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A BIDIMENSIONAL BI-LAYER SHALLOW-WATER MODEL
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Communicated by Vicentiu Radulescu

Abstract. The existence of global weak solutions in a periodic domain for

a non-linear viscous bi-layer shallow-water model with capillarity effects and

extra friction terms in a two-dimensional space has been proved in [21]. The
main contribution of this article is to show the existence of global weak solu-

tions without friction term or capillary effect following the ideas of [20] for the

two dimensional case.

1. Introduction

The shallow-water equations are usually used to model some natural phenomena
such as ocean circulation, coastal areas, rivers, lakes, avalanches, etc. However in
many situations one layer of shallow-water cannot be used to model the system.
In some cases such as the Strait of Gibraltar it is necessary to consider two layers
of shallow-water system to model the flow. For this purpose many derivations of
bi-layers and multi-layers shallow-water system have been done (see [1, 16, 18]).

In this article we study the existence of global weak solutions of the bi-layer
shallow-water model derived in [16]. In [21], the authors obtained the existence of
global weak solutions for a 2D viscous bi-layer shallow-water model derived in [16].
In their work they considered in a periodic domain Ω, a system composed of two
layers of immiscible fluids with different and constant densities (ρ1 and ρ2, resp.)
and viscosities (ν1 and ν2, resp.) and imposed ν1 < ν2. The system studied in [21]
reads as follows:

∂th1 + div(h1u1) = 0; (1.1)

ρ1∂t(h1u1) + ρ1 div(h1u1 ⊗ u1)− 2ν1 div(h1D(u1)) + ρ1gh1∇h1

+ ρ2gh1∇h2 −
(

1 +
c0β(h1)h1

6ν1

)
fric(u1, u2) + c0β(h1)u1

− α1h1∇(∆h1)− α2h1∇(∆h2) = 0;

(1.2)

∂th2 + div(h2u2) = 0; (1.3)

ρ2∂t(h2u2) + ρ2 div(h2u2 ⊗ u2)− 2ν2 div(h2D(u2)) + ρ2gh2∇h2

+ ρ2gh2∇h1 + fric(u1, u2)− α2h2∇(∆h) = 0.
(1.4)
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where fric(u1, u2) = −c1B(h1, h2)(u1 − u2) with

B(h1;h2) =
h1h2

ν1
ν2
h1 + ν2

ν1
h2
.

The drag coefficient B is introduced to control the friction terms at the interface.
In their paper the special feature of their definition of weak solution is based on
the test functions depending on the unknowns used for the momentum equations
namely hiϕ. This one has been introduced in [5] and allowed them to get the com-
pacticity when height limit vanishes. This particular definition of weak solutions
with test functions hϕ was firstly introduced in [6]. With this particular definition
of weak solutions the author in [12] proved the existence of global weak solutions of
quantum Navier-Stokes equations in 3D. The main idea of his paper is to rewrite
quantum Navier-Stokes equations as a viscous quantum Euler system by means of
the effective velocity.

In [11], the authors proved the existence of global weak solutions for the com-
pressible quantum Navier-Stokes equations by the use of a singular cold pressure.
In [20] the authors, using the “BD-entropy” obtained the existence of usual global
weak solutions for 3D compressible Navier-Stokes equations with degenerating vis-
cosity. They derived “Mellet-Vasseur” type inequality which allows them to get
global solutions in time.

For some fluids like electrorheological fluids which can change from a liquid like
state to a solid like viscous state, another approach to study the existence of weak
solution was developed in [15, 19].

Our analysis takes inspiration from the work developed in [20]. Our contribution
compared with the work performed in [21] is that we obtain the existence of global
usual weak solutions with test functions independent from the unknowns without
friction term and without any condition on the two viscosities coefficients.

In [2, 3] the authors obtained global weak solutions for a 2D shallow-water system
and Korteweg system with diffusion term of ttype ν div(hD(u)). They proved
that the considered system is energetically consistent without any restriction on
the data. The key point of this proof is based on an estimate of a new entropy,
called “mathematical BD entropy”, which gives a bound of the term ∇

√
h. We

denote that to obtain this result in [2, 5, 7] it was necessary for the authors to add
linear and quadratic terms of the form r0u, r1h|u|u in the momentum equation.
In [14] without additional regularizing terms, the authors obtained the existence
of global weak solutions for the barotropic Navier-Stokes equations. They proved
an inequality namely ”Mellet-Vasseur” type inequality and obtained a control on∫

Ω
hi(1 + |ui|2) ln(1 + |ui|2)dx.
In [9] and [18], the authors proved the existence of global weak solutions of a

bi-layers shallow-water model without any friction term but with a diffusion term
of the form ν∆u. This analysis used the method developed in [17] and the system
is energetically consistent only for small enough initial data.

Following [20], we add friction terms ri0ui, ri1hi|ui|2ui and the Bohm potential
term κihi∇(∆

√
hi√
hi

) in the momentum equation. Following [2] and [20] the terms
ri0ui, ri1hi|ui|2ui turn out to be essential to obtain the compactness of

√
hiui in

L2(0, T ;L2(Ω)) and hiui ⊗ ui in L1(Ω). The Bohm potential κihi∇(∆
√
hi√
hi

) allows

to deduce an estimate on ∇h1/4
i in L4([0, T ]×Ω) (see [20]). Another contribution in

this paper is devoted to the convergence when the coefficients ri0 , ri1 and κi go to 0
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for bi-layers shallow-water model. We consider in a periodic domain with periodic
boundaries conditions the system

∂th1 + div(h1u1) = 0; (1.5)

ρ1∂t(h1u1) + ρ1 div(h1u1 ⊗ u1)− 2ν1 div(h1D(u1))
+ ρ1gh1∇h1 + ρ2gh1∇h2 = 0;

(1.6)

∂th2 + div(h2u2) = 0; (1.7)

ρ2∂t(h2u2) + ρ2 div(h2u2 ⊗ u2)− 2ν2 div(h2D(u2))
+ ρ2gh2∇h2 + ρ2gh2∇h1 = 0

(1.8)

with initial conditions:

hi|t=0 = hi0 ≥ 0, hiui|t=0 = mi0 , (1.9)

for which we assume the following regularities:

hi0 ∈ L2(Ω), ∇hi0 ∈ (L2(Ω))2, ∇
√
hi0 ∈ (L2(Ω))2

|mi0 |2

hi0
∈ L1(Ω), log−(hi0) ∈ L1(Ω).

(1.10)

for i = 1, 2. We denote by D(u) the strain tensor, defined by D(u) = ∇u+∇tu
2 , and

by A(u), the vorticity tensor such as A(u) = ∇u−∇tu
2 .

The article is organized as follows: In Section 2 we give the definition of global
weak solutions of the system (1.1)-(1.4) and we state the results of the existence of
weak solutions for the system (1.1)-(1.4). And moreover we give some Theorems
which are very useful in this current paper. Section 3 is devoted to the construction
of approximate “Mellet-Vasseur” type inequality for any weak solutions. In this
section we show that we can control (uniformly with respect to κi) this quantity,
for any weak solutions of (3.1)-(3.2) with κi > 0. In Section 4, we study the limits
as αi defined in (3.16) approaches ∞. On the other hand, Section 5 is dedicated
to the convergence of terms when r0i , r1i and κi go to zero. In Section 6 we give
the proof of the “Mellet-Vasseur” type inequality. We denote that in this section
we give also the proof of Theorem 3.6 by recovering the limit from Lemma 5.2.

2. Main results

We start this section with the definition of weak solutions.

Definition 2.1. We shall say that (h1, h2, u1, u2) is a weak solution of (1.1)-(1.4)
if (1.1) and (1.3) hold in (D′(0, T ) × Ω)2; (1.9) holds in D′(Ω); the following as-
sumptions are satisfied:

hi ∈ L∞(0, T ;L2(Ω));

∇hi ∈ L2(0, T ; (L2(Ω))2) and
√
hiui ∈ L∞(0, T ; (L2(Ω))2);√

hiD(ui) ∈ L2(0, T ; (L2(Ω))4);

∇
√
hi ∈ L2(0, T ;L2(Ω)2);

(2.1)
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for any ϕ ∈ C∞((0, T )× Ω)2 with ϕ(T, ·) = 0, (ϕ with compact support), we have

− ρ1h10u10ϕ(0, ·)−
∫ T

0

∫
Ω

ρ1h1u1∂tϕ− ρ1

∫ T

0

∫
Ω

(h1u1 ⊗ u1) : D(ϕ)

+ 2ν1

∫ T

0

∫
Ω

h1(D(u1) : D(ϕ)) +
1
2
ρ1g

∫ T

0

∫
Ω

h2
1 divϕ+ ρ1g

∫ T

0

∫
Ω

h1∇h2ϕ

= 0
(2.2)

and

− ρ2h20u20ϕ(0, ·)−
∫ T

0

∫
Ω

ρ2h2u2∂tϕ− ρ2

∫ T

0

∫
Ω

(h2u2 ⊗ u2) : D(ϕ)

+ 2ν2

∫ T

0

∫
Ω

h2(D(u2) : D(ϕ)) +
1
2
ρ2g

∫ T

0

∫
Ω

h2
2 divϕ+ ρ2g

∫ T

0

∫
Ω

h2(ϕ · ∇h1)

= 0.
(2.3)

We will prove the following theorem.

Theorem 2.2. There exists a global weak solution (h1, h2, u1, u2) of (1.1)-(1.4)
satisfying the entropy inequalities (2.4) and (2.8).

In this section, we give the classical energy estimate and the “mathematical BD
entropy”. These two inequalities will allow us to prove the main theorem.

Lemma 2.3. Let (h1, h2, u1, u2) be a solution of the system (1.1)-(1.4). Then

1
2
ρ1
d

dt

∫
Ω

h1|u1|2 +
1
2
ρ2
d

dt

∫
Ω

h2|u2|2 + 2ν1

∫
Ω

h1(D(u1) : D(u1))

+ 2ν2

∫
Ω

h2(D(u2) : D(u2)) +
1
2
g(ρ1 − ρ2)

d

dt

∫
Ω

|h1|2 +
1
2
ρ2g

d

dt

∫
Ω

|h1 + h2|2

≤ 0.
(2.4)

Remark 2.4. From the energy estimate (2.4), we deduce the following:

√
h1u1 ∈ L∞(0, T ; (L2(Ω))2);

√
h2u2 ∈ L∞(0, T ; (L2(Ω))2); (2.5)

h1 ∈ L∞(0, T ;L2(Ω));
√
h1D(u1) ∈ L2(0, T ; (L2(Ω))4); (2.6)

h2 ∈ L∞(0, T ;L2(Ω));
√
h2D(u2) ∈ L2(0, T ; (L2(Ω))4). (2.7)

However, it is well-known that these estimates are not enough to pass to the limit
and get the stability of the system. So we are going to obtain further estimates
from the BD entropy that we state in the following lemma, (see [5]).
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Lemma 2.5. If we assume that (h1, h2, u1, u2) is a smooth solution of system
(1.1)-(1.4), then

1
2
ρ2
d

dt

∫
Ω

h1|ρ1u1 + 2ν1∇ log h1|2 +
1
2
ρ1
d

dt

∫
Ω

h2|ρ2u2 + 2ν2∇ log h2|2

+ ρ1ρ2

(1
2
g(ρ1 − ρ2)

d

dt

∫
Ω

|h1|2 +
1
2
ρ2g

d

dt

∫
Ω

|h1 + h2|2
)

+ 2ν2ρ1ρ2

∫
Ω

h2(A(u2) : A(u2)) + 2ν1ρ1ρ2

∫
Ω

h1(A(u1) : A(u1))

+ 2ν1ρ1ρ2g

∫
Ω

|∇h1|2 + 2ν2ρ1ρ2g

∫
Ω

|∇h2|2 + 2ρ2g(ρ2ν1 + ρ1ν2)
∫

Ω

∇h1∇h2

≤ 0
(2.8)

Remark 2.6. We would like to point out the boundedness of the ‘non usual’ terms
appearing above.

(1) In the energy equality (2.8), it remains to control the four last terms on
left-hand side.

(2) The proof of the previous two lemmas takes inspiration in [21].
(3) The classical energy and the BD entropy allow us to find the estimates:

∇
√
h1 ∈ L2(0, T ; (L2(Ω))2); ∇

√
h2 ∈ L2(0, T ; (L2(Ω))2);

∇h1 ∈ L2(0, T ; (L2(Ω))2); ∇h2 ∈ L2(0, T ; (L2(Ω))2).
(2.9)

3. Construction of the “Mellet-Vasseur” type inequality

Following the idea proposed in [20] this section is devoted to the construction
of an approximation of the “Mellet-Vasseur” type inequality for any weak solution
for the system (3.1)-(3.4), with the initial conditions (1.9), verifying in additional
hi0 ≥ 1

αi
for αi > 0 and

√
hi0ui0 ∈ L∞(Ω).

Proposition 3.1. For any κ ≥ 0 and κ̄ ≥ 0, there exists a global weak solution to
the system

∂th1 + div(h1u1) = 0; (3.1)

ρ1∂t(h1u1) + ρ1 div(h1u1 ⊗ u1)− 2ν1 div(h1D(u1)) + ρ1gh1∇h1

+ ρ2gh1∇h2 + r0u1 + r1h1|u1|2u1 − κh1∇
(∆
√
h1√
h1

)
= 0;

(3.2)

∂th2 + div(h2u2) = 0; (3.3)

ρ2∂t(h2u2) + ρ2 div(h2u2 ⊗ u2)− 2ν2 div(h2D(u2))

+ ρ2gh2∇h2 + ρ2gh2∇h1 + r̄0u2 + r̄1h2|u2|2u2 − κ̄h2∇(
∆
√
h2√
h2

) = 0
(3.4)
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with the initial data (1.9) satisfying (1.10) and −r0

∫
Ω

log− hi0dx <∞. In particu-
lar, we have the energy inequality

d

dt
E1(t) + 2ν1

∫
Ω

h1(D(u1) : D(u1)) + 2ν2

∫
Ω

h2(D(u2) : D(u2)) + c0

∫
Ω

|u1|2

+ r0

∫
Ω

|u1|2 + r̄0

∫
Ω

|u2|2 + r1

∫
Ω

h1|u1|4 + r̄1

∫
Ω

h2|u2|4 = 0,

(3.5)
where

E1(t) =
∫

Ω

[1
2
ρ1h1|u1|2 +

1
2
ρ2h2|u2|2 +

1
2
g(ρ1 − ρ2)|h1|2 +

1
2
ρ2g|h1 + h2|2

+
κ

2
|∇
√
h1|2 +

κ̄

2
|∇
√
h2|2

]
and the BD-entropy

d

dt
E2(t) + ρ1ρ2c0

∫
Ω

|u1|2 + 2ν2ρ1ρ2

∫
Ω

h2(A(u2) : A(u2))

+ 2ν1ρ1ρ2

∫
Ω

h1(A(u1) : A(u1)) + 2ρ2g(ρ2ν1 + ρ1ν2)
∫

Ω

∇h1∇h2

+ κ

∫
Ω

h1|∇2 log h1|2 + κ̄

∫
Ω

h1|∇2 log h2|2

+ 2ν1ρ1ρ2g

∫
Ω

|∇h1|2 + 2ν2ρ1ρ2g

∫
Ω

|∇h2|2 = 0

(3.6)

where

E2(t) =
∫

Ω

[1
2
ρ2h1|ρ1u1 + 2ν1∇ log h1|2 +

1
2
ρ1h2|ρ2v2 + 2ν2∇ log h2|2

− r̄0 log− h2 − r0 log− h1 +
κ

2
|∇
√
h1|2 +

κ̄

2
|∇
√
h2|2

+ ρ1ρ2

(1
2
g(ρ1 − ρ2)|h1|2 +

1
2
ρ2g|h1 + h2|2

)]
.

The proof of the above Proposition takes inspiration in [21]. It takes into account
the additional terms.

Corollary 3.2. The energy inequalities (3.5)-(3.6) yield the following new esti-
mates

‖
√
κ∇
√
h1‖L∞(0,T,L2(Ω)) ≤ C, ‖

√
κ̄∇
√
h2‖L∞(0,T,L2(Ω)) ≤ C, (3.7)

‖
√
r0u1‖L2(0,T,L2(Ω)) ≤ C, ‖

√
r̄0u2‖L2(0,T,L2(Ω)) ≤ C, (3.8)

‖ 4
√
r1h1u1‖L4(0,T,L4(Ω)) ≤ C, ‖ 4

√
r̄1h2u2‖L4(0,T,L4(Ω)) ≤ C, (3.9)

‖
√
κ∇2 log h1‖L2(0,T,L2(Ω)) ≤ C, ‖

√
κ̄∇2 log h2‖L2(0,T,L2(Ω)) ≤ C, (3.10)

‖∇
√
h1‖L∞(0,T,L2(Ω)) ≤ C, ‖∇

√
h2‖L∞(0,T,L2(Ω)) ≤ C, (3.11)

‖
√
h1A(u1)‖L2(0,T,L2(Ω)) ≤ C,

√
h1A(u1)‖L2(0,T,L2(Ω)) ≤ C. (3.12)

where C is bounded by the initial data, uniformly on r0, r̄0, r1, r̄1, κ, and κ̄.

Remark 3.3. (1) The following inequalities hold:
√
κ‖
√
h1‖L2(0,T,H2(Ω)) + κ1/4‖∇h1/4

1 ‖L4(0,T,L4(Ω)) ≤ C1,
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√
κ̄‖
√
h2‖L2(0,T,H2(Ω)) + κ̄1/4‖∇h1/4

2 ‖L4(0,T,L4(Ω)) ≤ C2,

where C1 and C2 depend only on the initial data. These inequalities are a conse-
quence of the bound on (3.10)

(2) The inequalities (3.11) and (2.6) yield√
h1 ∈ L∞(0, T ;Lp(Ω)),

√
h2 ∈ L∞(0, T ;Lp(Ω)) for p ≥ 1. (3.13)

(3) The weak formulation reads as follows

− ρ1h10u10ϕ(0, ·)−
∫ T

0

∫
Ω

ρ1h1u1∂tϕ− ρ1

∫ T

0

∫
Ω

(h1u1 ⊗ u1) : D(ϕ)

+ r0

∫ T

0

∫
Ω

u1 + 2ν1

∫ T

0

∫
Ω

h1(D(u1) : D(ϕ)) + r1

∫ T

0

∫
Ω

h1|u1|2u1ϕ

− κ
∫ T

0

∫
Ω

∆
√
h1

√
h1 divϕ− 2κ

∫ T

0

∫
Ω

∆
√
h1∇

√
h1ϕ

+
1
2
ρ1g

∫ T

0

∫
Ω

h2
1 divϕ+ ρ1g

∫ T

0

∫
Ω

h1∇h2ϕ = 0

(3.14)

and

− ρ2h20u20ϕ(0, ·)−
∫ T

0

∫
Ω

ρ2h2u2∂tϕ− ρ2

∫ T

0

∫
Ω

(h2u2 ⊗ u2) : D(ϕ)

+ r̄0

∫ T

0

∫
Ω

u2ϕ+ 2ν2

∫ T

0

∫
Ω

h2(D(u2) : D(ϕ)) + r̄1

∫ T

0

∫
Ω

h2|u2|2u2ϕ

− κ̄
∫ T

0

∫
Ω

∆
√
h2

√
h2 divϕ− 2κ̄

∫ T

0

∫
Ω

∆
√
h2∇

√
h2ϕ

+
1
2
ρ2g

∫ T

0

∫
Ω

h2
2 divϕ+ ρ2g

∫ T

0

∫
Ω

h2(ϕ · ∇h1) = 0.

(3.15)

for any function test ϕ.

Next we consider ε1 = r, ε2 = 1, r10 = r0, r20 = r̄0, r11 = r1, r21 = r̄1, κ1 = κ
and κ2 = κ̄.

Our first main result is the next theorem which gives the “Mellet-Vasseur” type
inequality (see [20]).

Theorem 3.4. For any δi ∈ (0, 2), there exists Ci depending only on δi, and the
weak solutions (h1, h2, u1, u2) to (3.1)-(3.2) with κi = 0 verify all the properties of
Proposition 3.1, and satisfy the following “Mellet-Vasseur” type inequality for every
T > 0, and almost every T > t:∫

Ω

hi(1 + |ui|2) ln(1 + |ui|2)

≤
∫

Ω

hi0(1 + |ui0 |2) ln(1 + |ui0 |2) + Ci

∫
Ω

(hi0 |ui0 |2
2

+
1
2
|hi|2 + |∇

√
hi0 |2

)
+ Ci

∫ T

0

(∫
Ω

(
h

3− δi2
i

) 2
2−δi

) 2−δi
2
(∫

Ω

hi
(
2 + ln(1 + |ui|2)

) δi
2
)
,

for i = 1, 2.
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Remark 3.5. (1) The right hand side constant Ci of the above inequality does not
depend on ri0 and ri1 . This theorem will be crucial to prove the strong convergence
of
√
hiui in the space L2(0, T ;L2(Ω)) when ri0 and ri1 converge to 0.

(2) For a global weak solution of (3.1)-(3.4), under hypothesis of Definition 2.1,
we need that (3.1)-(3.4) hold in D′([0, T ]× Ω) and the following be satisfied

hi ≥ 0, hi ∈ L∞(0, T ;L2(Ω)),

hi(1 + |ui|2) ln(1 + |ui|2) ∈ L∞(0, T ;L1(Ω)),

∇hi ∈ L2(0, T ;L2(Ω)), ∇
√
hi ∈ L∞(0, T ;L2(Ω)),√

hiui ∈ L∞(0, T ;L2(Ω)),
√
hi∇ui ∈ L2(0, T ;L2(Ω)),

As a sequence of Theorem 3.4, we have the same result as in [20]:

Theorem 3.6. Let (hi0 ,mi0) satisfy (1.9) and∫
Ω

hi0(1 + |ui0 |2) ln(1 + |ui0 |2)dx <∞.

Then for T > 0, there exists a weak solution of (3.1)-(3.4) on (0, T ).

The “Mellet-Vasseur” type inequality does not work for the solutions of (3.1)-
(3.4) for κi ≥ 0. The idea is to construct as in [20] an approximation of the
“Mellet-Vasseur” type inequality. We define four C∞ non-negative cut-off functions
φαi and φβi as follows.

φαi(hi) = 1 for any hi >
1
αi
, φαi(hi) = 0 for any hi <

1
2αi

, (3.16)

where αi > 0 is any real number, and otherwise, |φ′αi | ≤ 2αi; and φβi(hi) ∈ C∞(R)
is a non-negative function such that

φβi(hi) = 1 for any hi < βi, φβi(hi) = 0 for any hi > 2βi, (3.17)

where βi > 0 is any real number, and |φ′βi | ≤
2
βi

.
We define vi = φi(hi)ui, and φi(hi) = φαi(hi)φβi(hi). The lemmas will be very

useful to construct the approximation of the “Mellet-Vasseur” type inequality.

Lemma 3.7. For any fixed κi > 0, we have

‖∇vi‖L2(0,T;L2(Ω)) ≤ Ci,

where the constant Ci depends on κi > 0, ri1 , βi and αi; and

∂thi ∈ L4(0, T ;L
6
5 (Ω)) + L2(0, T ;L

3
2 (Ω)).

For a proof of the above lemma, see [20]. Following the ideas in [20], we introduce
a new C∞(R2), non-negative cut-off function ϕin(hi) which is given by

ϕin(x) =

{
(1 + |x|2) ln(1 + |x|2) if 0 ≤ |x| < n,

(1 + 8n2) ln(1 + 4n2) if |x| ≥ 2n
(3.18)

where n > 0 are large, and

|ϕ′in(x)|+ |ϕ”in(x)| ≤ Ci
n

for any |x| ≥ n.

The first step of constructing the approximation of the Mellet-Vasseur type inequal-
ity is the following lemma.
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Lemma 3.8. For the weak solutions to (3.1)-(3.4) constructed in Proposition 3.1,
and any ψi(t) ∈ D(−1,+∞), we have∫ T

0

∫
Ω

∂tψi(t)hiϕin(vi) dx dt−
∫ T

0

∫
Ω

ψi(t)ϕ′in(vi)Fi dx dt

+
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(vi)) dx dt

=
∫

Ω

hi0ϕin(vi0)ψi(0) dx dt

(3.19)

where

Si = hiφi(hi)(D(ui) + κi
∆
√
hi√
hi

)I,

Fi = h2
iuiφ

′
i(hi) div ui + ghi∇hiφi(hi) + hi∇φi(hi)D(ui) + gεihi∇hjφi(hi)

+ ri0uiφi(hi) + ri1hi|ui|2uiφi(hi) + κi
√
hi∇φi(hi)∆

√
hi

+ 2κiφi(hi)∇
√
hi∆

√
hi,

(3.20)

where I is an identity matrix.

Proof. To obtain the result it suffices to multiply equations (3.2) and (3.4) by φ1(h1)
and φ2(h2) respectively; we have

∂t(hivi)− hiuiφ′i(hi)∂thi + div(hiui ⊗ vi)− hiui ⊗ ui∇φi(hi) + hi∇hiφi(hi)
− div(φi(hi)hiDui) + hi∇φi(hi)Dui + ri0hiuiφi(hi) + ri1hi|ui|2uiφi(hi)

+ gεihi∇hjφi(hi)− κi∇(
√
hiφi(hi)∆

√
hi)

+ κi
√
hi∇φi(hi)∆

√
hi + 2κiφi(hi)∇

√
hi∆

√
hi = 0.

Here we did a successive integration. �

Remark 3.9. Both ∇
√
hi and ∂thi are functions, so the above equalities are justi-

fied by regularizing hi and passing into the limit. We can rewrite the above equation
as follows

∂t(hivi) + div(hiui ⊗ vi)− div Si + Fi = 0 (3.21)
where Si and Fi are as in (3.20), and we used

hiuiφ
′
i(hi)∂t(hi) + hiui ⊗ uiφ′i(hi)∇hi = hiuiφ

′
i(hi)(∂thi +∇hi · ui)

= −h2
iuiφ

′
i(hi) div ui.

We should remark that, thanks to Corollary 3.2 and Remark 3.3,

‖Fi‖
L

4
3 (0,T ;L1(Ω))

≤ Ci, ‖Si‖L2(0,T ;L2(Ω)) ≤ Ci,

since
√
hiφi(hi) and hiφi(hi) are bounded. Those bounds depend on βi and κi.

We first introduced a test function ψi(t) ∈ D(0,+∞). Essentially this function
vanishes for t close t = 0. We will later extend the result for ψi(t) ∈ D(−1,+∞).
We define a new function Φi = ψi(t)φ′in(vi), where fi(t, x) = fi ∗ ηik(t, x), k is a
small enough number. Note that, since φi(t) is compactly supported in (0,∞). Φi
is well defined on (0,∞) for k small enough. We use it to test (3.21) to have∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)[∂t(hivi) + div(hiui ⊗ vi)− divSi + Fi] dx dt = 0
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which in turn gives us∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)[∂t(hivi) + div(hiui ⊗ vi)− divSi + Fi] dx dt = 0 (3.22)

The first term in (3.22) can be calculated as follows:∫
Ω

ψi(t)ϕ′in(v̄i)∂t(hivi) dx dt

=
∫

Ω

ψi(t)ϕ′in(v̄i)∂t(hiv̄i) dx dt+
∫

Ω

ψi(t)ϕ′in(v̄i)[∂t(hivi)− ∂t(hiv̄i)] dx dt

=
∫

Ω

ψi(t)ϕ′in(v̄i)(∂t(hi)v̄i + hi∂t(v̄i)) dx dt+R1

=
∫

Ω

ψi(t)∂thiϕ′in(v̄i)v̄i dx dt+
∫ T

0

∫
Ω

ψi(t)hiϕin(∂tv̄i) dx dt+R1

where

R1 =
∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)[∂t(hiv̄i − ∂t(hiv̄i)] dx dt.

Thanks to equation (3.1), we can rewrite the second term in (3.22) as follows∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)div(hiui ⊗ vi) dx dt

=
∫ T

0

∫
Ω

ψi(t)∂thiϕin(v̄i) dx dt−
∫ T

0

∫
Ω

ψi(t)∂thiϕ′in(v̄i)v̄i dx dt+R2,

(3.23)

and

R2 =
∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)[div(hiui ⊗ v̄i)− div(hiui ⊗ vi] dx dt.

By (3.22)-(3.23), we have∫ T

0

∫
Ω

ψi(t)∂t(hiϕin(v̄i)) dx dt+R1 +R2 −
∫ T

0

∫
Ω

ψi(t)ϕ′i(v̄i)divSi dx dt

+
∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)F̄i dx dt = 0.

Notice that v̄i converges to v almost everywhere and

hiϕin(v̄i)∂tψi → hiϕin(vi)∂tψi in L1((0, T )× Ω).

So, up to a subsequence, we have∫ T

0

∫
Ω

hiϕin(v̄i)∂tψi dx dt→
∫ T

0

∫
Ω

hiϕin(vi)∂tψi dx dt as k → 0. (3.24)

Since ϕ′in(v̄i) converges to ϕ′in(vi) almost everywhere, and is uniformly bounded in
L∞((0, T )× Ω), we have∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)F̄i dx dt→
∫ T

0

∫
Ω

ψi(t)ϕ′in(vi)Fi as k → 0. (3.25)

Noticing that ∇vi ∈ L2(0, T ;L2(Ω)), we have

∇vi → ∇vi strongly in L2(0, T ;L2(Ω)).
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Since S̄i converges to Si strongly in L2(0, T ;L2(Ω)), and ϕi”(v̄i) converges to
ϕi”(vi) almost everywhere and uniformly bounded in L∞((0, T )× Ω)), we obtain∫ T

0

∫
Ω

ψi(t)ϕ′in(v̄i)divSi dx dt = −
∫ T

0

∫
Ω

ψi(t)S̄i : ∇(ϕ′in(v̄i)) dx dt, (3.26)

which converges to

−
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(vi)) dx dt (3.27)

To handle R1 and R2, we use the following lemma due to Lions [13].

Lemma 3.10. Let f ∈W 1,p(RN ), g ∈ Lq(RN ) with 1 ≤ p, q ≤ ∞, and 1
P + 1

q ≤ 1.
Then we have

‖ div(fg) ∗ wε − div(f(g ∗ wε))‖Lr(RN ) ≤ C‖f‖W 1,p(RN )‖g‖Lq(RN )

for some C ≥ 0 independent of ε, f and g, r is determined by 1
r = 1

p + 1
q . In

addition,
div(fg) ∗ wε − div(f(g ∗ wε))→ 0 in Lr(RN )

as ε→ 0 if r <∞.

This lemma includes the following statement.

Lemma 3.11. Let ∂tf ∈ LP (0, T ), g ∈ Lq(0, T ) with 1 ≤ p, q ≤ ∞, and 1
P + 1

q ≤ 1.
Then we have

‖∂t(fg) ∗ wε − ∂t(f(g ∗ wε))‖Lr(0,T ) ≤ C‖f‖Lp(0,T )‖g‖Lq(0,T )

for some C ≥ 0 independent of ε, f and g, r is determined by 1
r = 1

p + 1
q . In

addition,
∂t(fg) ∗ wε − ∂t(f(g ∗ wε))→ 0 in Lr(0, T )

as ε→ 0 if r <∞.

With Lemmas 3.10 and 3.11 in hand, we are ready to handle the termsR1 andR2.
For κi > 0, by Lemma 3.7 and Poincare inequality, we have vi ∈ L2(0, T ;L6(Ω)).
We also have, by Lemma 3.7,

∂thi ∈ L4(0, T ;L
6
5 (Ω)) + L2(0, T ;L

3
2 (Ω)).

Thus, applying Lemma 3.11,

|R1| ≤
∫ T

0

∫
Ω

∣∣∣ψi(t)ϕ′(v̄i)[∂t(hivi)− ∂t(hiv̄i)]∣∣∣ dx dt
≤ C(ψi)

∫ T

0

∫
Ω

∣∣∣ϕ′(v̄i)[∂t(hivi)− ∂t(hiv̄i)]∣∣∣ dx dt→ 0 as k → 0.

(3.28)

By a similar reasoning and using Lemma 3.10, We deduce that R2 → 0 as k → 0.
By (3.24)-(3.28), we have∫ T

0

∫
Ω

∂tψi(t)hiϕin(vi) dx dt−
∫ T

0

∫
Ω

ψi(t)ϕ′in(vi)F dx dt

+
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(vi)) dx dt = 0,

(3.29)

for any test function ψi ∈ D(0,∞).
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We need to consider the test function ψi ∈ D(−1,∞). For this, we need the
continuity of hi(t) and (

√
hiui)(t) in the strong topology at t = 0. In fact, thanks

to Proposition 3.1, we have

∂t
√
hi ∈ L2(0, T ;L2(Ω)),

√
hi ∈ L2(0, T ;H2(Ω)).

This gives us√
hi ∈ C([0, T ];L2(Ω)) and ∇

√
hi ∈ C([0, T ];L2(Ω))

thanks to [8, Theorem 3 p. 287]. Similarly, we have

hi ∈ C([0, T ];L2(Ω)) (3.30)

due to

‖∇hi‖L2(0,T ;L2(Ω)) ≤ ‖∇
√
hi‖L4(0,T ;L4(Ω))‖

√
hi‖L4(0,T ;L4(Ω)).

We have
√
hi ∈ L∞(0, T ;Lp(Ω)) for any p ≥ 1, and hence√

hi ∈ C([0, T ];Lp(Ω)) for any p ≥ 1. (3.31)

An analogous reasoning as in [20] gives us√
hiui ∈ C([0, T ];L2(Ω)). (3.32)

Indeed: we have

ess lim sup
t→0

∫
Ω

ρ1|
√
h1u1 −

√
h10u10 |2dx+ ess lim sup

t→0

∫
Ω

ρ2|
√
h2u2 −

√
h20u20 |2dx

≤ ε(t, x)− ε(0, x) + 2 ess lim sup
t→0

∫
Ω

ρ1

√
h10u10(

√
h10u10 −

√
h1u1)dx

+ ess lim sup
t→0

∫
Ω

ρ2

√
h20u20(

√
h20u20 −

√
h2u2)dx

+ ess lim sup
t→0

∫
Ω

g(ρ1 − ρ2)|h1 − h10 |2dx

+ 2 ess lim sup
t→0

∫
Ω

g(ρ1 − ρ2)h1(h10 − h1)dx

+ ess lim sup
t→0

∫
Ω

gρ2|h1 + h2 − h10 − h20 |2dx

+ 2 ess lim sup
t→0

∫
Ω

gρ2(h1 + h2)(h1 + h2 − h10 − h20)dx

− 3κ1

2
ess lim sup

t→0

∫
Ω

|∇
√
h1 −∇

√
h10 |2dx

− 3κ2

2
ess limt→0 sup

∫
Ω

|∇
√
h2 −∇

√
h20 |2dx

+ 3κ1 ess lim sup
t→0

∫
Ω

∇
√
h10(∇

√
h1 −∇

√
h10)dx

+ 3κ2 ess lim sup
t→0

∫
Ω

∇
√
h20(∇

√
h2 −∇

√
h20)dx,

where

ε(t, x) =
1
2

∫
Ω

ρ1h1|u1|2 + ρ2h2|u2|2 + g(ρ1 − ρ2)|h1|2 + ρ2|h1 + h2|2
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+ 2κ1|∇
√
h1|2 + 2κ2|∇

√
h2|2.

We have

3κi ess lim sup
t→0

∫
Ω

∇
√
hi0(∇

√
hi −∇

√
hi0)dx = 0 for i = 1, 2. (3.33)

So, using (3.5), (3.31) and the convexity of hi 7−→ h2
i , we have

ess lim sup
t→0

∫
Ω

ρ1|
√
h1u1 −

√
h10u10 |2dx+ ess lim sup

t→0

∫
Ω

ρ2|
√
h2u2 −

√
h20u20 |2dx

≤ 2 ess lim sup
t→0

∫
Ω

ρ1

√
h10u10(

√
h10u10 −

√
h1u1)dx

+ 2 ess lim sup
t→0

∫
Ω

ρ2

√
h20u20(

√
h20u20 −

√
h2u2)dx

Following the line of [20] the right terms tend to 0 and we deduce that

ess lim sup
t→0

∫
Ω

|
√
hi0ui0 −

√
hiui|2 = 0 for i = 1, 2,

which gives us
√
hiui ∈ C([0, T ];L2(Ω)). By (3.30) and (3.32), we obtain

lim
τ→0

1
τ

∫ T

0

∫
Ω

hiϕin(vi) dx dt =
∫

Ω

hi0ϕin(vi0)dx

Considering (3.29) for the test function,

ψτi(t) = ψi(t) for t ≥ τ, ψτi(t) = ψi(τ)
t

τ
for t ≤ τ,

we obtain ∫ T

τ

∫
Ω

∂tψihiϕin(vi) dx dt−
∫ T

0

∫
Ω

ψτi(t)ϕ′in(vi)Fi dx dt

+
∫ T

0

∫
Ω

ψτi(t)Si : ∇(ϕ′in(vi)) dx dt

=
ψi(τ)
τ

∫ τ

0

∫
Ω

hiϕin(vi) dx dt.

Passing into the limit as τ → 0, this gives us∫ T

τ

∫
Ω

∂tψihiϕin(vi) dx dt−
∫ T

0

∫
Ω

ψi(t)ϕ′in(vi)Fi dx dt

+
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(vi)) dx dt

=
∫ τ

0

∫
Ω

hi0ψi(0)ϕin(vi0) dx dt

(3.34)

4. Recover the limits as αi →∞

In this section, we want to recover the limits in (3.19) as αi → ∞. Here, we
should remark that (h1, h2, u1, u2) is any fixed weak solution to (3.1)-(3.4) satisfying
Proposition 3.1 with κi > 0. For any fixed weak solution (h1, h2, u1, u2), we have

φαi(hi)→ 1 almost everywhere for (t, x),
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and it is uniformly bounded in L∞(Ω); we also have

r0iφβi(hi)ui ∈ L2(0, T ;L2(Ω)),

and thus
vαi = φαiφβiui → φβiui almost everywhere for (t, x)

as αi →∞. By the Dominated Convergence Theorem, we have

vαi → φβiui in L2(0, T ;L2(Ω)),

as αi →∞, and hence, we have

ϕin(vαi)→ ϕin(φβiui) in Lp((0, T )× Ω)

for any 1 ≤ p ≤ ∞. For any fixed hi, we have

φ′αi(hi)→ 0 almost everywhere for (t, x)

as αi →∞. for any fixed hi. Since |φ′αi(hi)| ≤ 2αi as 1
2αi
≤ hi ≤ 1

αi
and otherwise,

φ′αi(hi) = 0, we have
|hiφ′αi(hi)| ≤ 1 for all hi.

We find that∫ T

0

∫
Ω

ψ′i(t)(hiϕin(vαi)) dx dt→
∫ T

0

∫
Ω

ψ′i(t)(hiϕin(φβi(hi)ui)) dx dt

and ∫
Ω

hi0ϕin(vαi0)→
∫

Ω

hi0ϕin(φβi(hi0)ui0)

as αi →∞.
To pass into the limits in (3.34) as αi →∞, we rely on the following lemma.

Lemma 4.1. If ‖aαi‖L∞(0,T ;Ω) ≤ C, aαi → a as αi → ∞ a.e. for (t, x) in
Lp((0, T )× Ω) for any 1 ≤ p ≤ ∞, f ∈ L1((0, T )× Ω), then we have∫ T

0

∫
Ω

φαi(hi)aαif dx dt→
∫ T

0

∫
Ω

af dx dt as αi →∞,

and ∫ T

0

∫
Ω

|hiφ′αi(hi)aαif | dx dt→ 0 as αi →∞.

For a proof of the above lemma see [20]. Now we prove that∫ T

0

∫
Ω

ψi(t)Sαi : ∇(ϕin(vαi)) dx dt→
∫ T

0

∫
Ω

ψi(t)S : ∇(ϕ′in(φβi(hi)ui)) dx dt

(4.1)
as αi →∞, where Si = ψβi(hi)hi(D(ui) + κi

∆
√
hi√
hi

I) and∫ T

0

∫
Ω

ψi(t)ϕ′in(vαi)Fαi dx dt→
∫ T

0

∫
Ω

ψi(t)ϕ′in(φβi(hi)u)Fi dx dt (4.2)

where

Fi = h2
iuiφ

′
βi(hi) div ui + ghi∇hiφβi(hi) + hi∇φβi(hi)D(ui)

+ gεihi∇hjφβi(hi) + ri0uiφβi(hi) + ri1hi|ui|2uiφβi(hi)

+ κi
√
hi∇φβi(hi)∆

√
hi + 2κiφβi(hi)∇

√
hi∆

√
hi,
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For the proof of (4.1) the reasoning is similarly as in [20]. Concerning (4.2) we just
notice that hi∇hj ∈ L1((0,T)× Ω). Letting αi → 0 in (3.34), we have∫ T

0

∫
Ω

ψ′i(hiϕin(φβi(hi)ui)) dx dt−
∫ T

0

∫
Ω

ψi(t)ϕ′in(φβi(hi)ui)Fi dx dt

+
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(φβi(hi)ui)) dx dt

=
∫

Ω

ψi(0)hi0ϕin(φβi(hi0)ui0) dx dt

which in turn gives us the following lemma.

Lemma 4.2. For any weak solutions to (3.1)-(3.4) satisfying Proposition 3.1, we
have∫ T

0

∫
Ω

ψ′i(t)(hiϕin(φβi(hi)ui)) dx dt−
∫ T

0

∫
Ω

ψi(t)ϕ′in(φβi(hi)ui)Fi dx dt

+
∫ T

0

∫
Ω

ψi(t)Si : ∇(ϕ′in(φβi(hi)ui)) dx dt

=
∫

Ω

ψi(0)hi0ϕ
′
in(φβi(hi0)ui0) dx dt

(4.3)

where: Si = ψβi(hi)hi(D(ui) + κi
∆
√
hi√
hi

I) and

Fi = h2
iuiφ

′
βi(hi) div ui + ghi∇hiφβi(hi) + hi∇φβi(hi)D(ui)

+ gεihi∇hjφβi(hi) + ri0uiφβi(hi) + ri1hi|ui|2uiφβi(hi)

+ κi
√
hi∇φβi(hi)∆

√
hi + 2κiφβi(hi)∇

√
hi∆

√
hi,

where I is an identity matrix.

5. Recover the limits as κi, ri0 and ri1 approach 0

The objective of this section is twofold. Firstly, to recover the limits in (4.3) as
κi → 0 and βi → ∞. Secondly, to apply Theorem 3.6 to prove Theorem 2.2 by
letting as in [20] ri0 → 0 and ri1 → 0. We assume that βi = κ

−3/4
i , thus βi → ∞

when κi → 0. First, we state the following lemmas.

Lemma 5.1. Let κi → 0 and βi →∞, we have

hiκi → hi strongly in L2(0, T ;L2(Ω)),

∇hiκi ⇀ ∇hi weakly in L2(0, T ;H−1(Ω)),

hiκiϕin(φβi(hiκi)uiκi)→ hiϕin(ui) strongly in L1((0, T )× Ω),

hiκiϕ
′
in(φβ(hiκi)uiκi)→ hiϕ

′
in(ui) strongly in L2(0, T ;L2(Ω)).
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Lemma 5.2. Let βi = κ
−3/4
i , and κi → 0, we have∫ T

0

∫
Ω

|ψ′i(t)|hiϕin(ui) dx dt

≤ C

n
+
∣∣∣ ∫ T

0

∫
Ω

ψi(t)∇h2
iϕ
′
in(ui) dx dt

∣∣∣+
∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui) dx dt
∣∣∣

+ C

∫ T

0

∫
Ω

(
1
2
hi0 |ui0 |2 +

1
2
gh2

i0 + |∇
√
hi0 |2)dx+ ψi(0)

∫
Ω

hi0ϕin(ui0)dx.

(5.1)

For a proof of the above lemma see [20]. With above two lemmas in hand, we
are ready to recover the limits in (4.3) as κi → 0 and βi →∞.

Let ri = ri0 = ri1 , we use (hr11 , h
r2
2 , u

r1
1 , u

r2
2 ) to denote the weak solutions to

(3.1)-(3.4) verifying Proposition 3.1 with κi = 0. Here, we remark that the initial
data should satisfy the following conditions, more precisely,

hrii0 → hi0 strongly in L2(Ω),√
hrii0u

ri
i0 →

√
hi0ui0 strongly in L2(Ω)

as ri → 0 and

hi0 is bounded in L1(Ω) ∩ L2(Ω), hi0 ≥ 0 a.e. in Ω,

hi0|ui0 |2 =
m2
i0

hi0
is bounded in L1(Ω),

∇
√
hi0 is bounded in L2(Ω),

1
2

∫
Ω

hi0(1 + |ui0 |2) ln(1 + |ui0 |2)dx ≤ C <∞

(5.2)

By (3.5)-(3.6) one obtains the following estimates:

‖
√
hrii u

ri
i ‖L∞(0,T ;L2(Ω)) ≤ C, ‖hrii ‖L∞(0,T ;L1∩L2(Ω)) ≤ C,

‖∇hrii ‖L2(0,T ;L2(Ω)) ≤ C, ‖∇
√
hrii

|L∞(0,T ;L2(Ω)) ≤ C,

‖
√
hrii ∇u

ri
i ‖L2(0,T ;L2(Ω)) ≤ C;

(5.3)

and by Theorem 3.4, we have

sup
t∈[0,T ]

∫
Ω

hrii |u
ri
i |

2 ln(1 + |urii |
2)dx ≤ C. (5.4)

In line with the ideas developed in [20], we have∫ T

0

∫
Ω

ri|urii |
2 dx dt ≤ C,

∫ T

0

∫
Ω

ri|hrii u
ri
i |

4 dx dt ≤ C, (5.5)

where the constant C only depends on the initial data and we can pass into the
limits as ri → 0. In particular,√

hrii →
√
hi almost everywhere and strongly in L2

loc((0, T )× Ω), (5.6)

hrii → hi in C0(0, T ;L
3
2
loc(Ω)), (5.7)

hrii
2 → h2

i strongly in L1
loc((0, T )× Ω)), (5.8)
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hrii u

ri
i →

√
hiui strongly in L2

loc((0, T )× Ω)), (5.9)

hrii u
ri
i → hiui strongly in L2(0, T ;Lploc(Ω)) for p ∈ [1,

3
2

). (5.10)

and the convergence of the diffusion terms
hrii ∇u

ri
i → hi∇ui in D′,

hrii (∇)turii → hi(∇)tui in D′
(5.11)

For the proof of the convergence of the terms riurii and rihrii |u
ri
i |2u

ri
i to zero when

ri → 0 we refer the reader to [20].

6. Recover the limits as n→∞

We want in this section to recover the “Mellet-Vasseur” type inequality by letting
n→∞. In particular, we prove Theorem 3.4 by recovering the limit from Lemma
5.2. In this section, (h1, h2, u1, u2) are the fixed weak solutions. Following the ideas
proposed in [20] we only have to control the term∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui) dx dt
∣∣∣ (i 6= j)

in the right term of (5.1) for the other terms the proof is the same as in [20]. We
have ∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui) dx dt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui)1|ui|≥n dx dt
∣∣∣

+
∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui)1|ui|≤n dx dt
∣∣∣,

where 1A is the indicator function that yields on A and zero outside A. So we have∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui)1|ui|≥n dx dt
∣∣∣ ≤ C

n
‖hi‖L2(0,T ;L2(Ω))‖∇hj‖L2(0,T ;L2(Ω)) ,∣∣∣ ∫ T

0

∫
Ω

ψi(t)hi∇hjϕ′in(ui)1|ui|≤n dx dt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

ψi(t)hj∇hiϕ′in(ui)1|ui|≤n dx dt
∣∣∣

+ C

∫ T

0

∫
Ω

ψi(t)hihj
2uiluik

1 + |ui|2
∂luik1|ui|≤n dx dt

∣∣∣
+ C

∣∣∣ ∫ T

0

∫
Ω

ψi(t)hihj(1 + ln(1 + |ui|2) div(ui)1|ui|≤n dx dt
∣∣∣

≤ C

n
‖hj‖L2(0,T ;L2(Ω))‖∇hi‖L2(0,T ;L2(Ω))

+ C‖
√
hiDui‖L2(0,T ;(L2(Ω))4)‖hi‖L2(0,T ;L2(Ω))‖hj‖L4(0,T ;L4(Ω))

+ C
∣∣∣ ∫ T

0

∫
Ω

ψi(t)hihj(1 + ln(1 + |ui|2) div(ui)1|ui|≤n dx dt
∣∣∣,
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and ∣∣∣ ∫ T

0

∫
Ω

ψi(t)hihj(1 + ln(1 + |ui|2) div(ui)1|ui|≤n dx dt
∣∣∣

≤ C
∣∣∣ ∫ T

0

∫
Ω

(1 + ln(1 + |ui|2)hi|Dui|21|ui|≤n dx dt
∣∣∣

+ C
∣∣∣ ∫ T

0

∫
Ω

hih
2
j (1 + ln(1 + |ui|2)1|ui|≤n dx dt

∣∣∣,
where ∣∣∣ ∫ T

0

∫
Ω

hih
2
j (1 + ln(1 + |ui|2)1|ui|≤n dx dt

∣∣∣
≤ C‖

√
hiui‖L2(0,T ;L2(Ω))‖hi‖L2(0,T ;L2(Ω))‖hj‖L8(0,T ;L8(Ω))
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