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HARMONIC-HYPERBOLIC GEOMETRIC FLOW
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Communicated by Paul H. Rabinowitz

ABSTRACT. In this article we study a coupled system for hyperbolic geometric
flow on a closed manifold M, with a harmonic flow map from M to some closed
target manifold N. Then we show that this flow has a unique solution for a
short-time. After that, we find evolution equations for Riemannian curvature
tensor, Ricci curvature tensor, and scalar curvature of M under this flow. In
the final section we give some examples of this flow on closed manifolds.

1. INTRODUCTION

Let (M™, g) and (N, ) be smooth closed Riemannian manifolds. Suppose that
N is isometrically embedded into Euclidean space ey : (N",7) «— R? for a suffi-
ciently large d. We identify maps ¢ : M — N with ey o ¢ 1= R Harmonic maps

¢ : (M,g) — (N,v) are critical point of the energy functional E(¢) = [,, [Ve[?du,
where dp is the volume form on M with respect to the metric g and
1 D™ 0P
2 — PR —
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Harmonic maps are generalizations of harmonic functions. For example the identity
and constant maps are harmonic maps, also, geodesics as the map S' — M are
harmonic maps. The first major study of harmonic mapping between Riemannian
manifolds was made by Eells and Sampson [4]. They study the harmonic map flow

0
a;f =740, ©(0) = wo. (1.1)

where 7,¢ denotes the tension field of ¢, and showed, under suitable metric and
curvature assumptions on the target manifold, flow has unique solution. The
harmonic map flow is a nonlinear heat flow in geometric analysis. Another, nonlin-
ear heat flow and wave flow in geometric analysis are geometric flows. Geometric
flows are important problem in differential geometry, because by these flow we can
find canonical metrics on Riemannian manifolds. A geometric flow is an evolution of
a geometric structure under a differential equation with a functional on a manifold.
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Let M be an n-dimensional complete Riemannian manifold with the Riemannian
metric g = (g;5). The Levi-Civita connection is given by the Christoffel symbols

re 1 kl{agﬂ 89’? 99i; } (1.2)
* ozt Oxd  Oxt

and Riemannian curvature tensor, Ricci curvature tensor, scalar curvature of (M, g)

as follows

ory,  ork
7{%[ = ale - A Zl + Ffprg)l F?prlp Rijk’l = gk?prjlv
R, = g] Rijkla R = g”RiJW

The first important geometric flow is Ricci flow, defined as follows,

0
5.9 = —2Ric, 9(0) =90 (1.3)

where Ric denotes the Ricci curvature. The Ricci flow was introduced by Hamilton
in 1982 [5] and evolves a Riemannian metric by its Ricci curvature, is a natural
analogue of the heat equation for metrics. The existence solution of Ricci flow
studied by Hamilton (see [5]) and DeTurck (see [3]) on closed Riemannian manifolds.
Also evolution equation for geometric structures dependant to metric investigated
by some researcher (see [I]).

The second geometric flow is hyperbolic geometric flow which is a system of
nonlinear evolution partial differential equations of second order, it is very similar
to wave equation flow metrics, defined as follows,

2
%g = —2Ric, g(0) = go, %
where kg is a symmetric tensor on M and this flow is similar to Einstein equation
2

(0) = ko. (1.4)

—2R;; — 1 a99ij O9pq 4 gPa 99ip 9954

27 "ot o o ot
The existences and uniqueness of (1.4) studied in [2] on closed Riemannian mani-
fold.

Another important geometric flow is the harmonic-Ricci flow, defined as follows,

ot =

0
5;9 = ~2Ric+2aVe ® Ve,  9(0) = g0,
(1.5)

590 =190, #(0) = ¢o.
where « is positive coupling constant, ¢ is a map from M to some closed target
manifold N, and this flow studied in [g].

Motivated by the above works, in this article we consider an m-dimensional,
closed smooth, Riemannian manifold M whose metric g = ¢(t) is evolving according
to the flow equation

2
a—Zg = —2Ric+2aVp @ Ve, ¢(0) = go, @(0) = ko
ot ) ot (1.6)
59 = Ta9r #(0) = 0.
where kg is a symmetric tensor on M, Ric is the Ricci tensor of the manifold, «
is positive coupling constant, (t) a family of smooth maps from M to N and
T4 denotes the tension field of the map ¢ with respect to the evolving metric
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g. Finally, (Vo ® V¢);; = Vip V@ is components of V;o*. This flow called
harmonic-hyperbolic geometric flow and after this, in short, we will display it with
(HG), flow.

2. SHORT-TIME EXISTENCE AND UNIQUENESS FOR THE (HG), FLOW

In this section we study the existence and uniqueness of the (HG), flow. We
use a process similar to the one in the existence and uniqueness of geometric flow,
for the Ricci flow, hyperbolic geometric flow, and harmonic-Ricci flow.

Theorem 2.1. Let (M, go) and (N,~) be compact Riemannian manifolds and ko
be a symmetric tensor on M. Then there exists a constant T > 0 such that the
initial value problem (1.6) has a unique smooth solution metric g and map ¢ on
M x [0,T].

Proof. Using the gauge fixing idea as in the Ricci flow (see [6]) and the push-
forward of a solution of we can find a system of nonlinear strictly-hyperbolic
partial differential equations of second order and then the short-time existence and
uniqueness result on a compact manifold, show that the existence and uniqueness
for this system and in finally similar to the proof of existence and uniqueness for
Ricci flow (see [0]) the pull-back of this solution complete the proof of theorem.
For this end, let (g(t), ¢(t))te[o,r) is a solution of the (HG), flow with initial data
(9(0),#(0)) = (g0, o), %:-(0) = ki;(0). Let vy : (M, §(t)) — (M, go) be solution
of the harmonic map heat flow %1& = T4, with ¢(0) = idas. Let

Gij(t) = Vugij, P(t) = Yuip(t) (2.1)

be the push-forward of g;; and ¢ respectively. We now find the evolution for
(9i;(t), (t)). Denote by y(x,t) = ¥ (z) = (y'(z,t),...,y"(z,t)) in locally coordi-
nates. Then

. oy® oy’

by direct computations, we have

%51 (z.1) = 9%gap Oy~ 0y’ | 0gap Oy* 9y’ Oy Oy
ot otz Ox' 9ri Oy oy> Oxt Oxd Ot Ot
0°gas Oy* 0y” Oy” 0 ( @a%ﬂ) i( %yya)
By Ot Ozt 0z Ot | 9z P9z 92 ) T 9x P 9ri o2
[&qag oy oy’ 0 oyP 0 oy® 10%yY

oy 0 907 027 I gur) T 57 9 57| B

9 ,0y* 0y® 0ga Agap Oy”
12 i(L)L( Yap gﬁi)
oxt* Ot "0xi " Ot oy Ot
Q> 0 9y’ 0gap | Ogap Oy & oy, 9 0y’

o 007 o) Tar T oy or) T 290 g o) g Cor )

For the normal coordinates {z‘} around a fixe point p € M, we have gi’ Lp)=0
and
Dgap Oy> 0y 0 oy’ 0 ay?

Dy 0xi 907 0t I 9pr) T a7 9o )

=0, Vi,j,y=12,....n (2.3)



4 S. AZAMI EJDE-2017/165

Let y(z,t) be a solution of the equation

aZya B 8ya

= 2k _ Tk
o 9 '
Y (,0) = 2%, y®(,0) = 4 (2)
and define the vector field
Vi= gikgjl(f‘?z - Ffz) (2.5)

where I‘?l and Ffz are the connection coefficients corresponding to the metrics

gij(x,t) and g;;(x,0), respectively, yf'(z) € C(M). Since g%gij = —2R;; +
2aV;pV jp, therefore the evolution equation for g;; is

2
@fh‘j = —2R;; +2aV;pV;p + V;V; + V;Vi + F(Dy, D D.y), (2.6)
where
8ya 8yoz 2ya
—_— D > =1,2,.
<3t’8x) tzY (&W({?t’ ) b » 4y y T

The relation
pre _ Oyt OyPoat 02t Py
LT 9xd Ozt Ay P Gy Oxd Bt

implies
y° =g/l o%y° _°’?6La+ g iyﬁ%) (2.7)
ot? Oxidxt I Pxi T B 9xi Hai :
and
9? . . 0%0i o U,
529 =9 goagg T 20VieVie+ G(g, Dag) + F(Dy, DeDyy), (2.8)

where § = (9i5), Dzg = ( g”) for 4,5,k = 1,2,...,n. Hence, both (2.7) and (2.8)
are clearly strictly hyperbohc system. On the other hand,

B o
ﬁ = zb*( )+LV<P =10 +(V, V) = 130 + dp(V).

Using normal coordinates on (N,~) results that Nl";}u = 0 at the base point and
hence 73 = Ay¢ which implies that

P . R R R L ~ ~ o
Sp = Qe +dp(V) = OO — T, V0™ + Ve M (19, —TF)

= §" (On01™ ~ T5V;0%)

and it is strictly hyperbolic equation. Since the equations , and are
strictly hyperbolic and the manifold M is compact, it follows from the standard
theory of hyperbolic equations (see [7]) that the system has a unique smooth
solution for a short time. So, the proof of the theorem is complete. (]

(2.9)
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3. EVOLUTION EQUATIONS OF CURVATURE TENSOR ALONG THE (HG), FLOW

Next, we consider the techniques and ideas used by Brendle [I] for evolution
equation along the Ricci flow, and by Dai and et al [2] for the evolution equation
along the hyperbolic geometric flow. We find the evolution formula for Riemannian

curvature tensor, Ricci curvature tensor and scalar curvature of (M, g) under the
(HG),, flow.

Theorem 3.1. Under the (HG), flow, the Riemannian curvature tensor R;ji of
(M, g) satisfies the evolution equation

82
wRijkl
= AR;ji + 2(Bijii — Bijik — Bijk + Bikji)
= ¢"(RpjiiRqi + RipriRgj + Rijpi Rak + RijepRql)

(3.1)
0 0 0 0

+ 2gpq(§FZ§F§k - arfzgrgk)

+a[52(vk<ﬂvj<ﬁ) _P(VipVip)  P(VipVip) 82(%@%%)}
Oztox! Ozioxk 0zJ Ozt OxJ Ok

where Bijri = g°" 99 Rpiqj Rrkst and A is the Laplacian with respect to the evolving
metric g.

Proof. The Christoffel symbol of metric g is T = %ghm(ag;’}j + Qg gii}f,),
therefore by direct computations,

9% _ 19%ghm (8Qmj Agmi agjl) dg"m (529mj L Pgmi gy )
otz 7t T 2 g2\ 9zl dxi  dzm ot \ozlot = oxidt  Hxmot

_i_} hm(i(62gmj) i(azgmz)_ 0 (5293‘1))
27 \oal 0 T 0 o )T aam o)
h BF;‘ll ory, h TP h TP : :
On the other hand, R};, = 55 — 774 +175, 1%, —I'j,I';; and the Riemannian curvature
tensor of (M, g) is R = ghkR?jl, thus with a double differentiation respect to ¢
we have
82
@Rijkl

(3.2)

o 0Ty 9 ok 9%, h
= o 5 ()~ () + Tl =TT
aghk[ o ory, o ark 9

4 9%k —)+—(rhrp—rhrl’)}+}z

2 ( ) ( n 0% gnk
oxt" Ot oxi " Ot gt~ w il Jp il

ijl ot2 .

We choose the normal coordinates around a fixed point p on M, then 2% (p)=0
ox

and I‘fj (p) = 0. Since g—;g = —2Ric+2aVp @ Vi, then we can rewrite (3.2)) as
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follows:
62
@szkz
1 0? 9?
=3 [W(—QRM +2aVpeV ) — W(—2Rﬂ + 2avj%0vl90)}
! > 2R 2aV .oV i 2R 2aV;pV
- 5[@(— ki +2aViepVip) — W(— il +2aVip l‘P)] (3.3)
_ pma2gkp(azgmj g _ g )
Oxiot \ 0x'ot  Oxiot  Ox™Ot
82 62 mi 82 m 82 7
4 g gkp( 9 Gmi _ gl)
Oxiot\ ozlot ~ Oxiot  Ox™Ot
D d oy 0 0,
+ 20w (T 55 = 5o Th):
For the other side, we have
62
Smign ok = ViViRje + RVl + Ry Vil (3.4)
and
P9k (329mj Pgm gy )
Oxiot \ 0x'ot ~ Oxiot  Ox™Ot
L gom 29k (329m¢ Pgmi  0%gu )
T owiot\olot ~ dxiot  oxmot 45
+ 2gu (5. T Opo O pn QFP) .
Ik ot o T pr rar
_ a 'y 8 q a vy a q
= 29PQ<aFil§ij T ot jlarik)'
Plugging (3.4) and (3.5) in (3.3) leads to
32
ﬁRijkl
= —Vilejk + Vikajl + vjleki — vjkail
1o} 0 0 0
— ¢"(RijqRip + RijrgRrp) + 29pq (afﬁang - &F;)largk)
N a[fﬂ(vkgpvj@) _P(VipVip)  P(VipVie) 82(%@%90)]
OxtOx! Oxioxk Ox Ox! OxI Oxk (3.6)
= AR;jii + 2(Bijii — Bijik — Bijk + Bikji)
= 9" (RpjriRqi + RipeiRgj + Rijpi Rk + RijiepRat)
8 P a q 6 ¥y 8 q
+ 29pq(aruarjk - &Fjlarik)

N a[82(Vk<ijs0) ~P(VieVip)  P(VipVip) 32(%@%@)]
Ozt 0x! Ozt ok OzI Ox! OxI Ox*

where Bjji = gP"99° Rpiqj Rrist, S0 the proof is complete. O
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Theorem 3.2. The evolution equation for Ricci curvature tensor under the (HG),
flow is as follows:

62

o i
= ARU + 2gprgqupiquTs - QquRpquj
0,0 0 0
Kl
+ 29 YIpq <6t1—‘fl atrkj arilargj) (3 7)
+ ag {‘9 (VioVip)  P(VipVip)  P(VieVip)  8*(VipVig) '
Ox'Ox! Ox'0xI Oxkox! OxkoxI
Ogpq ORikji 0pq Og
) kp lq¥IPq k) 2 kp Tq sl Pq TSRi .
979 “ae 999 T o
— 2ag"7g' 1,0V 4o Rikji.
Proof. We have
0? 0?
gt = 59" Fani)
82 89 OR; ikjl 829kl
Kl ikj
=9"—R; 2—— kil
TR L TR T SLTS
Since 357:1 — gkpglq dgpq and ;t:l — gkpglq gpq 4 29kpg7“qgsl dgiq 3g;s, we have
9?2 H? Ogpq ORij1 d%g
gt = 0" i — 2070 GG g g R
99pq 99 '
2 kp rq sl Prq rs Rl .
+2979 "9 ot ot uikil
by replacing (3.1)) and 2 tQ 9ij = —2R;; +2a VoV @ in (3.8)) the proof is complete.
|

From R = g% R;; and using (3.7) we have the following result.

Corollary 3.3. Under the (HG),, flow, the evolution equation of the scalar curva-
ture satisfies

32

—R

o2

y 0 _, 0 0 0
_ 12 ij Kkl P q p q
= AR+ 2|Ric|” +2¢"g gPQ(aFilarkj - &Fm@rij)

+agijgkz[32(vjsﬁvkw) P*(VioVip)  0*(V;9Vip) 82(%@%@)}

Ozi0x! C 9zidxd 0xkdrl Oxkoxd
89 8Rzk il 89 691”9

) ij Jkp lq Y Ipg ¥ kgl 4 kp rq sl ¥Ipq

A A T 9 "or or T

O0gpq OR;j

ot ot

— 40g" g" g1V oV oo Rigji — 29 g7

4. EXAMPLES
In this section, we give some examples of (HG),, flows.

Example 4.1. Let (M, g(0)) be a round two-sphere of constant Gauss curvature
1. Consider, the (HG), flow, assuming that (N,~v) = (M, ¢(0)) and ¢(0) is the



8 S. AZAMI EJDE-2017/165

identity map, with g(t) = ¢(¢)g(0), ¢(0) = 1, ¢/(0) = 0 and the fact the ¢(t) = ¢(0)
is harmonic map for all g(¢). The (HG),, flow on (M, g(0)) reduces to
?c(t)
oz
and it has solution ¢(t) = (=1 + «a)t? + 1 where for a < 1, ¢(t) goes to zero in finite
time i.e. (M, g(t)) shrinks to a point, while the scalar curvature R and the energy

density |V¢|? both go to infinity. For a = 1, the solution is stationary. For o > 1,
c(t) increasing.

Example 4.2. Let (M%,g(t)) = (S? x L,c(t)gsz @ d(t)gr) where (S?,gs2) is a
round sphere with Gauss curvature 1 and (L, G1) is a surface with constant Gauss
curvature —1. Consider, the (HG), flow, assuming that (N,~) = (M, g(0)) and
©(0) is the identity map. Then ¢(¢) = ¢(0) and (HG),, flow results that

= -2+ 2a (4.1)

32
@c(t) =-2+2a, c0)=1, (0)=0,
o2 (4.2)
@d(t) =2+42a, d0)=1, d(0)=0.
If 0 < @ < 1, then g—;c(t) < 0 implies that ¢(t) is decreasing and g—;d(t) > 0 results

that d(t) is increasing. If o = 1, then c(t) is stationary and d(t) = 2t? + 1.

Example 4.3. Let (M, g(0)) be a arbitrary closed Riemannian manifold, (N,v) =
(M, g(0)) and ¢(0) is the identity map. If the initial metric g;;(z,0) is Ricci flat,
ie. Rij(z,0) =0, then g;j(z,t) = (at? +t + 1)g;;(z,0) is obviously a solution to
the evolution equation (HG), flow with %(m, 0) = g(x,0), therefore any Ricci flat
metric is a stationary solution of the (HG), flow (L.6).

Example 4.4. A Riemannian metric g;; is called Einstein if R;; = Ag;; for some
constant A. A smooth manifold M with an Einstein metric is called Einstein man-
ifold. Let (M, g(0)) be a closed Riemannian manifold, the initial metric g(0) is
Einstein that is for some constant A it holds

Ri;(0) = Agi;(0) (4.3)
and (N,v) = (M, g(0)) and ¢(0) is the identity map. The evolving metric under
the (HG), flow will be steady state, or will expand homothetically for all time, or

shrink in a finite time. Since, the initial metric is Einstein for some constant A, let
9i5(t, ) = p(t)g:;(0). By the definition of the Ricci tensor, we obtain

Ri;(t) = Rij(0) = Agi;(0). (4.4)
In the present situation, equation (|1.6) becomes
9?(p(t)g:;(0
TUGO) . 929,5(0) +200(0). (4.5
this gives an ODE of second order
d?p(t
8’;(2 ) o2, p0)=1, P(0)=w, (4.6)
if a is constant, then the solution of the initial value problem is given by
p(t) = (@ = Nt? + vt + 1. (4.7)

Therefore the solution of the (HG),, flow remains Einstein.
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