(k + 1)(k + 3). . .(k + 2m− 1)

then u(x, t; k) defined by (3.6) satisfies to the initial conditions (3.2).
Let us recall that for u(x, t; k+ 2m) to be a solution to (3.7)–(3.8) it is sufficient

that f ∈ C2
ev. To be able to carry out the construction (3.6), it is sufficient to

require that f ∈ C[n+|γ|−k
2 ]+2

ev . �

Theorem 3.3. If f is B-polyharmonic of order 1−k
2 and even with respect to each

variable then one of the solutions to the Cauchy problem (3.7)–(3.8) for the k =
−1,−3,−5, . . . is given by

u(x, t; k) = f(x), k = −1, (3.10)

u(x, t; k) = f(x) +
− k+1

2∑
h=1

∆h
γf

(k + 1) . . . (k + 2h− 1)
t2h

2 · 4 · · · 2h
, k = −3,−5, . . .

(3.11)

Proof. Let us first take k = −1 and assume that limt→0
∂2u(x,t;−1)

∂t2 exists. Let t→ 0
in

(∆γ)xu−1(x, t; k) =
∂2u(x, t;−1)

∂t2
− 1
t

∂u(x, t;−1)
∂t

,
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i.e.,

(∆γ)xu(x, 0;−1) = lim
t→0

∂2u(x, t;−1)
∂t2

− lim
t→0

1
t

∂u(x, t;−1)
∂t

= 0.

We find that (∆γ)xu(x, 0;−1) = 0 which shows that f must be B-harmonic. So the
function f satisfies (3.7)–(3.8) for the k = −1.

When k = −3 we have

lim
t→0

∂2u(x, t;−3)
∂t2

= lim
t→0

1
t

∂u(x, t;−3)
∂t

.

From the general form of the Euler-Poisson-Darboux equation for k = −3 we obtain

lim
t→0

(∆γ)xu(x, t;−3) = lim
t→0

∂2u(x, t;−3)
∂t2

− 3 lim
t→0

1
t

∂u(x, t;−3)
∂t

= −2 lim
t→0

1
t

∂u(x, t;−3)
∂t

.

It is follows from (2.11) that

1
t

∂u(x, t;−3)
∂t

= u(x, t;−1)

hence
lim
t→0

(∆γ)xu(x, t;−3) = −2u(x, 0;−1). (3.12)

If limt→0
∂4u(x,t;−3)

∂t4 exists and all odd derivatives of u(x, t;−3) tend to zero when

t → 0, then limt→0
∂2u(x,t;−1)

∂t2 also exists. Therefore, limt→0(∆γ)xu(x, t;−1) = 0
and by (3.12) we have limt→0(∆γ)2

xu(x, t;−3) = 0. This remark can be easily
generalized to include all exceptional values. So, in this case a solution to the
Cauchy problem for the general form of the Euler-Poisson-Darboux equation for
the case k = −3,−5, . . . is given by the formula

u(x, t; k) = f(x) +
− k+1

2∑
h=1

∆h
γf

(k + 1) . . . (k + 2h− 1)
t2h

2 · 4 · · · 2h
, k = −3,−5, . . .

and as we proved earlier u(x, t;−1) = f(x). �

4. Solution of the singular Cauchy problem using the Hankel
transform

In this section we look for the solution u ∈ S′ev(Rn+)× C2(0,∞) to the problem

(Bk)tu = (∆γ)xu, u = u(x, t; k), x ∈ Rn+, t > 0, (4.1)

u(x, 0; k) = f(x), ut(x, 0; k) = 0. (4.2)

when f(x) ∈ S′ev(Rn+), k ∈ R \ {−1,−3,−5, . . . }.
The notation u ∈ S′ev(Rn+)× C2(0,∞) means that u(x, t; k) belongs to S′ev(Rn+)

by variable x and belongs to C2(0,∞) by variable t.

Theorem 4.1. There exists the solution from the class u ∈ S′ev(Rn+)×C2(0,∞) to
the problem (4.1)–(4.2) when k 6= −1,−3,−5, . . . and it is defined by the formula

u(x, t; k) =
2nt1−kΓ

(
k+1

2

)
Γ
(k−n−|γ|+1

2

)∏n
i=1 Γ

(
γi+1

2

) ((t2 − |x|2)
k−n−|γ|−1

2
+,γ ∗ f(x))γ . (4.3)

The solution (4.3) is unique for k ≥ 0, and not unique for k < 0.
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Proof. Applying multidimensional Hankel transform to (4.1) with respect to the
variables x1, . . . , xn only and using (2.8) we obtain(

|ξ|2 +
∂2

∂t2
+
k

t

∂

∂t

)
û(ξ, t) = 0, (4.4)

lim
t→0

û(ξ, t; k) = f̂(ξ), lim
t→0

∂û(ξ, t; k)
∂t

= 0, (4.5)

where ξ = (ξl, ξ2, . . ., ξn)∈Rn+ corresponds to x = (x1, . . ., xn)∈Rn+, |ξ|2 = ξ2
1+ξ2

2 +
· · ·+ ξ2

n,

û(ξ, t; k) = (FB)x[u(x, t; k)](ξ) =
∫

Rn+
u(x, t; k) jγ(x; ξ)xγdx

and f̂(ξ) = FB [f ](ξ).
In [6] the solution Ĝk(ξ, t) to the Cauchy problem(

|ξ|2 +
∂2

∂t2
+
k

t

∂

∂t

)
Ĝk(ξ, t) = 0,

lim
t→0

Ĝk(ξ, t) = 1, lim
t→0

∂Ĝk(ξ, t)
∂t

= 0

was obtained and it has the form

Ĝk(ξ, t) = j k−1
2

(|ξ|t), (4.6)

for k ≥ 0,

Ĝk(ξ, t) = j k−1
2

(|ξ|t) +At
1−k
2 J 1−k

2
(|ξ|t), (4.7)

for k < 0, k 6= −1,−3,−5, . . . ,

Ĝk(ξ, t) = Bt
1−k
2 J 1−k

2
(|ξ|t)− π2

k−1
2

Γ
(

1−k
2

) (|ξ|t)
1−k
2 Y 1−k

2
(|ξ|t), (4.8)

for k = −1,−3,−5, . . . .
In (4.6)–(4.8) A and B are arbitrary complex numbers and Yν(z) is a Bessel

functions of the the second kind. The solutions (4.7), (4.8) depend on the constants
A and B since they are is not unique (see [6]). When Ĝk(ξ, t) is found, the solution
of (4.4)–(4.5) is

û(ξ, t; k) = Ĝk(ξ, t) · f̂(ξ)

and the solution to (4.1)–(4.2) is then given by

u(x, t; k) = ((F−1
B )ξ[Ĝk(ξ, t)] ∗ f(x))γ = (Gk(x, t) ∗ f(x))γ .

We are looking for the solution when k 6= −1,−3,−5, . . . and when A = 0. The
obtained solution will be unique for k ≥ 0 and will be one of the possible solutions
for k < 0, k 6= −1,−3,−5, . . . . So we are interested in case when Ĝk(ξ, t) =
j k−1

2
(|ξ|t) Using (2.9) we can find (F−1

B )ξ[j k−1
2

(|ξ|t)](x):

Gk(x, t) = (F−1
B )ξ[j k−1

2
(|ξ| · t)](x)

=
2nt1−kΓ

(
k+1

2

)
Γ
(k−n−|γ|+1

2

)∏n
i=1 Γ

(
γi+1

2

) (t2 − |x|2)
k−n−|γ|−1

2
+,γ .
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Then the solution to (4.1)–(4.2) has the form

u(x, t; k) =
2nt1−kΓ

(
k+1

2

)
Γ
(k−n−|γ|+1

2

)∏n
i=1 Γ

(
γi+1

2

)((t2 − |x|2)
k−n−|γ|−1

2
+,γ ∗ f(x)

)
γ
, (4.9)

for k 6= −1,−3,−5, . . . .
Since (t2−|x|2)λ+,γ has its support in the interior of the part of the sphere S+

1 (n)
when x1 ≥ 0, . . . , xn ≥ 0, we may conclude that the convolution exists for arbitrary
ϕ(x) ∈ S′+. In [21] it was shown that the solution to the singular Cauchy problem
(4.1)–(4.2) is unique when k is nonnegative and not unique when k is negative. �

Corollary 4.2. For k > n+ |γ|− 1 when f ∈ C2
ev the solution to (4.1)–(4.2) exists

in the classical sense and is defined by

u(x, t; k)

=
2nΓ

(
k+1

2

)
Γ
(k−n−|γ|+1

2

)∏n
i=1 Γ

(
γi+1

2

) ∫
B+

1 (n)

(1− |y|2)
k−n−|γ|−1

2 γT tyf(x)yγdy,
(4.10)

which coincides with formula (3.3).

Proof. In the case when k > n+|γ|−1 and f(x) is continuous and even with respect
to all variables the integral in (4.9) exists in the classical sense. So, taking in (4.9)
usual function (t2−|x|2)λ instead of the weighted generalized function (t2−|x|2)λ+,γ ,
passing to the integral over the part of the ball B+

t = {x∈Rn+ : |x|<t} and changing
the variables by formula x = ty we obtain (4.10). �

5. Case x is one-dimensional

In this section we concentrate on the case when x is one-dimensional. Then
problems and constructed above solutions are simplified. For these problems we
consider below some illustrative examples with explicit solution representations
and some visual graphs using the Wolfram Alpha. In this case we have the Cauchy
problem

∂2u

∂x2
+
γ

x

∂u

∂x
=
∂2u

∂t2
+
k

t

∂u

∂t
, (5.1)

u(x, 0; k) = f(x),
∂u(x, t; k)

∂t

∣∣∣
t=0

= 0, f(x) ∈ C2
ev(R

1

+). (5.2)

When k > γ > 0 the solution to (5.1)–(5.2) is given by (see (3.3))

u(x, t; k) =
2Γ
(
k+1

2

)
Γ
(
k−γ

2

)
Γ
(
γ+1

2

) ∫ 1

0

(1− y2)
k−γ−2

2 γT tyf(x)yγdy. (5.3)

When k < γ the solution to (5.1)–(5.2) is found by the formulas (3.6), (3.10) or
(3.11).

Example 5.1. We are looking for the solution to

∂2u

∂x2
+
γ

x

∂u

∂x
=
∂2u

∂t2
+
k

t

∂u

∂t
, k > γ > 0,

u(x, 0; k) = j γ−1
2

(x),
∂u(x, t; k)

∂t

∣∣∣
t=0

= 0, f(x) ∈ C2
ev(R

1

+).
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Figure 1. u(x, t; k) = j− 1
6
(x)j 3

4
(t).

Figure 2. u(x, t; k) = j− 1
6
(x)j 3

4
(t).

By (5.3) we obtain

u(x, t; k) =
2Γ
(
k+1

2

)
Γ
(
k−γ

2

)
Γ
(
γ+1

2

) ∫ 1

0

(1− y2)
k−γ−2

2 γT tyj γ−1
2

(x)yγdy.

The next formula is valid

T tyj γ−1
2

(x) = j γ−1
2

(x)j γ−1
2

(ty)

and so

u(x, t; k) = j γ−1
2

(x) t
1−γ

2
2
γ+1
2 Γ

(
k+1

2

)
Γ
(
k−γ

2

) ∫ 1

0

(1− y2)
k−γ−2

2 J γ−1
2

(ty) y
γ+1
2 dy.
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Using [49, formula 2.12.4.6],∫ a

0

xν+1(a2 − x2)β−1Jν(cx)dx =
2β−1aβ+ν

cβ
Γ(β)Jβ+ν(ac), (5.4)

for a > 0, Reβ > 0, Re ν > −1, we obtain

u(x, t; k) = j γ−1
2

(x)j k−1
2

(t). (5.5)

The plot of (5.5) when k = 5
2 and γ = 2

3 is presented on Figure 1, and obtained
through the Wolfram-Alpha. We can continue the solution to negative values of x
and t as an even function. The plot of such continuation is presented on Figure 2.

If we denote

k,γT txf(x) = C(γ, k)
∫ 1

0

(1− y2)
k−γ−2

2 T tyf(x)yγdy,

C(γ, k) =
2Γ
(
k+1

2

)
Γ
(
k−γ

2

)
Γ
(
γ+1

2

) . (5.6)

We can consider the operator (5.6) as a generalized translation operator (see [43]).
For this operator the next property holds

k,γT txj γ−1
2

(x) = j γ−1
2

(x)j k−1
2

(t) .

Example 5.2. The solution to

∂2u

∂x2
+
γ

x

∂u

∂x
=
∂2u

∂t2
+
k

t

∂u

∂t
, 1− γ ≤ k < γ, k 6= −1,−3,−5, . . . , γ >

1
2
,

u(x, 0; k) = j γ−1
2

(x),
∂u(x, t; k)

∂t

∣∣∣
t=0

= 0.

is given by (5.1) where m = 1,

u(x, t; k) =
1
tk

∂

∂t
(tk+1u(x, t; k + 2)),

and u(x, t; k + 2) is the solution to the Cauchy problem

(Bk+2)tu = (∆γ)xu,

u(x, 0; k + 2) =
j γ−1

2
(x)

k + 1
, ut(x, 0; k + 2) = 0.

Using the previous example we obtain

u(x, t; k + 2) =
1

k + 1
j γ−1

2
(x)j k+1

2
(t),

u(x, t; k) = 0F1

(γ + 1
2

;−x
2

4

)
0F1

(
;
k + 1

2
;− t

2

4

)
.

The plot of (5.5) when k = 1
3 and γ = 3

2 is presented on Figure 3 obtained
through the Wolfram-Alpha.

We can continue the solution to negative values of x and t as an even function.
The plot of such continuation is presented on Figure 4.
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Figure 3. u(x, t; k) = 0F1
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Figure 4. u(x, t; k) = 0F1
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[15] G. Darboux; Leçons sur la théorie générale des surfaces et les applications géométriques du
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