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EXISTENCE OF CONJUGACIES AND STABLE MANIFOLDS
VIA SUSPENSIONS

LUIS BARREIRA, DAVOR DRAGIČEVIĆ, CLAUDIA VALLS

Abstract. We obtain in a simpler manner versions of the Grobman-Hartman

theorem and of the stable manifold theorem for a sequence of maps on a Ba-

nach space, which corresponds to consider a nonautonomous dynamics with
discrete time. The proofs are made short by using a suspension to an infinite-

dimensional space that makes the dynamics autonomous (and uniformly hy-

perbolic when originally it was nonuniformly hyperbolic).

1. Introduction

We consider two fundamental problems in the study of the asymptotic behavior
of a map. The first one goes back to Poincaré and asks whether there exists an
appropriate change of variables, called a conjugacy, taking the system to a linear
one. The second one is related with the existence of stable invariant manifolds and
goes back to Hadamard and Perron.

More precisely, we consider the general case of a nonautonomous dynamics with
discrete time such that at each time m we apply a map

Fm(v) = Amv + fm(v), (1.1)

where fm is sufficiently regular and fm(0) = 0. In the first problem we look for a
sequence of homeomorphisms hm such that

Am ◦ hm = hm+1 ◦ Fm
for each m ∈ Z. In the second problem we look for a sequence of smooth manifolds
Vm that are tangent to the stable spaces and that are invariant under the maps Fm,
in the sense that Fm(Vm) ⊂ Vm+1 for eachm ∈ Z. Both problems have been studied
substantially, also in the nonautonomous setting (see, for instance, [1, 4, 5, 7, 8, 9]
and the references therein in the case of conjugacies and [1, 3, 6, 8, 10, 11] and the
references therein in the case of stable manifolds).

We emphasize that we consider a general nonuniformly hyperbolic dynamics (see
Section 2 for the definition), instead of only the uniform case that corresponds to
the existence of a uniform exponential dichotomy. In a certain sense, the former is
the most general notion of hyperbolic behavior, in which case the expansion and
contraction may be spoiled exponentially along a given trajectory. We refer to
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[3, 5] for details on the notion of nonuniform hyperbolicity and for its ubiquity in
the context of ergodic theory.

The main novelty of our paper is the method of proof, which allows for short
proofs of the Grobman-Hartman and stable manifold theorems in the non-au-
tonomous setting. The idea is to make a suspension to an infinite-dimensional
space with the advantage of making the dynamics autonomous and uniform. More
precisely, after the suspension the hyperbolicity is transformed into the hyperbolic-
ity of a fixed point and this allows us to use the corresponding classical results (for
an autonomous and uniformly hyperbolic dynamics). In this infinite-dimensional
space we have an autonomous dynamics generated by a map

F (v) = Av + f(v)

and one can apply the well-known Grobman-Hartman and stable manifold theorems
for an autonomous dynamics. Afterwards, we can descend to the original Banach
space to obtain the desired results for the nonuniform nonautonomous dynamics
in (1.1).

2. Strong nonuniform exponential dichotomies

Let (Am)m∈Z be a (two-sided) sequence of invertible bounded linear operators
on a Banach space X. For each m,n ∈ Z we define

A(m,n) =


Am−1 · · ·An if m > n,
Id if m = n,
A−1
m · · ·A−1

n−1 if m < n.

We say that the sequence (Am)m∈Z has a strong nonuniform exponential dichotomy
if there exist projections Pm, for m ∈ Z, satisfying

A(m,n)Pn = PmA(m,n) (2.1)

for m,n ∈ Z and there exist constants

λ ≤ λ < 0 < µ ≤ µ, ε ≥ 0 and D > 0 (2.2)

such that for m ≥ n we have

‖A(m,n)Pn‖ ≤ Deλ(m−n)+ε|n|, ‖A(m,n)Qn‖ ≤ Deµ(m−n)+ε|n|,

‖A(n,m)Qm‖ ≤ De−µ(m−n)+ε|m|, ‖A(n,m)Pm‖ ≤ De−λ(m−n)+ε|m|.

Now assume that (Am)m∈Z is a sequence of invertible linear operators with a
strong nonuniform exponential dichotomy. We introduce a corresponding sequence
of Lyapunov norms. For each x ∈ X and n ∈ Z, let

‖x‖n = max
{
‖x‖1n, ‖x‖2n

}
, (2.3)

where

‖x‖1n = sup
m≥n

(
‖A(m,n)Pnx‖e−λ(m−n)

)
+ sup
m<n

(
‖A(n,m)Pmx‖eλ(m−n)

)
,

‖x‖2n = sup
m>n

(
‖A(n,m)Qmx‖eµ(m−n)

)
+ sup
m≤n

(
‖A(m,n)Qnx‖eµ(m−n)

)
.

Then there exists C > 0 such that

‖x‖ ≤ ‖x‖n ≤ Ceε|n|‖x‖, (2.4)

‖Anx‖n+1 ≤ C‖x‖n and ‖A−1
n x‖n ≤ C‖x‖n+1 (2.5)
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for x ∈ X and n ∈ Z (see [2]). Moreover, for x ∈ X and m ≥ n we have

‖A(n,m)Qmx‖n ≤ e−µ(m−n)‖x‖m, ‖A(m,n)Qnx‖m ≤ eµ(m−n)‖x‖n, (2.6)

‖A(m,n)Pnx‖m ≤ eλ(m−n)‖x‖n, ‖A(n,m)Pmx‖n ≤ e−λ(m−n)‖x‖m. (2.7)

Now we introduce some Banach spaces. For each 1 ≤ p <∞, let

Yp =
{
x = (xn)n∈Z ⊂ X :

∑
n∈Z
‖xn‖pn < +∞

}
.

Moreover, let
Y∞ =

{
x = (xn)n∈Z ⊂ X : sup

n∈Z
‖xn‖n < +∞

}
.

These are Banach spaces when equipped, respectively, with the norms

‖x‖p =
(∑
n∈Z
‖xn‖pn

)1/p

and ‖x‖∞ = sup
n∈Z
‖xn‖n.

We also define a bounded linear operator A : Yp → Yp by

(Ax)n = An−1xn−1, x = (xn)n∈Z ∈ Yp, n ∈ Z, (2.8)

for each 1 ≤ p ≤ ∞. One can easily verify that A is invertible. Indeed, using the
second inequality in (2.5), we find that the inverse of A is the operator B given by

(Bx)n = A−1
n xn+1, x = (xn)n∈Z ∈ Yp, n ∈ Z.

We say that a bounded linear operator A on a Banach space Y is hyperbolic if its
spectrum does not intersect the unit circle.

Theorem 2.1. Let (Am)m∈Z be a sequence of invertible bounded linear operators
on X with a strong nonuniform exponential dichotomy. Then the operator A is
hyperbolic on Yp for each 1 ≤ p ≤ ∞.

Proof. Take λ ∈ C with |λ| = 1 and let Ām = 1
λAm for m ∈ Z. Moreover, let

Ā(m,n) =


Ām−1 · · · Ān if m > n,

Id if m = n,

Ā−1
m · · · Ā−1

n−1 if m < n.

Since |λ| = 1, inequalities (2.6) and (2.7) hold when A is replaced by Ā. Hence, it
follows from [2, Theorem 6.1] that the linear operator T : Yp → Yp defined by

(Tx)n = xn − Ān−1xn−1 = xn −
1
λ
An−1xn−1

for x = (xn)n∈Z ∈ Yp and n ∈ Z is invertible. This readily implies that λ Id−A is
invertible and so λ does not belong to the spectrum of A. �

It turns out that the converse of Theorem 2.1 also holds.

Theorem 2.2. Let (Am)m∈Z be a sequence of invertible bounded linear operators
on X and let ‖ · ‖n, for n ∈ Z, be a sequence of norms on X satisfying (2.4) and
(2.5) for some constants C > 0 and ε ≥ 0. If the operator A defined by (2.8) is
hyperbolic on Yp for some 1 ≤ p ≤ ∞, then the sequence (Am)m∈Z has a strong
nonuniform exponential dichotomy.
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Proof. Assume that A is hyperbolic on Yp for some 1 ≤ p ≤ ∞. In particular,
Id−A is invertible on Yp. By [2, Theorem 6.1] there exists projections Pn, for
n ∈ Z, satisfying (2.1) and constants as in (2.2) such that (2.6) and (2.7) hold
for x ∈ X and m ≥ n. Together with (2.4) this readily implies that the sequence
(Am)m∈Z has a strong nonuniform exponential dichotomy. �

3. Nonautonomous Grobman-Hartman theorem

In this section we consider the nonlinear dynamics

xm+1 = Amxm + fm(xm), (3.1)

where (Am)m∈Z is a sequence of invertible bounded linear operators with a strong
nonuniform exponential dichotomy and (fm)m∈Z is a sequence of continuous func-
tions fm : X → X such that fm(0) = 0 for m ∈ Z. We assume that there exists
δ > 0 such that

‖fm‖∞ := sup{‖fm(x)‖ : x ∈ X} ≤ δe−ε|m|, (3.2)

‖fm(x)− fm(y)‖ ≤ δe−ε|m|‖x− y‖ (3.3)

for m ∈ Z and x, y ∈ X (with ε as in (2.2)). Let also ‖ · ‖n, for n ∈ Z, be the
sequence of Lyapunov norms given by (2.3).

The following result is a nonautonomous Grobman-Hartman theorem.

Theorem 3.1. If δ > 0 is sufficiently small, then there exists a unique sequence of
homeomorphisms h̃m : X → X, for m ∈ Z, such that

(Am + fm) ◦ h̃m = h̃m+1 ◦Am (3.4)

for m ∈ Z and
sup
m∈Z

sup
v∈X
‖h̃m(v)− v‖m < +∞. (3.5)

Moreover, there exist K, a > 0 such that

‖h̃m(v)− v − h̃m(w) + w‖m ≤ K‖v − w‖am (3.6)

for m ∈ Z and v, w ∈ X.

Proof. We first recall the autonomous version of the Grobman-Hartman theorem,
including the Hölder continuity of the conjugacy (see [4, 7]).

Lemma 3.2. Let A : Y → Y be a hyperbolic invertible bounded linear operator on
a Banach space Y . Moreover, let f : Y → Y be a continuous map such that

‖f(x)‖ ≤ δ and ‖f(x)− f(y)‖ ≤ δ‖x− y‖

for all x, y ∈ Y and some δ > 0. If δ is sufficiently small then:
(1) there exists a unique bounded continuous map h : Y → Y such that

(A+ f) ◦ (Id +h) = (Id +h) ◦A;

(2) Id +h is a homeomorphism;
(3) h and h = (Id +h)−1 − Id are Hölder continuous;
(4) h is the unique bounded continuous map such that

A ◦ (Id +h) = (Id +h) ◦ (A+ f).
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Let A be an operator defined by (2.8) taking p = ∞. By Theorem 2.1, A is
hyperbolic on Y∞. We define a map F : Y∞ → Y∞ by

(F (x))m = fm−1(xm−1)

for m ∈ Z and x = (xm)m∈Z ∈ Y∞. By (2.4) and (3.2) we have

‖F (x)‖∞ = sup
m∈Z
‖(F (x))m‖m = sup

m∈Z
‖fm−1(xm−1)‖m

≤ sup
m∈Z

(Ceε|m|δe−ε|m−1|) ≤ Cδeε

for x = (xm)m∈Z ∈ Y∞. Similarly, by (2.4) and (3.3) we have

‖F (x)− F (y)‖∞ ≤ Cδeε‖x− y‖∞
for x, y ∈ Y∞. Hence, it follows from Lemma 3.2 that for δ sufficiently small, there
exists a unique bounded continuous function H such that

(A + F ) ◦ (Id +H) = (Id +H) ◦ A. (3.7)

Moreover, H is Hölder continuous. Given v ∈ X and m ∈ Z, we define a sequence
v = (vn)n∈Z by

vn =

{
v if n = m,

0 if n 6= m.
(3.8)

Clearly, v ∈ Y∞. Let
hm(v) = (H(v))m

for m ∈ Z and v ∈ X. It follows from (3.7) that

((A + F )((Id +H)(v)))m+1 = ((Id +H)(Av))m+1,

which readily implies that

(Am + fm)(v + hm(v)) = (Id +hm+1)(Amv).

Hence, (3.4) holds taking h̃m = Id +hm. Moreover,

‖h̃m − Id ‖∞,m := sup
v∈X
‖h̃m(v)− v‖m = sup

v∈X
‖hm(v)‖m

= sup
v∈X
‖(H(v))m‖m

and so
sup
m∈Z
‖h̃m − Id ‖∞,m ≤ sup

x∈Y∞
‖H(x)‖∞ <∞

since H is bounded. Hence, (3.5) holds.
We also show that (3.6) holds. Since H is Hölder continuous, there exist K, a > 0

such that
‖H(x)−H(y)‖∞ ≤ K‖x− y‖a∞ for x, y ∈ Y∞. (3.9)

Given v, w ∈ X, m ∈ Z, we define v = (vn)n∈Z and w = (wn)n∈Z by

vn =

{
v if n = m,

0 if n 6= m
and wn =

{
w if n = m,

0 if n 6= m.

Applying (3.9) with x = v and y = w, we conclude that (3.6) holds.
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Now we prove that h̃m is a homeomorphism for m ∈ Z. Observe that by
Lemma 3.2 the map Id +H is a homeomorphism and G := (Id +H)−1−Id is Hölder
continuous on Y∞ (we may assume that with the same constants K, a). Moreover,

A ◦ (Id +G) = (Id +G) ◦ (A + F ). (3.10)

Given m ∈ Z and v ∈ X, let v be defined as above. Moreover, let gm(v) = (G(v))m
and g̃m = Id +gm. It follows from (3.10) that

Am+1 ◦ g̃m = g̃m+1 ◦ (Am + fm), m ∈ Z. (3.11)

Moreover, in a similar manner that for h̃m we have

sup
m∈Z
‖g̃m − Id ‖∞,m < +∞, (3.12)

‖g̃m(v)− v − g̃m(w) + w‖m ≤ K‖v − w‖am (3.13)

for m ∈ Z and v, w ∈ X. Now observe that it follows from (3.4) and (3.11) that

g̃m+1 ◦ h̃m+1 ◦Am = Am+1 ◦ g̃m ◦ h̃m, m ∈ Z. (3.14)

We define a map Z : Y∞ → Y∞ by

(Z(x))m = g̃m(h̃m(xm)), x = (xm)m∈Z ∈ Y∞.
It follows from (3.14) that Z ◦ A = A ◦ Z. Moreover, using (3.5) and (3.12) we
conclude that Id−Z is bounded. Finally, it follows from (3.6) and (3.13) that Z is
continuous. Hence, the uniqueness in Lemma 3.2 implies that Z = Id and so

g̃m ◦ h̃m = Id, for m ∈ Z.

Similarly,
h̃m ◦ g̃m = Id, for m ∈ Z,

and h̃m is a homeomorphism for each m ∈ Z.
Finally, we establish the uniqueness of the sequence of maps (h̃m)m∈Z. Let

(h̃im)m∈Z, for i = 1, 2, be sequences of continuous maps on X satisfying (3.4), (3.5)
and (3.6). We define maps H̃i : Y∞ → Y∞, for i = 1, 2, by

(H̃i(x))m = h̃i(xm)

for m ∈ Z and x = (xm)m∈Z ∈ Y∞. Identity (3.4) implies that

(A + F ) ◦ H̃i = H̃i ◦ A for i = 1, 2.

Moreover, it follows from (3.5) that Id−H̃i is bounded and from (3.6) that it is
continuous (and so also is H̃i). Hence, by the uniqueness in Lemma 3.2 we conclude
that H̃1 = H̃2 and so h̃1

m = h̃2
m for each m ∈ Z. This completes the proof of the

theorem. �

4. Nonautonomous stable manifold theorem

In this section we consider again the nonlinear dynamics in (3.1), where the
sequence (Am)m∈Z has a strong nonuniform exponential dichotomy and (fm)m∈Z
is now a sequence of C1 functions fm : X → X such that fm(0) = 0, d0fm = 0 and

‖dxfm−1 − dyfm−1‖ ≤ Be−ε|m|‖x− y‖ (4.1)

for m ∈ Z and x, y ∈ X (for some B > 0 and with ε as in (2.2)). We shall write
Esm = ImPm, Eum = ImQm, Fm = Am + fm and

F(m,n) = Fm−1 ◦ · · · ◦ Fn for m ≥ n.
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Moreover, for each ρ > 0 let

Esm(ρ) = {v ∈ Esm : ‖v‖m < ρ}.

The following theorem establishes the existence of local stable manifolds for the
dynamics in (3.1).

Theorem 4.1. If δ > 0 is sufficiently small, then there exist ρ > 0 and a sequence
ϕm : Esm → Eum, for m ∈ Z, of C1 maps with ϕm(0) = 0 and d0ϕm = 0 such that
the graphs

Vm =
{

(x, ϕm(x)) : x ∈ Esm(ρ)
}

satisfy Fm(Vm) ⊂ Vm+1 for m ∈ Z. Moreover, there exist λ ∈ (0, 1) and C > 0
such that

‖F(m,n)(x, ϕn(x))− F(m,n)(y, ϕn(y))‖ ≤ Cλm−neε|n|‖x− y‖ (4.2)

for n ∈ Z, x, y ∈ Esn(ρ) and m ≥ n.

Proof. We first recall an autonomous version of the stable manifold theorem. For
a proof see, for instance, [1, 8].

Given a hyperbolic operator A : Y → Y , we denote the stable and unstable
spaces, respectively, by Es and Eu. Note that Y = Es ⊕ Eu. We shall always
consider the norm

‖x‖ = max
{
‖xs‖, ‖xu‖},

where x = xs + xu with xs ∈ Es and xu ∈ Eu.

Lemma 4.2. Let A : Y → Y be a hyperbolic invertible bounded linear operator on
a Banach space Y and let f : Y → Y be a C1 map with f(0) = 0 and d0f = 0.
Then there exist ρ > 0 and a C1 map Φ: Es → Eu with Φ(0) = 0 and d0Φ = 0
such that the graph

W = {x+ Φ(x) : x ∈ Es ∩B(0, ρ)}
satisfies F (W) ⊂W, where F (v) = Av + f(v). Moreover,

W =
{
x ∈ Y : ‖Fn(x)‖ < ρ for n ≥ 0

}
and there exist λ ∈ (0, 1) and K > 0 such that

‖Fn(x+ Φ(x))− Fn(y + Φ(y))‖ ≤ Kλn‖x− y‖

for x, y ∈ Es ∩B(0, ρ) and n ≥ 0.

Now we define a map F : Y∞ → Y∞ by

(F (x))n = An−1xn−1 + fn−1(xn−1)

where x = (xn)n∈Z ∈ Y∞ and n ∈ Z. Observe that by (4.1) we have

‖fn−1(x)‖ = ‖fn−1(x)− fn−1(0)‖ ≤ Be−ε|n|‖x‖2. (4.3)

It follows from (2.4), (2.5) and (4.3) that the map F is well defined.

Lemma 4.3. The map F is differentiable and

dxFξ = (An−1ξn−1 + Cn−1ξn−1)n∈Z

for each x = (xn)n∈Z and ξ = (ξn)n∈Z ∈ Y∞, where Cn−1 = dxn−1fn−1.
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Proof. Given x ∈ Y∞, we define an operator L : Y∞ → Y∞ by

Lξ = (An−1ξn−1 + Cn−1ξn−1)n∈Z.

It follows from (2.4), (2.5) and (4.1) that L is well defined. Moreover,

(F (x + y)− F (x)− Ly)n = fn−1(xn−1 + yn−1)− fn−1(xn−1)− Cn−1yn−1

=
∫ 1

0

dxn−1+tyn−1fn−1yn−1 dt− dxn−1fn−1yn−1

=
∫ 1

0

(
dxn−1+tyn−1fn−1yn−1 − dxn−1fn−1yn−1

)
dt.

Using again (2.4) and (4.1) we obtain

‖(F (x + y)− F (x)− Ly)n‖n

≤
∫ 1

0

‖dxn−1+tyn−1fn−1yn−1 − dxn−1fn−1yn−1‖n dt

≤ Ceε|n|
∫ 1

0

‖dxn−1+tyn−1fn−1yn−1 − dxn−1fn−1yn−1‖ dt

≤ BC‖yn−1‖2n−1.

Hence,
‖F (x + y)− F (x)− Ly‖∞ ≤ BC‖y‖2∞,

which implies

lim
y→0

‖F (x + y)− F (x)− Ly‖∞
‖y‖∞

= 0.

This completes the proof. �

It follows from Lemma 4.3 and (4.1) that F is of class C1. Note that 0 = (0)n∈Z is
a hyperbolic fixed point of F . Indeed, by Lemma 4.3 and the assumption d0fn = 0
we have D0F = A, which by Theorem 2.1 is hyperbolic. Now let

Y s∞ = {x = (xn)n∈Z ∈ Y∞ : xn ∈ Esn for n ∈ Z},
Y u∞ = {x = (xn)n∈Z ∈ Y∞ : xn ∈ Eun for n ∈ Z}.

Since Y∞ = Y s∞ ⊕ Y u∞, we can write each x ∈ Y∞ uniquely in the form

x = xs + xu, xs ∈ Y s∞, xu ∈ Y u∞.
Note that

‖x‖∞ = max{‖xs‖∞, ‖xu‖∞}.
By Lemma 4.2, there exists ρ > 0 such that the set

W =
{
x ∈ Y∞ : ‖Fn(x)‖∞ < ρ for n ≥ 0

}
is a C1 manifold tangent to Y s∞ and there exists a C1 function Φ: Y s∞ → Y u∞ such
that Φ(0) = 0, d0Φ = 0 and

W = {x + Φ(x) : x ∈ Bs(0, ρ)},
where Bs(0, ρ) denotes the ball in Y s∞ of radius ρ centered at 0.

The next lemma is crucial for constructing the sequence of maps (ϕm)m∈Z in the
statement of the theorem.

Lemma 4.4. Given x1 = (x1
m)m∈Z, x2 = (x2

m)m∈Z ∈ Bs(0, ρ), if x1
k = x2

k for
some k ∈ Z, then (Φ(x1))k = (Φ(x2))k.
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Proof. We proceed by contradiction. Assume that (Φ(x1))k 6= (Φ(x2))k and define
y = (ym)m∈Z ∈ Y u∞ by

ym =

{
(Φ(x2))m if m 6= k,
(Φ(x1))k if m = k.

Then

(Fn(x2 + y))m =

{
F(m,m− n)(x2

m−n + (Φ(x2))m−n) if m 6= n+ k,
F(m,m− n)(x1

m−n + (Φ(x1))m−n) if m = n+ k,

for n ≥ 0 and m ∈ Z. Therefore,

sup
m∈Z
‖(Fn(x2 + y))m‖m

= max
{

sup
m 6=n+k

‖(Fn(x2 + Φ(x2)))m‖m, ‖(Fn(x1 + Φ(x1)))n+k‖n+k

}
for n ≥ 0. Hence,

‖Fn(x2 + y)‖∞ < ρ for n ≥ 0

and so y = Φ(x2). This contradiction shows that (Φ(x1))k = (Φ(x2))k. �

Now we construct the sequence of maps (ϕm)m∈Z. Given v ∈ Esm(ρ), let v =
(vn)n∈Z be as in (3.8). Clearly, v ∈ Bs(0, ρ) and we define

ϕm(v) = (Φ(v))m ∈ Eum. (4.4)

In view of Lemma 4.4 the maps ϕm are well defined. Moreover, since Φ(0) = 0 and
d0Φ = 0, we have ϕm(0) = 0 and d0ϕm = 0. Finally, since Φ is of class C1 one can
easily verify that each map ϕm is also of class C1.

Lemma 4.5. For every m ∈ Z we have Fm(Vm) ⊂ Vm+1.

Proof. Take v + ϕm(v) ∈ Vm and let v be as above. Then ϕm(v) = (Φ(v))m and
v + Φ(v) ∈W. Since F (W) ⊂W, we conclude that

F (v + Φ(v)) = y + Φ(y)

for some y = (yn)n∈Z ∈ Bs(0, ρ). Hence,

Fm(v + ϕm(v)) = (F (v + Φ(v)))m+1

= (y + Φ(y))m+1

= ym+1 + (Φ(y))m+1.

Since y ∈ Bs(0, ρ), we have

‖ym+1‖m+1 ≤ ‖y‖∞ < ρ

and so ym+1 ∈ Esm+1(ρ). On the other hand, by (4.4) we have

(Φ(y))m+1 = ϕm+1(ym+1)

and thus,
Fm(v + ϕm(v)) = ym+1 + ϕm+1(ym+1) ∈ Vm+1.

This completes the proof. �
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We proceed with the proof of the theorem. It follows from Lemma 4.2 that there
exist λ ∈ (0, 1) and K > 0 such that

‖Fn(x + Φ(x))− Fn(y + Φ(y))‖∞ ≤ Kλn‖x− y‖∞, (4.5)

for x,y ∈ Bs(0, ρ) and n ≥ 0. Now take n ∈ Z, x, y ∈ Esn(ρ) and define x =
(xm)m∈Z and y = (ym)m∈Z by

xm =

{
x if m = n,

0 if m 6= n
and ym =

{
y if m = n,

0 if m 6= n.

Clearly, x,y ∈ Bs(0, ρ) and it follows from (4.5) that

‖F(m,n)(x+ ϕn(x))−F(m,n)(y + ϕn(y))‖m ≤ Kλm−n‖x− y‖n

for m ≥ n. Together with (2.4) this yields inequality (4.2). This concludes the
proof. �
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001 Lisboa, Portugal

E-mail address: barreira@math.tecnico.ulisboa.pt



EJDE-2017/172 EXISTENCE OF CONJUGACIES 11

Davor Dragičević
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