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Abstract. Gierer-Meinhardt model acts as one of prototypical reaction diffu-

sion systems describing pattern formation phenomena in natural events. Bifur-
cation analysis, including theoretical and numerical analysis, is carried out on

the Gierer-Meinhardt activator-substrate model. The effects of diffusion on the

stability of equilibrium points and the bifurcated limit cycle from Hopf bifur-
cation are investigated. It shows that under some conditions, diffusion-driven

instability, i.e, the Turing instability, about the equilibrium point will occur,

which is stable without diffusion. While once the diffusive effects are present,
the bifurcated limit cycle, which is the spatially homogeneous periodic solu-

tion and stable without the presence of diffusion, will become unstable. These
diffusion-driven instabilities will lead to the occurrence of spatially nonho-

mogeneous solutions. Consequently, some pattern formations, like stripe and

spike solutions, will appear. To understand the Turing and Hopf bifurcation
in the system, we use dynamical techniques, such as stability theory, normal

form and center manifold theory. To illustrate theoretical analysis, we carry

out numerical simulations.

1. Introduction

Natural patterns are various in shape and form. The development processes of
such patterns are complex, and also interesting to researchers. To understand the
underlying mechanism for patterns of plants and animals, Turing [1] first proposed
the coupled reaction-diffusion equations. It was showed that the stable process
could evolve into an instability with diffusive effects. He showed that diffusion
could destabilize spatially homogeneous states and cause nonhomogeneous spatial
patterns, which accounted for biological patterns in plants and animals. Such in-
stability is frequently called the Turing instability, also known as diffusion-driven
instability. Gierer and Meinhardt [2] presented a prototypical model of coupled re-
action diffusion equations, which described the interaction between two substances,
the activator and the inhibitor, and was used to describe the Turing instability.
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The Gierer-Meinhardt model is expressed in the following form

∂a

∂t
= ρ0ρ+ cρ

ar

hs
− µa+Da

∂2a

∂x2
,

∂h

∂t
= c′ρ′

aT

hu
− vh+Dh

∂2h

∂x2
.

(1.1)

where a(x, t) and h(x, t) represent the population densities of the activator and the
inhibitor at time t > 0 and spatial location x, respectively. Da and Dh are the
diffusion constants of the activator and the inhibitor, respectively; ρρ0 is the source
concentration for the activator; ρ′ is the one for the inhibitor; the activator and the
inhibitor are removed by the first order kinetics µa and vh, respectively, either by
enzyme degradation, or leakage, or re-uptake by the source, or by any combination
of such mechanisms; now the sources of activator and the inhibitor are assumed to
be uniformly distributed, that is, ρ and ρ′ are constants.

Several results about such model have been achieved. If s 6= u, it is said to have
different sources. If s = u, then it is said to be the model with common sources.
When r = 2, s = 1, T = 2 and u = 0, Ruan [3] investigated the instability of equi-
librium points and the periodic solutions under diffusive effects, which were stable
without diffusion. The perturbation method was employed to carry out the analysis
there. In [4], they showed the analysis of the Turing instability for such model. By
using the bifurcation technique, Liu et al. [5] obtained the results about the Hopf
bifurcation, the steady state bifurcation and their interaction in this model. How-
ever, the model was subject to fixed Dirichlet boundary conditions. Recently, Song
[6] further investigated the Turing-Hopf bifurcation and spatial resonance phenom-
ena in this model. When r = 2, s = 2, u = 0, T = 1 and u = 0, Wang et al. [7]
studied the Turing instability and the Hopf bifurcation.

Also, the Turing instability for the semi-discrete Gierer-Meinhardt model was
considered in [8]. Bifurcation for the Gierer-Meinhardt model with saturation was
analyzed in [9]. The influence of gene expression time delay on the patterns of
Gierer-Meinhardt system was explored in [10]. The Turing bifurcation in models
like Brusselator and Gierer-Meinhardt systems were analyzed in [11].

The existence, asymptotic behaviors of solutions and their stability in terms of
diffusion effects have been extensively investigated, for example, [12, 13, 14, 15, 16]
and references therein.

In view of the processes in morphogenesis, which was described in detail in [2],
if it is assumed that the sources of distribution are activated by a(x, t) and further
by some substance of concentration s(x, t), one could give the activator-substrate
(depletion) model. Here, the substance of concentration s(x, t) could be consumed
by activation or some indirect effect of activation. In one dimension, the depletion
model could be written as follows

∂a

∂t
= a2h− µa+Da

∂2a

∂x2
,

∂h

∂t
= c0 − c′ρa2h− vh+Dh

∂2h

∂x2
.

(1.2)

This model was used to describe pigmentation patterns in sea shells [17, 18] and the
ontogeny of ribbing on ammonoid shells [19]. By means of qualitative analysis, such
as stability theory, normal form and bifurcation technique, we will investigate the
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Turing instability of the system with Neumann boundary conditions. Furthermore,
some patterns will be identified numerically.

By using the scaling transformation, let

t =
τ

v
, µ̄ =

µ

v
, DH =

Dh

v
, DA =

Da

v
,

then one has
∂A

∂τ
= A2H − µ̄A+DA

∂2A

∂x2
,

∂H

∂τ
= c0 −A2H −H +DH

∂2H

∂x2
.

For simplicity, we change parameters A,H, τ, µ̄, c0, DA, DH into a, h, t, µ, c,Da, Dh,
respectively. System (1.2) can be written as follows

∂a

∂t
= a2h− µa+Da

∂2a

∂x2
,

∂h

∂t
= c− a2h− h+Dh

∂2h

∂x2
.

(1.3)

where µ, c,Da, Dh > 0, a, h ≥ 0. In the sequel, system (1.3) is assumed to be
subjected to the Neumann boundary conditions

∂a

∂x
(0, t) =

∂a

∂x
(π, t) = 0,

∂h

∂x
(0, t) =

∂h

∂x
(π, t) = 0.

2. Analysis of system without diffusion

When the diffusive terms in system (1.3) are absent, it will reduce to the local
system

da

dt
= a2h− µa,

dh

dt
= c− a2h− h.

(2.1)

Let
f(a, h) = a2h− µa, g(a, h) = c− a2h− h.

Let l = c
µ . Note that if 0 < l < 2, system (2.1) has a unique equilibrium point

S(0, c); if l = 2, the system has equilibrium points S and P ∗(1, µ); if l > 2, it has
equilibrium points S,

P0

( l +
√
l2 − 4
2

,
l −
√
l2 − 4
2

µ
)
, P1

( l −√l2 − 4
2

,
l +
√
l2 − 4
2

µ
)
.

In fact, when l = 2, P0 and P1 will coincide to be the point P ∗(1, µ).
The Jacobian matrix of (2.1) evaluated at the equilibrium point S is

J(S) =
(
−µ 0
0 −1

)
,

so S is the asymptotically stable node.
The Jacobian matrix of (2.1) evaluated at the equilibrium point P1 is

J(P1) =

(
µ l2−l

√
l2−4−2
2

−2µ − l
2−l
√
l2−4

2

)
.
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Then tr(J) = µ − l2−l
√
l2−4

2 , det(J) = µ
2

√
l2 − 4(

√
l2 − 4 − l) < 0, so P1 is the

unstable saddle.
From the above analysis about the existence and stability of equilibrium points,

one has the following result.

Theorem 2.1. The equilibrium point S is the asymptotically stable node. When
0 < l < 2, system (2.1) only has the equilibrium point S. When l > 2, two other
equilibrium points P0 and P1 will appear. The point P1 is the unstable saddle.

Remark 2.2. From the later analysis, note that when diffusion effect is taken into
consideration, S will still be stable and P1 will still be unstable. Thus, no Turing
instability will occur at these points. Next the dynamical behaviors of P0 without
diffusion will be given.

The Jacobian matrix of (2.1) evaluated at the equilibrium point P0 is

J(P0) =

(
µ l2+l

√
l2−4−2
2

−2µ − l
2+l
√
l2−4

2

)
.

Note that the corresponding characteristic equation for J(P0) is

λ2 − tr(J(P0))λ+DetJ(P0) = 0, (2.2)

where tr(J(P0)) = µ− l(l+
√
l2−4)

2 and det J(P0) = µ[l2+l
√
l2−4−4]
2 > 0.

Theorem 2.3. The equilibrium point P0 of system (2.1) is asymptotically stable if

µ <
l(l +

√
l2 − 4)

2
(2.3)

and is unstable if

µ >
l(l +

√
l2 − 4)

2
. (2.4)

Proof. If (2.3) holds, then the eigenvalues are both negative or have negative real
parts, so the equilibrium P0 of (2.1) is stable; if (2.4) holds, then the eigenvalues
are both positive or have positive real parts, so the equilibrium P0 of (2.1) is
unstable. �

From Theorem 2.3, we know that the Hopf bifurcation may occur at the point
P0 in system (2.1). Next the Hopf bifurcation at the point P0 and its direction will
be investigated. For simplicity, let µ0 = l(l+

√
l2−4)

2 and (a0, h0) denote the point
P0. In terms of the characteristic equation (2.2), the eigenvalues are

λ1,2 =
tr(J)±

√
tr(J)2 − 4 det(J)

2
.

If tr(J)2 < 4 det(J), then it has a pair of complex roots, with real parts tr(J)
2 .

Note that dReλ1,2
dµ |µ0 = 1 > 0, thus the Hopf bifurcation may occur in system (2.1)

when µ = µ0. The Hopf bifurcation curve is defined by tr(J) = 0, i.e.,

µ =
l(l +

√
l2 − 4)

2
.
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As for the direction of Hopf bifurcation, it could be derived as the way in [20] as
follows. Let a→ a+ a0, h→ h+ h0, so(

da
dt
dh
dt

)
=
(
f(a0 + a, h0 + h)
g(a0 + a, h0 + h)

)
= J(P0)

(
a
h

)
+
(
f2(a, h)
g2(a, h)

)
, (2.5)

where

f2(a, h, µ) = a2h0 + 2a0ah+ a2h, g2(a, h, µ) = −a2h0 − 2a0ah− a2h.

When µ = µ0, we verify that λ1,2 (µ0) = ±iω0, where ω2
0 = µ[l2+l

√
l2−4−4]
2 > 0.

We choose one of eigenvectors corresponding to the eigenvalue iω0 of matrix J(P0)
at µ = µ0 to be ξ = (iω0 + µ,−2µ)T . Let

T =
(
ω0 µ
0 −2µ

)
,

then

T−1 =
( 1
ω0

1
2ω0

0 − 1
2µ

)
.

The transformation
(
a
h

)
= P

(
u
v

)
changes (2.1) into(

du
dt
dv
dt

)
= P−1JP

(
u
v

)
+ P−1

(
f2P (u, v)
g2P (u, v)

)
=
(

0 −ω0

ω0 0

)(
u
v

)
+
(
f3(u, v)
g3(u, v)

)
,

where (
f3(u, v)
g3(u, v)

)
=
( 1

2ω0
f2(ω0u+ µv,−2µv)

− 1
2µg2(ω0u+ µv,−2µv)

)
,

f2(ω0u+ µv,−2µv) = ω2
0u

2h0 + µ2v2h0 + 2ω0µhuv − 4a0ω0µuv

− 4a0µ
2v2 − 2µω2

0u
2v − 2µ3v3 − 4ω0µ

2uv2,

g2(ω0u+ µv,−2µv) = −f2(ω0u+ µv,−2µv).

Then

f2uu = 2h0ω
2
0 − 4µω2

0v, f2uuv = −4µω2
0 , f2uuu = 0,

f2uv = 2ω0µh0 − 4a0µω0, f2uvv = −8µ2ω0, f2vv = 2µ2h0 − 8a0µ
2,

g2uu = −2h0ω
2
0 + 4µω2

0v, g2vvv = 12µ3, g2uuu = 0,

g2uv = −2ω0µh0 + 4a0µω0, g2uvv = 8µ2ω0, g2vv = −2µ2h0 + 8a0µ
2.

So the stability of Hopf bifurcation in system (2.1) at P0(a0, h0) is determined by
the sign of the following quantity [20]

σ =
1
16

(f3uuu + g3uuv + f3uvv + g3vvv)

+
1

16ω0
[f3uv(f3uu + f3vv)− g3uv(g3uu + g3vv)− f3uug3uu + f3vvg3vv],

where all the partial derivatives are evaluated at the bifurcation point (u, v, µ) =
(0, 0, µ0).
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We can find that

f3uu = hω0, f3uuu = 0, f3uv = µh− 2aµ, f3uvv = −4µ2,

f3vv =
µ2h− 4aµ2

ω0
, g3uu =

hω2
0

µ
, g3uuv = −2ω2

0 ,

g3uv = ω0h− 2aω0, g3vv = µh− 4aµ, g3vvv = −6µ2,

then

σ =
−ω4

0(2µ+ h2)− µ3[10ω2
0 − 2(h− 2a)(−l −

√
l2 − 4)− µ(h− 4a)2]

16ω2
0µ

< 0.

From the above analysis, one has the the following Hopf bifurcation result at the
point P0.

Theorem 2.4. When tr(J)2 < 4 det(J), system (2.1) undergoes a supercritical
Hopf bifurcation at µ = µ0 and the bifurcated limit cycle is stable as µ > µ0.

For an illustration of the Hopf bifurcation, see Figures 1 and 2.
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Figure 1. Equilibrium point P0 is a stable focus.
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Figure 2. A stable limit cycle is bifurcated from Hopf bifurcation.
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When l = 2, the equilibrium points

P0

( l +
√
l2 − 4
2

,
l −
√
l2 − 4
2

µ
)
, P1

( l −√l2 − 4
2

,
l +
√
l2 − 4
2

µ
)
,

with (l > 2), coincide to be the point P ∗(1, µ). The Jacobian matrix evaluated at
P ∗ is

J(P ∗) =
(

µ 1
−2µ −2

)
.

The corresponding eigenvalues are λ1 = 0, λ2 = µ − 2 and tr(J(P ∗)) = µ − 2,
det(J(P ∗)) = 0. So it is nonhyperbolic. When µ 6= 2, its stability could be
analyzed in the following by employing center manifold reduction theory in [20].

Let a→ a+ 1, h→ h+ µ, system (2.1) becomes(
da
dt
dh
dt

)
= J(P ∗)

(
a
h

)
+
(
f2(a, h)
g2(a, h)

)
, (2.6)

where

f2(a, h, µ) = a2µ+ 2ah+ a2h,

g2(a, h, µ) = −a2µ− 2ah− a2h.

The Jacobian matrix at P ∗ can be diagonalized as

T−1J(P ∗)T =
(

0 0
0 µ− 2

)
,

where

T =
(

1 1
−µ −2

)
, T−1 =

( −2
µ−2

−1
µ−2

µ
µ−2

1
µ−2

)
.

Consequently, the system will be changed into(
du
dt
dv
dt

)
=
(

0 0
0 µ− 2

)(
u
v

)
+

(
− 1
µ−2 (u+ v)[(u+ v)µ− (µu+ 2v)(u+ v + 2)]
µ−1
µ−2 (u+ v)[(u+ v)µ− (µu+ 2v)(u+ v + 2)]

)
.

(2.7)

Its local center manifold at the origin can be represented as

W c(0) = {(u, v) ∈ R2 | v = γ(u), | u |< δ, γ(0) = Dγ(0) = 0},
for δ > 0 sufficiently small. Assume that γ(x) takes the form

γ(u) = u2 + bu3 +O(u4). (2.8)

Substituting it into system (2.7) and equating coefficients on each power of x to
zero, we have

a =
µ(µ− 1)
(µ− 2)2

, b =
µ2(µ+ 2)(µ− 1)

(µ− 2)4
,

thus

γ(u) =
µ(µ− 1)
(µ− 2)2

u2 +
µ2(µ+ 2)(µ− 1)

(µ− 2)4
u3 +O(x4).

As a result, system (2.7) restricted to the local center manifold is

u̇ =
µ

µ− 2
u2 +O(u3),

from which we know that the origin is unstable, that is, the point P ∗ is unstable.
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3. Turing instability induced by diffusion

When the diffusive effects are considered, it is desirable to know how the diffusive
terms affect the stability of fixed points and the bifurcated limit cycle. If the stable
equilibrium points and stable limit cycles become unstable under such effects, then
it is often known as the Turing instability, namely, the diffusion-driven instability.
In this section, instability induced by diffusive effects on the equilibrium points and
the bifurcated limit cycle will be investigated.

3.1. Turing instability of the equilibrium points. Let u = a− a0, v = h−h0,
then the linearized system of (1.3) at (a0, h0) is(

du
dt
dv
dt

)
=

(
2a0h0 − µ+Da

∂2

∂x2 a2
0

−2a0h0 −a2
0 − 1 +Dh

∂2

∂x2

)(
u
v

)
=:
(
u
v

)
, (3.1)

with the Neumann boundary condition

ux(0, t) = vx(0, t) = ux(π, t) = vx(π, t) = 0. (3.2)

System (3.1)-(3.2) has the solution (u, v) formally described as(
u(x, t)
v(x, t)

)
=
∞∑
k=0

(
ak
bk

)
eλt cos kx. (3.3)

Substituting this into (3.1), we have
∞∑
k=0

(
ak
bk

)
λeλt cos kx

= L(P0)
(
u
v

)
=
∞∑
k=0

(
µ+Da

∂2

∂x2
l2+l
√
l2−4−2
2

−2µ − l
2+l
√
l2−4

2 +Dh
∂2

∂x2

)(
ak
bk

)
eλt cos kx.

Comparing the equal powers of k, we have

(λI − Jk(µ))
(
ak
bk

)
=
(

0
0

)
, k = 0, 1, 2, . . . , (3.4)

where

Jk(µ) =

(
µ− k2Da

l2+l
√
l2−4−2
2

−2µ − l
2+l
√
l2−4

2 − k2Dh

)
.

So system (3.4) has a nonzero solution (ak, bk)T if and only if

det(λI − Jk(µ)) = 0.

Which is the characteristic equation of the original system (1.3) at P0. Rewrite it
as the equation

λ2 − tr(k)λ+ det(k) = 0, (3.5)

where

tr(k) = µ− l2 + l
√
l2 − 4

2
− k2(Da +Dh) = tr(J(P0))− k2(Da +Dh),
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det(k) =
l2 + l

√
l2 − 4− 4
2

µ− µk2Dh +
l2 + l

√
l2 − 4

2
k2Da + k4DaDh

= k2Dh[k2Da − µDh] +
l2 + l

√
l2 − 4

2
k2Da + det(J(P0)).

Under condition (2.3), one has tr(k) < 0 for all k = 0, 1, 2, . . . and det(0) =
det(J(P0)) > 0. Let

rm = min
1≤k≤m

det(J) + l2+l
√
l2−4

2 Dak
2

(µ−Dak2)k2
.

If µ
Da
≤ 1 or m2 < µ

Da
≤ (m + 1)2, and r < rm, then det(k) ≥ det(0) > 0, so

(a0, h0) is linearly asymptotically stable for system (1.3); if m2 < µ
Da
≤ (m + 1)2

and Dh > rm, then there exists at least one negative in det(1), . . . ,det(m), and so
(a0, h0) is unstable for system (1.3). Hence, the above analysis can be summarized
as follows.

Theorem 3.1. Assume that condition (2.3) holds, let

rm = min
1≤k≤m

det(J) + l2+l
√
l2−4

2 Dak
2

(µ−Dak2)k2
,

then (a0, h0) is a stable equilibrium for (1.3) if either
µ

Da
≤ 1, (3.6)

or
m2 <

µ

Da
≤ (m+ 1)2 and Dh < rm (3.7)

hold. Also (a0, h0) is an unstable equilibrium for (1.3) if

m2 <
µ

Da
≤ (m+ 1)2 and Dh > rm. (3.8)

Remark 3.2. (1) At the point S, the characteristic equation (3.5) changes into

λ2 − tr(k)λ+ det(k) = 0, (3.9)

where

tr(k) = −µ− 1− k2(Da +Dh) = tr(J(s))− k2(Da +Dh),

det(k) = µ+ k2(Da + µDh) + k4DaDh

= det(J(S)) + k2(Da + µDh) + k4DaDh.

Note that in this case tr(k) < 0 and det(k) > 0, for all k = 0, 1, 2, . . . , so the point
S is still stable under diffusive effects.

(2) At the point P1, the characteristic equation (3.5) changes into

λ2 − tr(k)λ+ det(k) = 0, (3.10)

where

tr(k) = µ− l2 − l
√
l2 − 4

2
− k2(Da +Dh)

= tr(J(P1))− k2(Da +Dh),
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det(k) =
l2 − l

√
l2 − 4− 4
2

µ− µk2Dh +
l2 − l

√
l2 − 4

2
k2Da + k4DaDh

= det(J(P1))− µk2Dh +
l2 − l

√
l2 − 4

2
k2Da + k4DaDh.

Note that det(0) = det(J(P1)) < 0, so the point P1 is still unstable under diffusive
effects.

(3) At the point P ∗(1, µ), the characteristic equation (3.5) changes into

λ2 − tr(k)λ+ det(k) = 0, (3.11)

where

tr(k) = µ− 2− k2(Da +Dh) = tr(J(P ∗))− k2(Da +Dh),

det(k) = −µk2Dh + 2k2Da + k4DaDh.

Note that tr(0) = µ− 2,det(0) = det(J(P ∗)) = 0, from the previous analysis, it
is unstable (µ 6= 2). So the point P ∗ is still unstable under diffusive effects, from
analysis of the Turing and Hopf interaction in [21].

3.2. Turing instability of the bifurcated limit cycle. To analyze the effects
induced by diffusion on the stability of the bifurcated limit cycle, we apply the cen-
ter manifold reduction and normal form technique to system (1.3). From the first
nonvanishing coefficient of Poincaré normal form, combined with the eigenvalues of
linearized system at the point P0 and the bifurcation value µ0, the stability of the
bifurcated limit cycle could be identified. To this end, some necessary transforma-
tion procedures and analysis about the eigenvalues will be carried out.

Let µ = µ0 and take the transformation u = a− a0, v = h− h0, U = (u, v)T , so
system (1.3) can be rewritten as

Ut =
[
J(µ0) +

(
Da∂xx 0

0 Dh∂xx

)]
U + F (U, µ0),

Ux(0, t) = Ux(π, t) = (0, 0)T ,
(3.12)

where
F (U, µ0) = (f2(u, v, µ0), (g2(u, v, µ0))T ,

f2 and g2 are defined in (2.5). As in [22], F (U, µ0) can be rewritten into

F (U, µ0) =
1
2
Q(U,U) +

1
6
C(U,U, U) +O(|U |4)

and

Q(U, V ) =
(
Q1(U, V )
Q2(U, V )

)
, C(U, V,W ) =

(
C1(U, V,W )
C2(U, V,W )

)
,

so
Q1(U, V ) = f2uuu1v1 + f2uvu1v2 + f2vuu2v1 + f2vvu2v2

= 2(h0u1v1 + a0u1v2 + au2v1),

Q2(U, V ) = g2uuu1v1 + g2uvu1v2 + g2vuu2v1 + g2vvu2v2

= −Q1(U, V ),

C1(U, V,W ) = f2uuuu1v1w1 + f2uuvu1v1w2 + f2uvuu1v2w1 + f2uvvu1v2w2

+ f2vuuu2v1w1 + f2vuvu2v1w2 + f2vvuu2v2w1 + f2vvvu2v2w2

= 2(u1v1w2 + u1v1w1 + u2v1w1),
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C2(U, V,W ) = g2uuuu1v1w1 + g2uuvu1v1w2 + g2uvuu1v2w1 + g2uvvu1v2w2

+ g2vuuu2v1w1 + g2vuvu2v1w2 + g2vvuu2v2w1 + g2vvvu2v2w2

= −C1(U, V,W ),

for any U = (u1, u2)T , V = (v1, v2)T , W = (w1, w2)T , and U , V , W ∈ H2([0, π])×
H2([0, π]). For µ = µ0, the linear operator L = L(µ0) is defined by

LU =
[
J(µ0) +

(
Da∂xx 0

0 Dh∂xx

)]
U

and let L∗ be the adjoint operator of L, then

L∗U =
[
J∗(µ0) +

(
Da∂xx 0

0 Dh∂xx

)]
U,

with

J(µ0) =

(
l2+l
√
l2−4

2
l2+l
√
l2−4−2
2

−(l2 + l
√
l2 − 4) − l

2+l
√
l2−4

2

)
,

J∗(µ0) =

(
l2+l
√
l2−4

2 −(l2 + l
√
l2 − 4)

l2+l
√
l2−4−2
2 − l

2+l
√
l2−4

2

)
.

Clearly, 〈L∗U, V 〉 = 〈U,LV 〉 for any U, V ∈ H2([0, π])×H2([0, π]) and the inner
product in H2([0, π]) × H2([0, π]) is defined as 〈U, V 〉 = 1

π ×
∫ π

0
U
T
V dx for any

U, V ∈ H2([0, π]) ×H2([0, π]). The linearized system of (3.12) at the equilibrium
(0, 0) is

Ut = LU (3.13)
with the Neumann boundary condition

Ux(0, t) = Ux(0, t) = (0, 0)T . (3.14)

System (3.13) with boundary condition (3.14) has a solution that can be formally
represented as

U =
∞∑
k=0

(
ak
hk

)
eλt cos kx, (3.15)

where ak and hk are complex numbers, k is the wave number k = 0, 1, 2 . . . , and
λ ∈ C is the temporal spectrum. Substituting (3.15) into (3.12) and collecting the
like terms about k, one has

(λI − Lk)
(
ak
hk

)
=
(

0
0

)
, k = 0, 1, 2, . . . , (3.16)

where

Lk =

(
l2+l
√
l2−4

2 −Dak
2 l2+l

√
l2−4−2
2

−(l2 + l
√
l2 − 4) − l

2+l
√
l2−4

2 −Dhk
2

)
.

For some k, Equation (3.16) has a nonzero solution (ak, hk)T if and only if the
dispersion relation is satisfied, det(λI − Lk) = 0. From such dispersion relation,
the characteristic equation follows immediately

λ2 − tr(Lk) + det(k) = 0, k = 0, 1, 2, . . . , (3.17)

where

tr(Lk) = −(Da +Dh)k2,
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det(Lk) = Dhk
2(Dak

2 − l2 + l
√
l2 − 4

2
) +Dak

2 l
2 + l
√
l2 − 4

2
+ det(J).

Note that when µ = µ0, one has tr(L0) = 0, det(L0) = det(J) = µ0(µ0− 2) > 0,
tr(Lk) < 0 for k = 1, 2, . . . . Then for k = 0, L has eigenvalues with zero real parts,
i.e., a pair of purely imaginary eigenvalues. Signs of the remaining eigenvalues of
L could be judged as follows.

If Da ≥ l2+l
√
l2−4

2 , then det(Lk) ≥ det(L0) > 0 for k = 1, 2, . . . . Moreover, if
m2 < l2+l

√
l2−4

2Da ≤ (m+ 1)2, m ∈ N+ and Dh < r̄, then det(Lk) > 0, k = 1, 2, . . . ,
where

r̄ = min
1≤k≤m

Dak
2 l2+l

√
l2−4

2 + det(J)

( l2+l
√
l2−4

2 −Dak2)k2
.

Consequently, the remaining eigenvalues of L all have negative real parts. If m2 <
l2+l
√
l2−4

2Da ≤ (m + 1)2, m ∈ N+ and Dh > r̄, then there must exist at least one
of det(L1), det(L2), . . . , det(Lm) to be negative. Then some eigenvalues of L will
have positive real parts.

Next the center manifold reduction and normal form technique are applied to
system (1.3). Let Lq = iω0q and L∗q∗ = −iω0q

∗, then one has

q = (iω0 +
l2 + l

√
l2 − 4

2
,−(l2 + l

√
l2 − 4))T , q∗ =

1
2ω0

(i,− ω0

l2 + l
√
l2 − 4

+
i

2
)T ,

respectively. Note that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
According to [22], for each U ∈ Dom(L), the pair (z, w) could be associated,

where U = zq + z̄q̄ + w, z = 〈q∗, U〉 and w = (w1, w2)T . Then

u = (iω0 +
l2 + l

√
l2 − 4

2
)z + (−iω0 +

l2 + l
√
l2 − 4

2
)z̄ + w1,

v = −(l2 + l
√
l2 − 4)(z + z̄) + w2.

System (3.12) in (z, w) coordinates is changed to
dz

dt
= iω0z + 〈q∗, f̃〉,

dw

dt
= Lw +H(z, z̄, w),

(3.18)

where

f̃ = F (zq + z̄q̄ + w, µ0), H(z, z̄, w) = f̃ − 〈q∗, f̃〉q − 〈q̄∗, f̃〉q̄,

f̃ =
1
2
Q(zq + z̄q̄ + w, zq + z̄q̄ + w)

+
1
6
C(zq + z̄q̄ + w, zq + z̄q̄ + w, zq + z̄q̄ + w) +O(|zq + z̄q̄ + w|4)

=
1
2
Q(q, q)z2 +Q(q, q̄)zz̄ +

1
2
Q(q̄, q̄)z̄2 +O(|z|3, |z| · |w|, |w|2),

〈q∗, f̃〉 =
1
2
〈q∗, Q(q, q)〉z2 + 〈q∗, Q(q, q̄)〉zz̄ +

1
2
〈q∗, Q(q̄, q̄)〉z2

+O(|z|3, |z| · |w|, |w|2),

〈q̄∗, f̃〉 =
1
2
〈q̄∗, Q(q, q)〉z2 + 〈q̄∗, Q(q, q̄)〉zz̄ +

1
2
〈q̄∗, Q(q̄, q̄)〉z2

+O(|z|3, |z| · |w|, |w|2).
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Hence

H(z, z̄, w) =
1
2
z2H20 + zz̄H11 +

1
2
z̄2H02 +O(|z|3, |z| · |w|, |w|2),

where

H20 = Q(q, q)− 〈q∗, Q(q, q)〉q − 〈q̄∗, Q(q, q)〉q̄,
H11 = Q(q, q̄)− 〈q∗, Q(q, q̄)〉q − 〈q̄∗, Q(q, q̄)〉q̄,
H02 = Q(q̄, q̄)− 〈q∗, Q(q̄, q̄)〉q − 〈q̄∗, Q(q̄, q̄)〉q̄.

Moreover, H20 = H11 = H02 = (0, 0)T , so H(z, z̄, w) = O(|z|3, |z|·|w|, |w|2). Hence,
system (3.12) possesses a center manifold. It can be described as

w =
1
2
z2w20 + zz̄w11 +

1
2
z̄2w02 +O(|z|3).

In view of Lw +H(z, z̄, w) = dw
dt = ∂w

∂z
dz
dt + ∂w

∂z̄
dz̄
dt , one has

w20 = [2iω0 − L]−1H20 = (0, 0)T ,

w11 = −L−1H11 = (0, 0)T ,

w02 = [−2iω0 − L]−1H02 = (0, 0)T .

Thus, the reaction-diffusion system (3.12) restricted to the center manifold is
dz

dt
= iω0z + 〈q∗, f̃〉 = iω0z +

∑
2≤i+j≤3

gij
i!j!

ziz̄j +O(|z|4), (3.19)

where

g20 = 〈q∗, Q(q, q)〉, g11 = 〈q∗, Q(q, q̄)〉, g02 = 〈q∗, Q(q̄, q̄)〉,
g21 = 2〈q∗, Q(w11, q)〉+ 〈q∗, Q(w20, q̄)〉+ 〈q∗, C(q, q, q̄)〉 = 〈q∗, C(q, q, q̄)〉.

The dynamics of (3.12) is determined by that of (3.19). Furthermore, its Poincaré
normal form could be given in the form

dz

dt
= (α(µ) + iω(µ))z + z

M∑
j=1

δj(µ)(zz̄)j , (3.20)

where z is a complex variable, M ≥ 1, and δj(µ) are complex-valued coefficients.
Then one has

δ1(µ) =
g20g11 [3α(µ) + iω(µ)]

2 [α2(µ) + ω2(µ)]
+

|g11|2

α(µ) + iω(µ)
+

|g02|2

2 [α(µ) + 3iω(µ)]
+
g21

2
.

Note that Re(δ1(µ0)) = Re[ g20g112ω0
i + g21

2 ], since α(µ0) = 0 and ω(µ0) = ω0 > 0.
From

g20 =
1
ω0

[
(iω0 + µ)2 − 4aµ(iω0 + µ)

] (ω0 − 3iµ
2µ

)
,

g11 =
1
ω0

[
(µ2 + ω2

0)h− 4aµ2
] (ω0 − 3iµ

2µ

)
,

g21 =
1
ω0

(3µi− ω0)(3µ2 + ω2
0 + 2iω0µ),

one has

Re(δ1(µ0)) =
1

4ω2
0µ0

{
(h0µ

2
0 + h0ω

2
0 − 4a0µ

2
0)[3(h0µ

2
0 − h0ω

2
0 − 4a0µ

2
0)
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− (ω2
0 − 9µ2

0)(h0 − 2a0)]− 2ω2
0µ0(ω2

0 + 9µ2
0)
}
,

from which one can obtain that the bifurcated limit cycle is locally stable in the
center manifold if Re(δ1(µ0)) < 0, otherwise, it is unstable in the center manifold.
In fact, when Re(δ1(µ0)) < 0, the corresponding Floquet exponent is negative,
otherwise the corresponding Floquet exponent is positive. However, the stability of
such homogeneous limit cycle for system (1.3) may be different for system (2.1). If
P0 is unstable for system (1.3) but stable for system (2.1), i.e., some of eigenvalues
of system (1.3) at the equilibrium point P0 have positive real parts, then the limit
cycle bifurcated from Hopf bifurcation will also be unstable for system (1.3). That
means if some eigenvalue of L has positive real part, then the bifurcated limit
cycle is unstable. When eigenvalues of L have negative real parts except a pair of
imaginary roots, the limit cycle will be stable when Re(δ1(µ0)) < 0, and unstable
when Re(δ1(µ0)) > 0. After tedious calculation, it shows that

Re(δ1(µ0)) =
l2 + l

√
l2 − 4

4
√
l2 − 4

(
5l3 − 14l + 5l2

√
l2 − 4 + 4

√
l2 − 4

)
> 0.

That implies the limit cycle from the Hopf bifurcation is unstable for system (1.3)
under diffusive effects, otherwise, it is stable for system (2.1). Now the above
discussions are summarized as in the following theorem.

Theorem 3.3. Assume (2.4) holds, so the spatially homogeneous periodic solu-
tion bifurcated from the equilibrium P0(a0, b0) is stable for system (2.1). However,
the spatially homogenous periodic solution is always unstable for system (1.3) with
diffusive terms.

4. Numerical simulations

In this section, numerical simulations about the Turing and Hopf bifurcation will
be illustrated. From Theorem 3.1, we know that under conditions (2.3) and either
(3.6) or (3.7), the point (a0, h0) will be still stable, so no Turing instability will be
induced. Meanwhile, under (2.3) and (3.8), the point (a0, h0) will become unstable
from stable under diffusive effects, so the Turing instability will occur. Conse-
quently, some patterns will form in the original system. For further understanding
above theoretical analysis, the corresponding numerical results are presented.

Now we take parameters as µ = 1, c = 2.2, Da = 1.5, Dh = 10, so (2.3) and (3.6)
are satisfied. The point P0 is still stable under diffusive effects, see Figure 3. Initial
states are a(0, t) = 1.7179 + 0.8 cos(x), h(0, t) = 0.5821 + 0.8 cos(x).

If the parameters are taken as µ = 1, c = 2.3, Da = 0.5, Dh = 3, so (2.3) and
(3.7) are satisfied. The point P0 is still stable under diffusive effects, see Figure 4.
We take a(0, t) = 1.7179 + 0.5 cos(x), h(0, t) = 0.5821 + 0.5 cos(x).

However, when µ = 1, c = 2.3, Da = 0.5, Dh = 10, so (2.3) and (3.8) are
satisfied, the point P0 become unstable under diffusive effects, see Figure 5. Initial
values are taken as a(0, t) = 1.7179 + 0.5 cos(x), h(0, t) = 0.5821 + 0.5 cos(x), Then
consequently it is found that the patterns appear, see Figure 6.

From the numerical results, note that the Turing instability of the equilibrium
point occur under the diffusive effects. As for such effects on the bifurcated limit
cycle, we take µ = 7.86, c = 23.58, Da = 7.86, Dh = 5. Then µ > µ0 ≈ 7.8541
and Da > µ0, so (2.4) is satisfied and the eigenvalues of L have negative real parts.
In this case, the limit cycle from the Hopf bifurcation is stable for system (2.1),
but the spatially homogeneous periodic solution is unstable for system (1.3) since
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Figure 3. The point P0 is stable.

Figure 4. The point P0 is stable.

Figure 5. The point P0 is unstable with diffusion.

Re(δ1(µ0)) > 0, see Figure 7. Initial values are taken as a(0, t) = 2.5 + 0.5 cos(x),
h(0, t) = 3 + 0.5 cos(x), close to the limit cycle.

The similar phenomenon occurs when parameters are taken as µ = 7.86, c =
23.58, Da = 7, Dh = 2, then µ > µ0 ≈ 7.8541, Da < µ0 and Dh < r̄, so (2.4)
is satisfied and the eigenvalues of L have negative real parts. In this case, the
limit cycle from the Hopf bifurcation is stable for system (2.1), but the spatially
homogeneous periodic solution is unstable for system (1.3), see Figure 8. Initial
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Figure 6. Patterns appear in system (1.3).

Figure 7. Turing instability of bifurcated periodic solution occurs.

values are taken as a(0, t) = 2+0.02 rand(1), h(0, t) = 3+0.02 rand(1), close to the
limit cycle.

Figure 8. Turing instability of bifurcated periodic solution occurs.

Further, the Turing instability still occur when parameters are taken as µ = 7.86,
c = 23.58, Da = 2, Dh = 10.6, then µ > µ0 ≈ 7.8541, Da < µ0 and Dh > r̄, so
(2.4) is satisfied and some eigenvalues of L have positive real parts. The limit
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Figure 9. Turing instability of bifurcated periodic solution occurs
under diffusion.

cycle from the Hopf bifurcation is still stable for system (2.1), but it is unstable for
system (1.3), see Figure 9. Initial values are taken as a(0, t) = 2.6 + 0.5 rand(1),
h(0, t) = 3.1 + 0.5 rand(1), close to the limit cycle.

From the numerical simulations in Figures 7–9, it shows that some patterns like
stripe and spike solutions appear in system (1.3). Figure 10 corresponds to the
cases in Figures 7 and 8. Figure 11 is the pattern in Figure 9.

Figure 10. Patterns appearing in system (1.3).

Conclusions. To understand the dynamical behavior under diffusive effects, we
consider the Gierer-Meinhardt depletion model here. The model is commonly used
to explain the underlying complex mechanism for pattern formation in nature, de-
scribing the interaction of two sources in processes such as biological and chemical
ones. If the equilibrium points and periodic solutions become unstable under dif-
fusion terms, it is said to be the Turing instability, namely, the diffusion-driven
instability. It is frequently noted that on such occasions some patterns will form in
the system. By dynamical techniques, stability and the Hopf bifurcation of fixed
points are analyzed in detail. Afterwards, it shows that the Turing instability will
occur under some conditions, with the diffusive effects on stable fixed points and the
stable bifurcated limit cycle. That implies the spatially nonhomogeneous solutions
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Figure 11. Patterns appearing in system (1.3).

will appear in the system, which will cause the formation of patterns. Numerical
simulations verify the effectiveness of theoretical analysis. The other complex and
interesting dynamical behaviors related to such model will be further investigated.
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