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AXISYMMETRIC SOLUTIONS OF A TWO-DIMENSIONAL
NONLINEAR WAVE SYSTEM WITH A TWO-CONSTANT

EQUATION OF STATE

GUODONG WANG, YANBO HU, HUAYONG LIU

Abstract. We study a special class of Riemann problem with axisymmetry

for two-dimensional nonlinear wave equations with the equation of state p =
A1ργ1 + A2ργ2 , Ai < 0, −3 < γi < −1 (i = 1, 2). The main difficulty lies in

that the equations can not be directly reduced to an autonomous system of
ordinary differential equations. To solve it, we use the axisymmetry and self-

similarity assumptions to reduce the equations to a decoupled system which

includes three components of solution. By solving the decoupled system, we
obtain the structures of the corresponding solutions and their existence.

1. Introduction

This article concerns a special class of Riemann problem to the two-dimensional
nonlinear wave system

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + px = 0,

(ρv)t + py = 0,
(1.1)

with the equation of state

p(ρ) = A1ρ
γ1 +A2ρ

γ2 , (1.2)

where the variables (u, v), ρ represent the velocity and the density respectively, and
Ai < 0, −3 < γi < −1 (i = 1, 2). System (1.1) can be obtained either by starting
with the isentropic gas dynamics equations and neglecting the quadratic terms in
the velocity or by writing the nonlinear wave equation as a first-order system [1, 2].
If the equation of state is taken as the following form

p = Aργ (1.3)
with −1 ≤ γ < 0 and A < 0, (1.3) is called as the generalized Chaplygin gas. For
the case γ = −1 and A = −1, (1.3) was introduced by Chaplygin[4], Tsien and von
Karman [22, 24] as a suitable mathematical approximation for calculating the lifting
force on a wing of an airplane in aerodynamics. Sen and Scherrer generalized this
model to allow for the case γ < −1. The transient Chaplygin gas model provides a
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possible mechanism to allow for a currently accelerating universe without a future
horizon and can be taken to be a model for dark energy alone [21].

The initial data for a general Riemann problem are constant along radial direc-
tion from the origin and piecewise constant as a function of angle. There are a
set of conjectures offered by Zhang and Zheng in [26] for the solutions to the two-
dimensional Riemann problem. Following Zhang and Zheng’s work, many efforts
have been made to prove these conjectures for the compressible Euler equations
or some reduced systems in the past twenty years [19, 29]. Unfortunately, until
now, none of them has been completely proved due to the complicated structure of
solutions. For related results, we can consult the survey [20] and references cited
therein.

The study of two-dimensional Riemann problem (or shock reflection) have been
devoted for system (1.1) with general polytropic gas [2, 6, 11, 12, 14, 15, 16, 17,
18, 23]. Čanié, Keyfitz, Kim studied the Mach stem of shock solution by solving
a free boundary problem [2]. Tesdall, Sanders and Keyfitz presented numerical
solutions for the nonlinear wave system which is used to describe the Mach reflection
of weak shock waves [23]. In particular, Kim and Lee studied the configuration
that the transonic shock interacted with the sonic circle and obtained a global
transonic solution to this configuration. Kim established a global transonic solution
to the interaction of a transonic shock with a rarefaction wave[14, 15, 16, 17, 18].
Furthermore, Chen et al. [6] established a global theory of existence and optimal
regularity for a shock diffraction problem. Hu ang Wang [11, 12] studied the semi-
hyperbolic patches of solutions to the two-dimensional nonlinear wave system for
Chaplygin gases and constructed a global classical solution to the interaction of two
arbitrary planar rarefaction waves.

For a special class of Riemann problem with axisymmetry for the two-dimensional
isentropic Euler equations with the equation of state p = Aργ , γ > 1, Zhang
and Zheng constructed rigorously a three-parameter family of self-similar, globally
bounded, and continuous weak solutions for all positive time to the Euler equa-
tions [27, 28, 30]. Under the assumption that v = 0, Hu [10] constructed a family
of self-similar and global bounded weak solutions to the two-dimensional isentropic
Euler equations with the equation of state (1.2) and Ai > 0, γi > 1 (i = 1, 2) for
axisymmetry initial data. As for the related works, we refer the reader to [5, 7, 8, 9].

As a continuation of the paper [10], we will consider the system

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + px = 0,

ϕt + (ϕu)x + (ϕv)y = 0,

(ρv)t + py = 0,

(1.4)

with the equation of state

p = p1 + p2 = A1ρ
γ1 +A2ϕ

γ2 , (1.5)

for axisymmetry initial data, where p1 = A1ρ
γ1 , p2 = A2ϕ

γ2 , Ai < 0,−3 < γi < −1
(i = 1, 2), ρ ≥ 0 and ϕ ≥ 0. It is easy to see that, if ϕ = ρ, γ1 = γ2 and A1 = A2,
then system (1.4) reduces to the system in [25]. The purpose of the present paper
is to investigate the two-dimensional Riemann problem with axisymmetry to the
nonlinear wave system (1.1) and (1.2). We will construct rigorously a family of self-
similar and global solutions for all positive time to (1.4) with (1.5). The difference
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with this paper [10] is that we do not assume v = 0 here, since we may decouple
the first three equations from the fourth equation in (1.4) by the axisymmetry and
self-similarity assumptions. Moreover, we find that the shock solutions appear in
the case u0 > 0, instead of u0 < 0. And then, we obtain the detailed structures
of solutions as well as their existence for system (1.4) with (1.5). If ϕ = ρ at time
zero in the solutions obtained from system (1.4), we may obtain the existence of
solutions and their structures for the special class of Riemann problem to system
(1.1) with (1.2).

The rest of this paper is organized as follows. In section 2, we present some
preliminaries, give axisymmetry induction, intermediate field equations and the
Rankine-Hugoniot relations. The global solutions for two cases u0 ≤ 0 and u0 > 0
are constructed in sections 3 and 4, respectively. The conclusion is delivered in
Section 5.

2. Preliminaries

We impose axisymmetry to the system (1.4). That is that the solutions (ρ, u, v, ϕ)
have the property

ρ(t, r, θ) = ρ(t, r, 0),

ϕ(t, r, θ) = ϕ(t, r, 0),(
u(t, r, θ)
v(t, r, θ)

)
=
(

cos θ − sin θ
sin θ cos θ

)(
u(t, r, 0)
v(t, r, 0)

)
,

(2.1)

for all t ≥ 0, θ ∈ R and r > 0, where (r, θ) are the polar coordinates of the
(x, y)-plane. Substituting (2.1) into (1.4) for the smooth solutions reduces

ρt + (ρu)r +
ρu

r
= 0,

(ρu)t + (p1 + p2)r = 0,

ϕt + (ϕu)r +
ϕu

r
= 0,

(ρv)t = 0,

(2.2)

where u = u(t, r, 0) and v = v(t, r, 0) are the radial and pure rotational velocities,
respectively. We require the Riemann initial data as follows(

ρ(0, r, θ), u(0, r, θ), v(0, r, θ), ϕ(0, r, θ)
)

=
(
ρ0(θ), u0(θ), v0(θ), ϕ0(θ)

)
,

which implies, by the axisymmetry condition (2.1), that our data are limited to

ρ(0, r, θ) = ρ0,

ϕ(0, r, θ) = ϕ0,

u(0, r, θ) = u0 cos θ − v0 sin θ,

v(0, r, θ) = u0 sin θ + v0 cos θ,

(2.3)

where ρ0 > 0, ϕ0 > 0, u0 and v0 are arbitrary constants.
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Since the problem (2.2) is invariant under self-similar transformations, we look
for self-similar solutions (ρ, u, v, ϕ)(ξ)(ξ = r/t). Thus, we obtain from (2.2) that

ρξ = − ρu

p′1 + ϕ− ξ2
,

uξ = −u(p′1 + ϕ− ξu)
ξ(p′1 + ϕ− ξ2)

,

ϕξ = − (γ2 − 1)ϕu
p′1 + ϕ− ξ2

,

vξ =
uv

p′1 + ϕ− ξ2
,

(2.4)

and

lim
ξ→+∞

(ρ, u, ϕ, v) = (ρ0, u0, γ2p2(ϕ0)/ρ0, v0), (2.5)

where ϕ = γ2p2(ϕ)/ρ. It is easy to see that the first three equations of (2.4) do
not involve the component v. Hence, we consider a subsystem for the initial pure
radial flow

ρξ = − ρu

p′1 + ϕ− ξ2
,

uξ = −u(p′1 + ϕ− ξu)
ξ(p′1 + ϕ− ξ2)

,

ϕξ = − (γ2 − 1)ϕu
p′1 + ϕ− ξ2

,

(2.6)

and

lim
ξ→+∞

(ρ, u, ϕ) = (ρ0, u0, γ2p2(ϕ0)/ρ0). (2.7)

In this paper, by (2.6) and (2.7), we will construct global solutions to the problem
(2.4) and (2.5) for any ρ0 > 0, ϕ0 > 0 and u0 ∈ R, v0 ∈ R.

2.1. Far-field solutions and intermediate field equations. Let s = 1/ξ, then
(2.6) and (2.7) become

dρ

ds
=

ρu

s2(p′1 + ϕ)− 1
,

du

ds
=
u(sp′1 + sϕ− u)
s2(p′1 + ϕ)− 1

,

dϕ

ds
=

(γ2 − 1)ϕu
s2(p′1 + ϕ)− 1

,

(2.8)

and

(ρ, u, ϕ)|s=0 = (ρ0, u0, γ2p2(ϕ0)/ρ0). (2.9)

We can see that (2.8) is well-posed and has a unique local solution for any initial
datum with ρ0 > 0 and ϕ0 > 0.

By introducing the variables

I = su, K = s
√
p′1(ρ), H = s

√
ϕ, (2.10)
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system (2.8) can be put into the form

s
dI

ds
=
I(1 + I − 2K2 − 2H2)

1−K2 −H2
,

s
dK

ds
=
K(1− γ1−1

2 I −K2 −H2)
1−K2 −H2

,

s
dH

ds
=
H(1− γ2−1

2 I −K2 −H2)
1−K2 −H2

.

(2.11)

Introducing a new parameter τ , it is easy to get from (2.11) that

dI

dτ
= I(1 + I − 2K2 − 2H2),

dK

dτ
= K(1− γ1 − 1

2
I −K2 −H2),

dH

dτ
= H(1− γ2 − 1

2
I −K2 −H2).

(2.12)

and
ds

dτ
= s(1−K2 −H2). (2.13)

Corresponding to the initial data (2.10), we will look for solutions of (2.12) and
(2.13) with the initial condition

(I,K,H) ∼ s(u0,
√
p′1(ρ0),

√
γ2p2(ϕ0)/ρ0), as s→ 0+. (2.14)

2.2. Rankine-Hugoniot relation. In self-similar coordinates (ξ, η) = (x/t, y/t),
system (1.4) can be rewritten as

−ξρξ − ηρη + (ρu)ξ + (ρv)η = 0,

−ξ(ρu)ξ − η(ρu)η + (p1 + p2)ξ = 0,

−ξϕξ − ηϕη + (ϕu)ξ + (ϕv)η = 0,

−ξ(ρv)ξ − η(ρv)η + (p1 + p2)η = 0.

Let a discontinuous curve be given η = η(ξ) and the slope of the curve be denoted
by σ = η′(ξ), then the Rankine-Hugoniot relation is

σ = [(η − v)ρ],

[ξρu− p1 − p2]σ = [ηρu],

[(u− ξ)ϕ]σ = [(η − v)ϕ],

[ξρv]σ = [ηρv − p1 − p2],

(2.15)

where σ = η′(ξ) and [h] = hr − h`, h`, hr are the limit states on the left- and right-
hand sides of the discontinuity curve η = η(ξ), respectively. When axisymmetry is
given, the discontinuity curve has an infinite slope at the ξ-axis, that is σ = ∞ in
(2.15). So we can obtain

ξ[ρ] = [ρu],

ξ[ρu] = [p1 + p2],

ξ[ϕ] = [ϕu],

[ρv] = 0,
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which yields the slip line

ξ = 0, p1` + p2` = p1r + p2r,

and the forward or backward discontinuity

ξ = ±
( [p1 + p2]

[ρ]

)1/2

,

(ur − ξ)ρr = (u` − ξ)ρ`,
(ur − ξ)ϕr = (u` − ξ)ϕ`,

ρrvr = ρ1v`.

(2.16)

Recalling ξ = 1/s and (2.10), the system (2.16) can be transformed to

(1− Ir)K
2

γ1−1
r = (1− I`)K

2
γ1−1

` ,

(1− Ir)H
2
γ2
r K

2
γ2(γ1−1)
r = (1− I`)H

2
γ2
` K

2
γ2(γ1−1)

` ,

K
2

γ1−1
r −K

2
γ1−1

` =
1
γ1

(
K

2γ1
γ1−1
r −K

2γ1
γ1−1

`

)
+

1
γ2

(
H2
rK

2
γ1−1
r −H2

`K
2

γ1−1

`

)
,

ρrvr = ρ`v`.

(2.17)

3. Solutions for u0 ≤ 0

In this section, we construct global bounded continuous solutions to problem
(2.6) and (2.7) with initial negative radial velocity. Here we only consider the case
γ1 6= γ2, the result for case γ1 = γ2, which corresponds to the generalized Chaplygin
gas, can be found in [25]. If u0 = 0, we get from (2.8) that ρ = ρ0, ϕ = γ2p2(ϕ0)/ρ0

and u = 0 is a trivial solution. So we only consider the case u0 < 0 in the present
section and divide this into two cases: −3 < γ1 < γ2 < −1 and −3 < γ2 < γ1 < −1.

We introduce

A := 1− γ2 − 1
2

I −K2 −H2,

B := 1 + I − 2K2 − 2H2,

C := 1− γ1 − 1
2

I −K2 −H2,

D := 1−K2 −H2.

Then (2.12) and (2.13) become

dI

dτ
= IB,

dK

dτ
= KC,

dH

dτ
= HA,

ds

dτ
= D.

3.1. Case one: −3 < γ1 < γ2 < −1. We denote the set

Ω1 :
{
I < 0, K > 0, H > 0; B > 0 for − 1 < I ≤ 1/γ2,

A > 0 for 1/γ2 ≤ I < 0,
} (3.1)

see Figure 1.
It is not difficult to show that the far-fields solutions starting at s = 0+ enter

the region Ω1 and do not leave Ω1 as s increases. Notice that s > 0 is increasing
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Figure 1. Integral curves for u0 < 0 in Ω1.

function of τ in Ω1 by (3) and one can find that the stationary points of (3) in
the closure Ω1 are (H, I,K) = (1, 0, 0), (H, I,K) = (0, 0, 1), (H, I,K) = (0,−1, 0),

Q1 = (0, 1
γ1
,
√

1+γ1
2γ1

), Q2 = (
√

1+γ2
2γ2

, 1
γ2
, 0), and the points on the edge

E : K2 +H2 = 1, I = 0, K > 0, H > 0.

Therefore, there is no stationary point in the open region Ω1 and all the stationary
points are on the boundary of Ω1.

Lemma 3.1. Solutions inside Ω1 do not leave Ω1 from its sides (excluding possibly
edge or corners) as s increases.

Proof. It is easy to see from (3) that the sides of Ω1 in the surfaces H = 0, I = 0
or K = 0 are invariant regions. We need only to verify that no solution leaves Ω1

from the following surfaces Ã and B̃

Ã :=
{

(H, I,K) : A = 0, H > 0, K > 0, 1/γ2 < I < 0
}
,

B̃ :=
{

(H, I,K) : B = 0, H > 0, K > 0, −1 < I < 1/γ2

}
.

We easily obtain that in the coordinate order (H, I,K) the outward normal of
surface B̃ is given by

~n eB =
(
4H,−1, 4K

)
.

Noting that A < 0 and C < 0 and calculating the inner product of the normal ~n eB
with the tangent vector of an integral curve of (3) on the surface B̃ yields

~n eB ·
(dH
dτ

,
dI

dτ
,
dK

dτ

)
= 4H2A− IB + 4K2C < 0,
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which implies that no solution leaves Ω1 from the surface B̃ as s increases.
An outward normal of the surface Ã is given by

~n eA =
(
2H,

γ2 − 1
2

, 2K
)

in the order (H, I,K). We similarly compute the inner product of the normal ~n eA
with the tangent vector of the integral curve on the surface ~n eA to obtain

~n eA ·
(dH
dτ

,
dI

dτ
,
dK

dτ

)
= 2H2A+

γ2 − 1
2

IB + 2K2C < 0,

because B < 0, C < 0 and γ2−1
2 < 0 on the surface Ã. Hence, no solution leaves

Ω1 from the surface Ã. Thus, we complete the proof. �

Now, we study the local structure of integral curves at the stationary points of
(3). We first notice that no integral curve from inside Ω1 goes to (H, I,K) = (0, 0, 1)
or Q1, since the component H, by (3), is an increasing function of τ in Ω1 for
I ∈

(
1
γ2
, 0
)
.

Setting

Ĥ = H −
√

1 + γ2

2γ2
, Î = I − 1

γ2
, K̂ = K,

and linearizing system (3) at point Q2 yields

dÎ

dτ
=

1
γ2
Î − 4

γ2

√
1 + γ2

2γ2
Ĥ,

dK̂

dτ
=
γ2 − γ1

2γ2
K̂,

dĤ

dτ
= −γ2 − 1

2

√
1 + γ2

2γ2
Î − 1 + γ2

γ2
Ĥ.

(3.2)

We compute the eigenvalues to get

λ0
Q2

=
γ2 − γ1

2γ2
< 0, λ−Q2

= −1 + γ2

γ2
< 0, λ+

Q2
= 1,

which indicate that the stationary point Q2 is hyperbolic. Similarly, we obtain that
the stationary point Q1 is also hyperbolic. For each integral curve ending at Q2, we
find that s→ +∞ and thus ξ → 0+ as τ → +∞ due to D = γ2−1

2γ2
> 0. Hence, this

family of integral curves (called the transitional solutions) yields smooth solutions
of problem (2.6) and (2.7) in the entire region ξ ∈ (0,+∞).

Now, we linearize system (3) at stationary points on curve E ∪ {(H, I,K) =
(1, 0, 0)}. Setting

Ĥ = H − α, Î = I, K̂ = K −
√

1− α2

for 0 < α ≤ 1, one can obtain

dÎ

dτ
= −Î ,

dK̂

dτ
= −γ1 − 1

2

√
1− α2 Î − 2(1− α2)K̂ − 2α

√
1− α2 Ĥ,

dĤ

dτ
= −γ2 − 1

2
αÎ − 2α

√
1− α2 K̂ − 2α2Ĥ.

(3.3)
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which has three eigenvalues λ1 = −2, λ2 = −1 and λ3 = 0. So, solutions of (3)
near E ∪ {(H, I,K) = (1, 0, 0)} approach E ∪ {(H, I,K) = (1, 0, 0)} exponentially
as τ → +∞. From equation (3), we find

ln
( s
s0

)
=
∫ τ

τ0

(
1−K2 −H2

)
dτ,

where s0 = s(τ0) > 0. Hence, s approaches a finite number as τ → +∞ since
1 − K2 − H2 approaches zero exponentially. We linearize system (3) at point
(H, I,K) = (0,−1, 0) and get

dÎ

dτ
= −Î ,

dK̂

dτ
=

1 + γ1

2
K̂,

dĤ

dτ
=

1 + γ2

2
Î ,

which has three eigenvalues λ1 = −1, λ2 = 1+γ1
2 < 0 and λ3 = 1+γ2

2 < 0. Similarly,
we conclude that the parameter s approaches a finite number as τ → +∞.

We now depict the integral curves inside Ω1 in Figure 1. It is useful to observe
that there exists a stable manifold of system (3) at the point Q2 (see [13, 3] for
details) which contains the transitional curve in H = 0, the transitional integral
curve in K = 0 and the heteroclinic orbit from the point Q1. There are three kinds
of integral curves relative to this manifold. The first kind consists of integral curves
that are below the manifold and go to the stationary point (0,−1, 0). Each of the
second king is right on the manifold and goes to the stationary point Q2. The third
kind consists of integral curves that are above the manifold and go to E∪{(1, 0, 0)}.
None of the integral curves from inside Ω1 goes to point (H, I,K) = (0, 0, 1) or Q1.

We construct global solutions for (2.11) when u0 < 0 and −3 < γ1 < γ2 < −1.
For each integral curve which ends at point (H, I,K) = (0,−1, 0), there exists a

solution (1/ρ, u, ϕ) =
((

K2

−A1γs2

) 1
1−γ1 , I/s,H2/s2

)
defined for s ∈ (0, s∗1] for some

positive number s∗1 < +∞, and then continue the solution by 1/ρ = 0, ϕ = 0 in
s ∈ [s∗1,+∞). We here do not need to specify the function u in the above state
since system (3) has 1/ρ or ϕ as a factor in every term. For each integral curve
ending at a point on E ∪ {(1, 0, 0)}, there exists a solution defined for s ∈ (0, s∗2]
for some positive s∗2 < +∞. We next continue the solution by the constant state
(1/ρ, u, ϕ) = (1/ρ(s∗2), 0, ϕ(s∗2)) in s ∈ [s∗2,+∞).

3.2. Case two: −3 < γ2 < γ1 < −1. It can be verified that all far-field solutions
of system (2.11) with u0 < 0, ρ0 > 0 and ϕ0 > 0 enter the domain Ω2 in s > 0
where Ω2 ∈ R3 be the set of points (H, I,K) satisfying

Ω2 :

{
I < 0, K > 0, H > 0; B > 0 for − 1 < I ≤ 1/γ1,

A > 0 for 1/γ1 ≤ I < 0
}
,

(3.4)

see Figure 2. In this case, system (3) has similar stationary points with the case
γ1 < γ2. Analogously, there is no stationary point in the interior of Ω2. So, we can
get the following lemma.
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Figure 2. Integral curves for u0 < 0 in Ω2.

Lemma 3.2. Solutions inside Ω2 do not leave Ω2 from its sides (excluding possibly
edge or corners) as s increases.

Proof. It is easy to see from (3) that the sides of Ω2 in the surfaces H = 0, I = 0
or K = 0 are invariant regions. We need only to verify that no solution leaves Ω2

from the following surfaces B̃ and C̃

B̃ :=
{

(H, I,K) : B = 0, H > 0, K > 0, −1 < I <
1
γ1

}
,

C̃ :=
{

(H, I,K) : C = 0, H > 0, K > 0,
1
γ1

< I < 0
}
.

Analogous to the proof of Lemma 3.1, we can obtain that no solution leaves Ω2

from the surface B̃ as s increases. An outward normal of the surface C̃ is

~n eC =
(
2H,

γ1 − 1
2

, 2K
)

in the order (H, I,K). We directly compute on the surface C̃

~n eC ·
(dH
dτ

,
dI

dτ
,
dK

dτ

)
= 2H2A+

γ1 − 1
2

IB + 2K2C < 0,

since A < 0, B < 0 and γ1−1
2 < 0 on the surface C̃. Hence, no solution leaves Ω2

from the surface C̃. These above indicate that the Lemma is true. �

Similar to the case γ1 < γ2, no integral curve inside Ω2 goes to points (H, I,K) =
(1, 0, 0) or Q2, since the function K is an increasing function of τ in Ω2 for I ∈
(0, 1/γ1) by (3). For the local structure of solutions at E ∪{(0, 0, 1)} and the point
(H, I,K) = (0,−1, 0), we may see the related results for the case γ1 < γ2 and here
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omit the details. We next consider the local structure of solutions at the stationary
point Q1. Setting

Ĥ = H, Î = I − 1
γ1
, K̂ = K −

√
1 + γ1

2γ1
,

and linearizing system (3) gives

dÎ

dτ
=

1 + γ1

2γ1
Î − 4

γ1

√
1 + γ1

2γ1
K̂,

dK̂

dτ
= −γ1 − 1

2

√
1 + γ1

2γ1
Î − 1 + γ1

γ1
K̂,

dĤ

dτ
=
γ1 − γ2

2γ1
Ĥ,

which three eigenvectors are

λQ1 =
γ1 − γ2

2γ1
, λ±Q1

=
(1 + γ1)±

√
(1 + γ1)(25γ1 − 7)
−4γ1

.

In this case, we easily see that λQ1 < 0, λ−Q1
< 0 and λ+

Q1
> 0, which indicates that

the stationary point Q1 is hyperbolic. The hyperbolicity of the stationary point Q2

can be established in a similar way.
The integral curves in Ω2 in Figure 2 can be depicted as follows. There also

exists a stable manifold of system (3) for −3 < γ2 < γ1 < −1 at the point Q1 which
contains the transitional integral curve in H = 0, the transitional integral curve
in K = 0 and the heteroclinic orbit from the point Q2. There are three kinds of
integral curves relative to this stable manifold. The first kind consists of integral
curves that are below the manifold and go to the stationary point (0,−1, 0). Each
of the second kind is right on the manifold and goes to the stationary point Q1.
The third kind consists of integral curves that are above the manifold and go to
E ∪ {(0, 0, 1)}. None of the integral curves from inside Ω2 goes to (1, 0, 0) or Q2.

Now the construction of the global solutions of system (3) for u0 < 0 and
−3 < γ2 < γ1 < −1. For each integral curve ending at (H, I,K) = (0,−1, 0),
we continue the solution by vacuum state 1/ρ = 0, ϕ = 0 in s ∈ [s∗3,+∞) for some
positive s∗3 < +∞. We also do not specify the function u in the vacuum. For each
solution curve ending on E ∪ {(0, 0, 1)}, we continue the solution by the constat
state (1/ρ(s∗4), 0, ϕ(s∗4)) in s ∈ [s∗4,+∞) for some positive finite number s∗4. The
integral curves ending at point Q1 (that is the second kind) are already defined for
all s > 0 since τ → +∞ and the right hand side of equation (2.13)) does not vanish
at Q1.

Furthermore, from the last equation of (2.4), we have

v(s) = v0 exp
(∫ s

0

u

1−K2 −H2
ds
)
, (3.5)

which is a finite number for u < 0 and 1−K2 −H2 > 0.
In summary, we have constructed global bounded continuous solutions to system

(2.4) and (2.5) in the case u0 ≤ 0.
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4. Solutions for u0 > 0

In this section, we construct global solutions for problem (2.6) and (2.7) with
initial positive pure radial velocity for the case γ1 < γ2. For the other case γ1 > γ2,
we can obtain the same results, similarly.

It is not difficult to prove that the integral curves of system (3) starting at the
origin with u0 > 0, ρ0 > 0 and ϕ0 > 0 enter the region Ω3 := Ω31 ∪ Ω32, where

Ω31 := {(H, I,K) : H > 0, I > 0, K > 0, B > 0, 0 < I < 1},
Ω32 := {(H, I,K) : H > 0, I > 0, K > 0, D > 0, I > 1},

see Figure 3. Denote Ω′3 := {H > 0, I > 0,K > 0, D < 0, B < 0}. Obviously,
according to (3), the variable s is increasing in region Ω3. We conclude, however,
that the integral curves in Ω3 do not always lie in it.

1

H

I

K

1

1
−1

O

C=0

E

B=0

Figure 3. Integral curves for u0 > 0 in the case γ1 < γ2.

Lemma 4.1. Each integral curve of system (3) from the origin passes through the
surface D = 0 or B = 0 at a finite point (τ,H, I,K) and enters the domain Ω′3,
and then crosses the surface C = 0 at a finite τ from C > 0 to C < 0.

Proof. To demonstrate the first part of the Lemma, we divide it into two parts.
(1) If the integral curves from the origin do not enter Ω32. It is easy to obtain

from B > 0 that 2(K2 +H2) < 1 + I, from which, we find that

C = 1− γ1 − 1
2

I − (K2 +H2) ≥ (K2 +H2)− γ1 + 1
2

I ≥ K2.
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From the equation for K, we find that

dK
dτ

= KC ≥ K3

which implies that K blows up at a finite τ = τ̂ . Combining this and the fact
0 < I < 1, we conclude that the integral curve must pass through the surface
B = 0 and D = 0, and then enters the domain Ω′3.

(2) If the integral curves from the origin leave the region Ω31 and then enter the
region Ω32. Similar to the above procedure, the solution curves must pass through
the surface D = 0 at finite τ . Now, we prove that the above curves must pass
through the surface B = 0 at a finite τ , and then enter the domain Ω′3.

Suppose, on the contrary, such an integral curve is always under the surface
B = 0. It follows from the I equation that I is increasing for all τ . Using the K
equation, B > 0 and I > 1, we have

d lnK
dτ

= 1− γ1 − 1
2

I − (K2 +H2) ≤ 1− γ1 − 1
2

I,

which means that ∫ τm

τ0

(
1− γ1 − 1

2
I
)
dτ = +∞,

for some positive number τm, from which one can achieve∫ τm

τ0

(
− 1 + γ1

2
I +K2 +H2

)
dτ = +∞. (4.1)

We arrange the K equation in the following form

dK

dτ
= K

(
B − 1 + γ1

2
I +K2 +H2

)
.

Integrating the above equality with respect to τ from τ0 to τ yields

K = K0 exp
( ∫ τ

τ0

Bdτ
)
· exp

(∫ τ

τ0

(
− 1 + γ1

2
I +K2 +H2

)
dτ
)
, (4.2)

where K0 = K(τ0). One can also obtain from the I equation that

I = I0 exp
(∫ τ

τ0

Bdτ
)
, (4.3)

where I0 = I(τ0). Combining (4.1) with (4.2) and (4.3) gives

K

I
=
K0

I0
exp

(∫ τ

τ0

(
− 1 + γ1

2
I +K2 +H2

)
dτ
)
→ +∞, as τ → τm.

On the other hand, one can obtain from the assumption B > 0 and the fact I > 1
that

2K2 < 2(K2 +H2) < 1 + I < (1 + I)2,

which gives √
2K
I

< 1 +
1
I
.

The right-hand side of the above inequality is bounded. So we get a contradiction.
Next, we prove the second part of the Lemma, that is that all integral curves

from Ω′3 cross the surface C = 0 at a finite τ . One can obtain that all integral curves
from Ω′3 in I > 0 must end at E := E ∪ {(1, 0, 0), (0, 0, 1)}. By the linearization
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equation (3.3) of (3), we get that the eigenvalues of (3.3) are λ1 = −2, λ2 = −1
and λ3 = 0, and the corresponding eigenvectors are in turn

~r1 = (α, 0,
√

1− α2),

~r2 =
(
α
[
(1 + γ2 − 2γ1)− 2(γ2 − γ1)α2

]
, 2, [(1− γ1)− 2(γ2 − γ1)α2]

√
1− α2

)
,

~r3 =
(√

1− α2, 0,−α
)

for 0 ≤ α ≤ 1. Since 2γ2 < 1 + γ1 for −3 < γ1 < γ2 < −1, we compute the inner
product of the normal ~n eC with the vector ~r2 on E to obtain

~n eC · ~r2 = α2
[
2(γ2 − γ1)(1− α2) + 1− γ2

]
+ (1− α2)

[
(1− γ1)− 2(γ2 − γ1)α2

]
+ (γ1 − 1)/2

= (γ1 − γ2)α2 + (1− γ1)/2 > 0,

which indicates that each integral curve from Ω′3 will pass through the surface C = 0
at a finite τ and then go to a stationary point on E along the direction ~r2. �

Using (3), we can see that the variable s(τ) starts to decrease as τ increases in
the domain {D < 0}, which means that no continuous solutions exist in the case
u0 > 0. Hence we need to use discontinuous solutions to construct global solutions.

Denote the subscripts r and ` the front (the side close to ξ = +∞) and behind
(the side close to the origin) states, respectively. Here we have ignored the backward
discontinuous solutions since we will not need it. The entropy condition requires
that ρr < ρ`, or equivalently, by (2.17),

Kr > K`, Ir < I` or Hr > H`. (4.4)

Using the R-H relation (2.17), we get the following lemma.

Lemma 4.2. For any state (H`, I`,K`) in the domain {D > 0} ∩ {I` > 0}, there
exists a state (Hr, Ir,Kr) in the domain {D < 0} ∩ {Ir > 0} satisfying the R-H
relation (2.17) and the entropy condition (4.4).

Proof. It is easy to see from the third equation of (2.17) that

1 =
1
γ1

(
K

2γ1
γ1−1
r −K

2γ1
γ1−1

`

)(
K

2
γ1−1
r −K

2
γ1−1

`

)−1

︸ ︷︷ ︸
f(K`,Kr)

+
1
γ2

(
H2
rK

2
γ1−1
r −H2

`K
2

γ1−1

`

)(
K

2
γ1−1
r −K

2
γ1−1

`

)−1

︸ ︷︷ ︸
g(K`,Kr)

.

Setting

x = K
2

γ1−1
r and x0 = K

2
γ1−1

` ,

we have

f(K`,Kr) := f(x0, x) =
1
γ1

xγ1 − xγ10

x− x0
.

Since
(
xγ1/γ1

)′ = xγ1−1 > 0,
(
xγ1/γ1

)′′ = (γ1 − 1)xγ1−2 < 0 for 0 < x < x0 and
−3 < γ1 < −1, we obtain from the entropy condition (4.4) that

K2
` < f(K`,Kr) < K2

r . (4.5)
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Now, we claim that
H2
` < g(K`,Kr) < H2

r . (4.6)
In fact, from (2.17), we have

H2
` =

(K`

Kr

) 2(γ2−1)
γ1−1

H2
r := y−(γ2−1)H2

r ,

where 0 < y =
(
Kr/K`

)2/(γ1−1)
< 1. Thus

g(K`,Kr) = y−(γ2−1)H2
r ·

1
γ2

yγ2 − 1
y − 1

,

which gives

K2
` = y−(γ2−1)H2

r < g(K`,Kr) < H2
r .

Combining (4.5) and (4.5) and (4.6) gives

K2
` +H2

` < 1 < K2
r +H2

r , (4.7)

from which it follows that (Hr, Ir,Kr) ∈ {D < 0} ∩ {Ir > 0}. �

From the R-H relation and the entropy condition, we only have three equations
for four variables (H(I`), I`,K(I`)) and (Hr, Ir,Kr), so we need one more condi-
tion to find a unique shock wave transition. Here H` = H(I`),K` = K(I`) are
determined by the integral curve of system (3).

According to (3), the direction of τ is opposite to that of s in the domain {D < 0}.
Therefore, shock transition from a state (H`, I`,K`) in D > 0 to a state (Hr, Ir,Kr)
on the plane I = 0 is the only one leading to a global solution, since the integral
curve on the plane I = 0 yields stationary constant ρ and ϕ solutions to system
(1.4). Thus, we require that

Ir = 0. (4.8)

Lemma 4.3. For any integral curve in the quadrant {H > 0, I > 0,K > 0} of the
autonomous system (3), there exists a solution (Hr, Ir,Kr, H`, I`,K`) with I` > 0
satisfying the R-H relation (2.17), the entropy condition (4.4) and the condition
(4.8).

Proof. We establish this lemma by the method of continuity. Since each integral
curve of system (3) in the quadrant {H > 0, I > 0,K > 0} crosses the surface
D = 0 at a finite τ by Lemma 4.1, then if we take the cross point as (H`, I`,K`),
the solution to the R-H relation (2.17) would be the same point, i.e., (H`, I`,K`) =
(Hr, Ir,Kr). Now moving from this point down the integral curve, we notice by the
R-H relation (2.17) that Ir will become minus when (H`, I`,K`) is near the origin.
In fact, if not, we then have K2

r + H2
r > 1 by (4.7). Thus, one has by the R-H

relation (2.17)

(1− I`)(K
2

γ1−1

` +H
2
γ2
` K

2
γ2(γ1−1)

` ) = (1− Ir)(K
2

γ1−1
r +H

2
γ2
r K

2
γ2(γ1−1)
r )

≤ (K
2

γ1−1
r +H

2
γ2
r K

2
γ2(γ1−1)
r ) < c∗

for some positive constant c∗, which contradicts to the fact (H`, I`,K`)→ (0, 0, 0).
Hence, we have Ir > 0 when the point (H`, I`,K`) near the origin. By continuity,
we must have a solution (Hr, Ir,Kr, H`, I`,K`) with I` > 0 for equations (2.17)
and (4.8) and the entropy condition (4.4). �



16 G. WANG, Y. HU, H. LIU EJDE-2017/156

From (3) and (3), we get a subsystem on the plane I = 0, that reads

dK
dτ

= K(1−H2 −K2),

dH
dτ

= H(1−H2 −K2),

ds
dτ

= s(1−H2 −K2),

which means that
dK
ds

=
K

s
,

dH
ds

=
H

s
,

which imply that K
s and H

s are constant. Then a point (H, I,K) = (Hr, 0,Kr) on
the plane I = 0 gives a constant solution to system (2.8)

u = 0,
1
ρ

=
(
−A1γ1

) 1
γ1−1 (ξ∗∗Kr)

2
1−γ1 , ϕ = (ξ∗∗Hr)2, (0 < ξ < ξ∗∗),

where ξ∗∗ = 1/s∗∗ is the radial coordinate ξ of the shock location.
We are now ready to construct global solutions for (2.8) in the case u0 > 0. For

any integral curve of (3), there exists a solution (H`, I`,K`, Hr, Ir,Kr) satisfying
Lemma 4.3 such that (H`, I`,K`) on the integral curve and (Hr, Ir,Kr) on the
plane I = 0. For this integral curve from (H, I,K) = (0, 0, 0) to (H, I,K) =
(H`, I`,K`), we have a solution

(
1/ρ, u, ϕ) =

(
(K2/(−A1γ1s

2))
1

1−γ1 , I/s,H2/s2
)

defined for s ∈ (0, s∗∗] for some positive number s∗∗ < +∞ such that (H`, I`,K`) =
(H(s∗∗), I(s∗∗),K(s∗∗)). The solution for s ∈ [s∗∗,+∞) is specified as (1/ρ, u, ϕ) =
((K2

r/(−A1γ1s
∗∗2))

1
1−γ1 , 0, H2

r /s
∗∗2). We use a shock wave to connect the two states

(1/ρ, u, ϕ) = ((K2
r/(−A1γ1s

∗∗2))
1

1−γ1 , 0, H2
r /s
∗∗2) and

(1/ρ, u, ϕ) = ((K2
` /(−A1γ1s

∗∗2))
1

1−γ1 , I`/s
∗∗, H2

` /s
∗∗2)

at s = s∗∗. Here s∗∗ (i.e., the shock location ξ∗∗) is determined by the R-H
relation (2.17), the entropy condition (4.4), the compatibility condition (4.8) and
the autonomous system (3).

From the last equation in (2.17), we have the v component of the solution is

v =
ρ`v`
ρ
.

5. Conclusions

We first summarize the results for system (1.4).

Theorem 5.1. For any datum (ρ0, u0, v0, ϕ0) with ρ0 > 0 and ϕ0 > 0, there exists
a global solution (ρ, u, v, ϕ) to the initial-value problem (1.4) and (2.3).

Similar to [10], we obtain from the system (2.8) for ρ > 0, ϕ > 0 that

dϕ
ϕ

= (γ2 − 1)
dρ
ρ

or
dϕ
ϕ

=
dρ
ρ
,

which means that our solutions satisfy ϕ/ρ = ϕ0/ρ0 in the smooth case. If we
restrict ϕ0 = ρ0 at initial time, then we have ϕ = ρ in the smooth case. Moreover,
the constant states continued the smooth parts of solutions for (2.4) are also the
constant solutions to system (1.1). One can easily check that the shock solution of
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system (1.4) is also a shock solution to system (1.1) with (1.2) if the initial data
satisfies ϕ0 = ρ0. Therefore, we have the following theorem.

Theorem 5.2. For any datum (ρ0, u0, v0) with ρ0 > 0, there exists a global solution
(ρ, u, v) to the initial-value problem (1.1) and (2.3) when p(ρ) = A1ρ

γ1 +A2ρ
γ2 for

any constants Ai < 0,−3 < γi < −1 (i = 1, 2).
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[2] S. Čanié, B. L. Keyfitz, E. H. Kim; Free boundary problems for nonlinear wave systems:

Mach stems for interacting shocks, SIAM J. Math. Anal. 37 (2006), 1947-1977.

[3] J. Carr; Applications of centre manifold theory, Springer-Verlag, New York, 1981.
[4] S. Chaplygin; On gas jets, Sci. Mem. Moscow Univ. Math. Phys. 21 (1904), 1-121.

[5] G.-Q. Chen, J. Glimm; Global solutions to the compressible Euler equations with geometrical

structure, Comm. Math. Phys. 180 (1996), 153-193.
[6] G.-Q. Chen, X. Deng, W. Xiang; Shock Diffraction by Convex Cornered Wedges for the

Nonlinear Wave System, Arch. Ration. Mech. Anal. 211 (2014), 61-112.

[7] L. Guo, W. Sheng; Axisymmetric solutions of the Chaplygin gas for initial negative radial
velocity, J. Shanghai University 14 (2010), 380-386.

[8] L. Guo, W. Sheng; Axisymmetric solutions of the Euler system for the Chaplygin gas (in

Chinese), China Ann. Math. 32A (2011), 193-204.
[9] Y. Hu; Axisymmetric solutions of the pressure-gradient system, J. Math. Phys. 53 (2012)

073703.
[10] Y. Hu; Axisymmetric solutions of the two-dimensional Euler equations with a two-constant

equation of state, Nonlinear Anal. Real World Appl. 15 (2014), 67-79.

[11] Y. Hu, G. Wang; Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave
system for Chaplygin gases, J. Differential Equations 257(5) (2014), 1567-1590.

[12] Y. Hu, G. Wang; The interaction of rarefaction waves of a two-dimensional nonlinear wave

system, Nonlinear Anal. Real World Appl. 22 (2015), 1-15.
[13] A. Kelley; The stable, center stable, center, center unstable and unstable manifolds, J. Dif-

ferential Equations 3 (1967), 546-570.

[14] E. H. Kim; A global subsonic solution to an interaction transonic shock for the self-similar
nonlinear wave equation, J. Differential Equations 248 (2010), 2906-2930.

[15] E. H. Kim; An Interaction of a Rarefaction Wave and a Transonic Shock for the Self-Similar

Two-Dimensional Nonlinear Wave System, Comm. Partial Differential Equations 37 (2012)
610–646.

[16] E. H. Kim, C.-M. Lee; Numerical solutions to shock reflection and shock interaction problems
for the self-similar transonic two-dimensional nonlinear wave system, J. Comput. Sci. 4

(2013), 36-45.
[17] E. H. Kim, C.-M. Lee; Transonic shock reflection problems for the self-similar two-

dimensional nonlinear wave system, Nonlinear Anal. 79 (2013), 85-102.
[18] E. H. Kim; Transonic shock and rarefaction wave interactions of two-dimensional Riemann

problems for the self-similar nonlinear wave system, Bull. Braz. Math. Soc. 47 (2016), 431-
444.

[19] J. Li, T. Zhang, S. Yang; The two-dimensional Riemann problem in gas dynamics, Longman,
New York, 1998.

[20] J. Li, W. Sheng, T. Zhang, Y. Zheng; Two-dimensional Riemann problems: from scalar
conservation laws to compressible Euler equations, Acta Math. Sci. 29 (2009), 777-802.

[21] A. A. Sen, R. J. Scherrer; Generalizing the generalized Chaplygin gas, Phys. Rev. D 72(6)
(2005), 3511-1-3511-8.



18 G. WANG, Y. HU, H. LIU EJDE-2017/156

[22] H. S. Tsien; Two dimensional subsonic flow of compressible fluids, J. Aeron. Sci. 6 (1939),

399-407.

[23] A. M. Tesdall, R. Sanders, B. L. Keyfitz; The triple point paradox for the nonlinear wave
system, SIAM J. Appl. Math. 67 (2006) 321–336.
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