Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 149, pp. 1-27.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ASYMMETRIC SUPERLINEAR PROBLEMS UNDER STRONG
RESONANCE CONDITIONS

LEANDRO RECOVA, ADOLFO RUMBOS

ABSTRACT. We study the existence and multiplicity of solutions of the problem
—Au=—-\u" +g(z,u), in 1)
u =0, on 0,

where € is a smooth bounded domain in RN (N > 2), u~ denotes the negative
part of u: Q@ — R, A1 is the first eigenvalue of the N-dimensional Laplacian
with Dirichlet boundary conditions in €2, and g : 2 X R — R is a continuous
function with g(z,0) = 0 for all # € Q. We assume that the nonlinearity
g(z,s) has a strong resonant behavior for large negative values of s and is
superlinear, but subcritical, for large positive values of s. Because of the lack
of compactness in this kind of problem, we establish conditions under which
the associated energy functional satisfies the Palais-Smale condition. We prove
the existence of three nontrivial solutions of problem as a consequence of
Ekeland’s Variational Principle and a variant of the mountain pass theorem
due to Pucci and Serrin [14].

1. INTRODUCTION

Let Q denote a bounded, connected, open subset of RY, for N > 2, with smooth
boundary 9Q2. We are interested in the existence and multiplicity of solutions of
the semilinear elliptic boundary value problem (BVP):

—Au=-Mu" +g(x,u), in

1.1
u=0, on 9Jf, (1.1)

where u~ denotes the negative part of u: 2 — R, )y is the first eigenvalue of the N-
dimensional Laplacian with Dirichlet boundary conditions in 2, and g: @ xR — R
and its primitive

G(z,s) = /OS g(z,8)d¢, for x € Q and s € R, (1.2)

satisfy the following conditions:

(A1) g€ C(Q x R,R) and g(z,0) =0 for all z € (.
(A2) lims,_ o g(z, s) = 0, uniformly for a.e. z € Q.
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(A3) There exists a constant o such that 1 < o < (N +2)/(N —2) for N > 3,
orl <o <oofor N=2 and

lim =0,
s—+o00 SO

uniformly for a.e. x € Q.
(A4) There are constants y > max {2, %} and s, > 0 such that
0 < uG(z,s) < sg(x,s), fors>s,and z € Q.
(A5) lims—, oo G(x,8) = G_, uniformly in z, where G_, € R.
Writing
q(z,s) = =M\s™ +g(x,s), for (x,s) € QA xR, (1.3)
we assume further that
(A6) g€ CY(Q x R,R) and ¢(z,0) = 0; and
(AT) %(x, 0) = a, for all x € Q, where a > A;.
We determine conditions under which the BVP in has nontrivial solutions.
By a solution of we mean a weak solution; i.e, a function u € Hg () satisfying

/Vu~Vvd:17+)\1/ufvdzf/g(x,u)vdm:(), for all v € HY(2), (1.4)
Q Q Q

where HE(Q) is the Sobolev space obtained through completion of C'°(Q) with
respect to the metric induced by the norm

RN )
lull = (/Q |Vul dx) , for all u e Hy(2).

The weak solutions of (1.1 are the critical points of the functional J: H{ () —
R given by

J(u):%/Q|Vu|2d1’f%/Q(uf)de—/QG(x,u(x))dz, (1.5)

for u € H}(Q). Indeed, the functional J given in (L.5) is in C*(H{(Q),R) with
Fréchet derivative at every u € H}(Q2) given by

J’(u)v:/Vu-Vvdx—!—)\l/u*vdx—/g(x,u)vdac, for all v € H} (). (1.6)
Q Q Q

Thus, comparing (|1.4]) with (1.6]), we see that critical points of J are weak solutions
of (T.1).

In many problems, the following condition, known as the Palais-Smale condition,
is usually needed to prove the existence of critical points of a functional.

Definition 1.1 (Palais-Smale Sequence). Let J € C'(X,R), where X is a Banach
space with norm || - ||. A sequence (u,,) in X satisfying

J(um) —c and || (upm)|]| = 0 as m — oo,
is said to be a Palais-Smale sequence for J at c.
If (u,,) is a sequence satisfying
(i) |J(um)| < M for all m =1,2,3,... and some M > 0;
(i) [} ()| — 0 2 m — 00

we say that (u,,) is a Palais-Smale sequence for J.
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Definition 1.2 (Palais-Smale Condition). A functional J € C'(X,R), where X is
a Banach space with norm || - ||, is said to satisfy the the Palais-Smale condition
at ¢, denoted (PS),, if every Palais-Smale sequence for J at ¢ has a convergent
subsequence. In particular, if J has a Palais-Smale sequence at ¢, and J satisfies
the (PS), condition, then ¢ is a critical value of J.

We say that J satisfies the (PS) condition if every (PS) sequence for J has a
convergent subsequence.

It follows from condition (A2) and (1.3)) that

a(z.5) =\, forallzeQ. (1.7)

lim
S§——00
The condition in makes the BVP in into a problem at resonance. Exis-
tence for problems at resonance is sometimes obtained by imposing a Landesman-
Lazer type condition on the nonlinearity. The authors of this article obtained
existence and multiplicity for the BVP in [I5] for the case in which

lim g(z,s) = g-oo(z)

exists for all z € Q, and
/ g—oo(x)p1(z) dz > 0, (1.8)
Q

where 1 is an eigenfunction of the N-dimensional Laplacian over €2 corresponding
to the eigenvalue A;, with ¢pi(z) > 0 for all z € Q. In the case in which the
Landesman-Lazer condition (|1.8]) holds, the authors were able to prove that the
functional J defined in (1.5)) satisfies the (PS) condition.

Note that the assumption in (A2) prevents condition (|1.8) from holding true.
So that, a Landesman-Lazer type condition does not hold for the problem at hand.
As a consequence, we will not be able to prove that the functional J satisfies
the (PS) condition. We will, however, be able to show that J satisfies the (PS),
condition at values of ¢ that are not in an exceptional set, A. In the case in which
conditions (A1)—(A5) hold true, we will prove in the next section that the functional
J € CY(H}(2),R) given in (L.5)) satisfies the (PS), condition provided that

¢ ~G_nl0), (1.9)
where || denotes the Lebesgue measure of €; thus, the exceptional set in this case
is

A={-G_|Q}. (1.10)
It is not hard to see that the functional J defined in (|1.5)) does not satisfy the (PS),
condition at ¢ = c_o, = —G_|9?|. Indeed, the sequence of functions (u,,) given
by
Uy = —mpy, form=1,2,3,...,
is a (PS) sequence, as a consequence of assumptions (A2) and (A5). However,

oo
||Um+1—’ll,m||:||g01”, for allm:1a2737"';

so that (u,,) has no convergent subsequence.

This lack of compactness is typical of problems at strong resonance. The term
strong resonance refers to the situation described by the assumptions in (A2) and
(A5) and was introduced by Bartolo, Benci and Fortunato in [3]. In [3], the authors
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consider problems similar to ((1.1)) in which ¢ is bounded, and in which the excep-
tional set is a singleton as in ; more precisely, the authors of [3] consider the
class of BVPs of the form

—Au = gi(u), in Q

u=0, on 99, (1.11)

where
i (s) = ks — g(s),
with A an eigenvalue of the Laplacian, and g: R — R a bounded, continuous
function with
lim sg(s) =0.

|s|—o0

Furthermore, the authors of [3] assume that the function

is defined for all s € R, and satisfies G(s) > 0 for all s € R, and
lim G(s) =0.

§—00
The authors of [3] proved existence of weak solutions of BVP by introducing a
compactness condition (Condition (C)) that replaces the (PS) condition, and using
the new condition to prove a variant of the deformation lemma.

In [7] and [§], Costa and Silva are able to obtain some of the existence and
multiplicity results of Bartolo, Benci and Fortunato [3] by establishing that the
associated functional J satisfies the (PS), condition for values of ¢ that are not in an
exceptional set. More recently, Hirano, Li and Wang [12] have used Morse Theory
to obtain multiplicity results for this type of problems with strong resonance. In
[12], the exceptional set, A, consists of a finite number of values. They are able
to compute critical groups around the values in A; that is, critical groups are
computed at values where the (PS) condition fails. These critical groups are then
incorporated into a new version of the Morse inequality, which allowed the authors
of [12] to obtain multiplicity results.

In all the articles cited so far, the nonlinearity g is assumed to be bounded. In the
present work, we relax that assumption by allowing g(x, s) to grow superlinearly,
but subcritically, in s, for positive values of s (see (A3) and (A4)), while g(z, s) is
bounded for negative values of s (see (A2)).

For additional information on problems at strong resonance in the context of
critical point theory, the reader is referred to the works of Arcoya and Costa [2], Li
[13], and Chang and Liu [6], and the bibliographies found in those papers.

After establishing that the functional J defined in satisfies the (PS), condi-
tion for ¢ # —G_ || in Section 2] under assumptions (A1)—~(A6), we then proceed
to show in Section [3| that J has a local minimizer distinct from 0, provided that
(A5) holds with G_, < 0, and (A7) also holds. In subsequent sections, we in-
troduce an additional condition on the nonlinearity that will allow us to prove the
existence of more critical point of J. In particular, we will assume the following:

(A8) there exists s1 > 0 such that g(z,s;) =0 for all x € Q.
In Section [4] we prove that if, in addition to (A1)-(A5), with G_,, < 0, (A6) and
(AT), we also assume (A8), then J has a second local minimizer distinct from 0.
Finally, in Section [5] we prove the existence of a third nontrivial critical point of J
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by means of a variant of the mountain-pass theorem proved by Pucci and Serrin in
[14).
2. PROOF OF THE PALAIS-SMALE CONDITION

In this section we prove that the functional J defined in (1.5), where g and
its primitive G satisfy the conditions in (A1)-(A5), satisfies the (PS). condition
provided that ¢ # —G_ ||

Proposition 2.1. Assume that g and G satisfy (A1)-(Ab5), and define J as in
(1.5). Then, J satisfies the (PS). for ¢ # —G_|Q].

Proof. Assume that ¢ # —G_ || and let (u,,) be a sequence in H} () satisfying
J(um) —c and ||J (un)|| =0 asm — oo. (2.1)

Thus, according to (|1.5)) and ((1.6)),

1
7/ |Vum|2dx—£/(u,_n)2dx—/G(x,um(m))dﬂcﬂc, asm— oo, (2.2)
2 Ja 2 Ja Q

and

’/ Vum~Vvdm+)\1/u;vdw—/g(m,um)vdx < emllvl], (2.3)
Q Q Q

for all m and all v € H}(Q), where (g,,,) is a sequence of positive numbers that
tends to 0 as m — oo.

We will show that (u,,) has a subsequence that converges in H}(Q). It follows
from (A2) that there exists s; > 0 such that

—1<g(z,s) <1, fors< —sy, and all z € Q. (2.4)
Consequently,
—|s| < sg(z,8) <|s|, fors< —sy, and all x € Q, (2.5)
and -
—C1—|s| < G(z,s) < CrL+|s], fors< —sp, and all z € Q, (2.6)

for some positive constant C;. Combining (2.5) and ([2.6), and using the continuity
of g, we can find a positive constant Cy such that

— Cy — 3|s| < sg(z,s) — 2G(z,5) < Oy + 3|s|, for s<0, andallz € Q. (2.7)
Similarly, we obtain from (A3) that there exists a positive constant C3 such that
lg(x,8)| < C3 +[s]7, fors>0andze. (2.8)

Finally, we obtain from (A4) that there exist positive constants Cy and C5 such
that
G(z,8) = Cys" — C5, for s >0 and z € Q. (2.9)
Now, it follows from (2.2)) that there exists a positive constant Cg such that

‘/ |Vt | do — /\1/(u7n)2 dx — / 2G(x,um(a:))dx‘ < Cg, forall m. (2.10)
Q Q Q
Taking v = uy, in (2.3]), we obtain

‘/Q\Vumﬁ clnc—)\l/ﬂ(u%)2 dac—/ﬂg(x,um(x))um(x) dm‘ < emllumll, (2.11)

for all m.
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Combining (2.10) and (2.11)) we then obtain that
‘ /[g(a:,um(x))um(x) —2G(x,um(2))] dz| < Cs + epm||lum|], forall m. (2.12)
o

Next, define the sets
O ={zeQ|un(z) <0} Qf ={z€Q|un(zr) >0}
Q. ={zeQ]0<un(z) <sop; Qo ={xeQ|un(z)> s}

Then, using the estimate in ,

\/ (90, tm (@)t () = 26, (2)] do| < €+ Bl 2, for all m. (213)

Note: From this point on in this paper, the symbol C' will be used to represent any
positive constant. Thus, C' might represent different constants in various estimates,
even within the same inequality.

It follows from (2.12) and (2.13)) that
[t () () = 26, ()] da| < C o e+ 3o, (219)
Qn

for all m.
Using the continuity of g and G we deduce the existence of a positive constant
C such that

/QO [9(2, Um (X)) um (x) — 2G (2, um ()] dz < C, for all m. (2.15)

On the other hand, using (A4) we obtain that

<u—2>/mg

for all m; so that, using this estimate in conjunction with (2.15)), (2.13)), (2.12) and
the assumption that p > 2, we obtain that

G(z,um(z))dr < /QSD [9(2, U ()t () — 2G (2, um (2))] d,

Gz, um(z))dx < C 4+ 3||lu, |1 + eml|um|, for all m. (2.16)
Qe

Noting that Q) = Q2 U Qe we obtain from (2.16)) that

| /+ G, um(a)) da| < O+ 8|2 + e, for all m. (2.17)
Qm
Next, we take v = —u,, in (2.3)) to obtain
‘/ |V, |? de — Al/(u;f dm—/ (@, U YUy, d| < e |jur, ||, (2.18)
Q Q Qm
We get from (2.5)) and (2.6)) that
‘/ (2, U (7))t () dx’ <O+ |luy,|lpr, for all m, (2.19)

m

and
]/ G’(x,um(m))da:’ <O+ |unllp, for all m. (2.20)
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Taking v = u;, in (2.3)) we then get

‘/ |Vufn|2dx—/ g(x,um)umdx‘ <emllutll, for all m. (2.21)
Q

Qb
It follows from ([2.21)), (2.17) and (2.14) that
[ IVl e < €t el + 22l + Sz, for all m,
Q
which can be rewritten as

/ |V |2 de < C+ 3ep|lul || + 2em||up, || + 6[u,, ||, for all m, (2.22)
Q

by the triangle inequality.
We claim that, if (1.9) holds true, then (u,,) is bounded. We argue by contra-

diction. Suppose, passing to a subsequence if necessary, that
ol — 00, asm — occ. (2.23)

It follows from (2.22]), the Cauchy-Schwarz inequality, and the Poincaré inequality

that
||| < C+C\/1+ |Jum]|, for all m. (2.24)

Combining (2.24)) and (2.23) we then deduce that

[[u

o lunll

lim ——— =0. (2.25)
m=0 [[um||
Next, define
U = — UT , for all m; (2.26)
[[um |

so that ||vn,|| =1 for all m. We may therefore extract a subsequence (vy,,,) of (vi,)

such that
Um,, — U (weakly) as k — oo, (2.27)

for some v € H}(2). We may also assume, passing to further subsequences if
necessary, that

Um,, — vin L*(Q) as k — oo, (2.28)
U, (z) = T(x) for a.e. x € Qas k — oo. (2.29)

Now, it follows from (2.3)) and the fact that w,, = u},, —u,, that
‘ —/ Vau,, -Vvdx—|—/\1/ Uy, VAT
Q Q

< emllo] + / Vit - Vol do + / 192, e (2))][0] d,
Q Q

(2.30)

for all k and all v € H(Q). Using the Cauchy-Schwarz inequality, we can rewrite

the estimate in ([2.30) as

’/Vu;lk-Vvdx—)\l/u;%vdac‘
Q Q

(2.31)
< emy [0l + [l Mol + /Q lg(@, tm, (x))]|v] dz,

for all k and all v € H}(Q).
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Next, we estimate the last integral on the right-hand side of ([2.31)) by first writing
[ 1ot em (@) o]dz
Q
— [ ot um@lioldo+ [ oo, wm, @)o] da

mp Q.

for all k and all v € H}(1Q).
To estimate the first integral on the right-hand side of (2.32), we use (2.4)), the
Cauchy-Schwarz inequality, and the Poincaré inequality to get that

(2.32)

| / 9(@, U, (2))||v] dz| < C|jv||, for all k and all v € Hj (). (2.33)

To estimate the second integral in the right-hand side of (2.32)), apply Holder’s
inequality with p = 2N/(N +2) and ¢ = 2N/(N —2) for N > 3. If N = 2, take
1 < p < p/o, which can be done because (A4) implies that po < p. Then,

|/ 9(@, U, )|Jv| dz| < (/Q+ |g(x’umk)p)l/”</g|v|q)1/q;
mp

so that, in view of and the Sobolev embedding theorem,
+ |o\p 1/p
[, ot wnlielde] < € [ (©+ fuf 7P dz) el (230

for all k and all v € H}(©2). We then obtain from (2.34)) and Minkowski’s inequality
that

!/ (@, um) o] dz| < C(L+ flugg, [ITo0) V]l (2.35)

for all k and all v € HO Q).
Combining ([2.32)) with the estimates in ([2.33]) and (2.35]), we then obtain that

/lg (@, tm, (2))|[v] dz < C(L+ [l [IToe) 0], (2.36)

for all k and all v € H} ().
Finally, combining the estimates in and ([2.36] -,

‘/ Vu,,, - Vvdr — )\1/ Uy, U dx‘ SO+ luh, I + llut, 150 vl (2.37)
Q )

for all k and all v € Hg ().
Next, divide on both sides of (2.37)) by [|u,,, || and use (2.26]) to get

‘/vak-Vvdx—)\l/vmkvdx)
Q Q

(2.38)
1 v
<C( 1 || ||+|| W7 )” 1
AR
for all k and all v € Hg ().
We will show next that
lim I e = 0. (2.39)

koo [lum, ||
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Using the estimates in (2.9) and (2.17) we obtain
/(u Yrde < C+ Cllug, || + emy I, for all k, (2.40)
Q

where we have also used the Cauchy-Schwarz and Poincaré inequalities. It then

follows from ([2.40) that
el < CO A g, 177+ [, for all k. (241)
Next, dividing on both sides of (241 by [lu;,, ||/ and using the fact that

[t P < ety [+ N, |

we obtain
[zt Nl 2 1 [ [ [
+ + for all k
— ~ — — — b b
l[wm 12/ Jum Mo Num M (w1
which we can rewrite as
K (p 1 1 [ | N2 1
u <C(—rgs + 1= + () ), (2.42)
([tmy, 127 Jtm [ Ny Vo710 N Jum, | [ty ||V 0= 1/ 07

for all k. Now, in view of (A4) we see that u > o; we then obtain from ([2.23]) and
(2.25)), in conjunction with (2.42)), that

+
U
lim w - (2.43)
k=00 [|um, [[*/°
Next, using the condition x4 > po in (A4) to apply Hoélder’s inequality with
= p/po and p its conjugate exponent we obtain

Ikl = [ o < ([ ) ) e

so that,
g, 10 < C||U$k|\‘£w for all k,
and, dividing on both sides by ||u,,,

+ o
w < (M) , for all k. (2.44)
IIUmkII [

It then follows from and - that

i Il _ o
k=00 |um, ||
which is (2.39).
Using (2.23)), (2.25) and (2.39), we obtain from ([2.38)) that

lim / VU, - Vodz — M\ / U, ¥ dx‘ =0, forallve H}(Q). (2.45)
Q Q

k—oo

It then follows from ([2.26), (2.27)) and (2.45)) that

/Vi-Vvdx—)\l/Evdx:O, for all v € Hj(Q);
Q Q

so that, T is a weak solution of the BVP
—Au = Mu, in

u=0, ondf. (2.46)
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Now, it follows from (2.18) that
[ VP = [ () de| < el 4| [ 9o,y da], (247)
Q Q s

for all k; where, according to (2.19)),

|/_ 9(2, Uy, ()t (@) d| < C(1+ ||uy,, ), for all k. (2.48)
Thus, combining (2.47)) and -7
’/Q|Vu,_nk\2daﬁ—)\1/9(ufnk)2dx| <O+ lup, ), forallk.  (249)
Next, divide on both sides of by [[u,, |? and use to obtain
‘I—Al/(vmk)Qdm‘ <O(iomt ), forallk (250
Q (KN [ (|

It then follows from ([2.23)), (2.28) and (2.50) that

Al/(@)%lx =1,
Q

from which we conclude that T is a nontrivial solution of BVP (2.46]). Consequently,
since vy, < 0 for all m, according to (2.26]), we obtain that

T=—p1, (2.51)

where ¢ is the eigenfunction for the BVP (2.46]) corresponding to the eigenvalue
)\1 with

1 >0in Q and |¢1] =1.
We therefore obtain from (2.51)) that

v<0 in . (2.52)
Furthermore,
v >0 on o2 (2.53)
v ’ '

where v denotes the outward unit normal vector to 9Q2. We can then conclude from

(2.25), (2.29), in conjunction with (2.52)) and (2.53)), that

U, (T) — —oc0  for a.e. x € Q. (2.54)
Thus, using (A5) and the Lebesgue dominated convergence theorem, we obtain
from ([2.54) that
klirrgo QG(ac JUm, (7)) de = G_ |9 (2.55)
It then follows from and the first assertion in (2.1]) that
1 A
lim (f/ Vg, |2 dz — —1/(u,_n Pdr) =t Gl (256)
k—oo \ 2 Q 2 O k

Next, we go back to the estimate in (2.3) and set v = u;, to obtain

/|Vu+ de—/g(x,u,';k) dm) emy luh, |, for all k,
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or, dividing by [ju

mk”

ub,
‘Hu Il —/ g(w,u,) o] <y forall k (2.57)
mg
Now, it follows from (2.54) that
uf, — 0 ae. as k — oo.

Therefore, it follows from the assumption that g(z,0) = 0 in (A1), together with
the Lebesgue dominated convergence theorem and the estimate in (2.57)), that

khi& [|u, I = 0. (2.58)
Next, set V = span{¢1} and W = V+; so that, H}(Q) =V & W.
Write u,, = vk + wg, for each k, where vy € V and wy € W. Once again, use
the estlmate in , this time with v = wy, to obtain
\/ \Vwk|2 dz — /\1/ w? do — / 9(@, tm, (2))wp dz| < e, Jwill,  (2.59)
Q Q Q
for all k.

Now, since wr € W, we have that
/\2/ widr < [ |[Vwg|*dz, for all k, (2.60)
Q Q

where Ay denotes the second eigenvalue of the N-dimensional Laplacian over {2 with
Dirichlet boundary conditions. Consequently,

A
(1- )\—1)Hwk||2 < / |Vwy,|? de — )\1/ wi dx, for all k. (2.61)
Q
Thus, setting o =1 — )‘—; in , we obtain from and - that
al|wi]]? < emy||will + ‘ / g(x, um, (x))wy dx|, for all k, (2.62)
Q
where a > 0.
Next, we divide on both sides of (2.62)) by ||wg]|| to get
allwg|| < em, + ‘ / (T, U, (x))& dx|, for all k. (2.63)
0 [[wg|

Now, it follows from (2.63)), (2.54)), assumption (A2), and the Lebesgue dominated
convergence theorem that
klim |lwk]| = 0. (2.64)

Next, we observe that

-/|Vum,€\2dx—/|VuJr 2dx+/ \Vvk|2dx+/|Vwk|2dx, for all k,
Q Q

/(umk) dw:/vidwr/w,%d% for all k;
Q Q Q

/|Vumk|2dx—%/(u;k)2dx

,H ||2 / |Vwk|2dx— — wzdx,

consequently,

(2.65)
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for all k, where we have used the fact that v, € V for all k. It follows from (2.58]),
([2.64), (2.60) and (2.65) that

. 1 A1 _
lim (i/ﬂwumk\?d% ?/Q(umk)2dx) = 0. (2.66)
Combining (2.56)) and (2.66)) we obtain
G_xo| +c=0,

which is in direct contradiction with (1.9). We therefore conclude that (u,,) is
bounded.

Since, (u,,

is bounded, it follows from (2.22)) that (w}) is also bounded. Con-

m) m

sequently, (u,,) is bounded.

We will next proceed to show that (u,,) has a subsequence that converges
strongly in Hg (£2). To see why this is the case, first write the functional J: H{ () —
R defined in in the form

J(u) = %/ |Vu|2dx7/ Q(z,u(z)) dx, for all u € HI(Q),
Q Q
where
Q(z,s) = / q(x,€)d¢, forallz € Q and s € R,
0

where ¢ is as given in (L.3). It follows from (L.3) and the assumptions in (A2)
and (A3), that g(x, s) has subcritical growth in s, uniformly in 2 € Q; so that, the
derivative map of J, VJ: Hg(2) — H(Q), is of the form

VJ=1-VQ, (2.67)
where VQ: H () — HL(Q), given by
(VO(u),v) = / gz, u(z))v(z)de, for u,v € HE(S),
Q
is a compact operator.
Now, it follows from the second condition in (2.1)) and (2.67)) that
Um — VOQ(Up) — 0, asm — oo. (2.68)

Since we have already seen that the (PS), sequence (u,,) is bounded, we can
extract a subsequence, (U, ), of (u,,) that converges weakly to some u € H}(Q).
Therefore, given that the map VQ: H(Q) — HE(Q) is compact, we have that

lim VO(up, )= VO (u). (2.69)

k—oo

Thus, combining (2.68) and (2.69)), we obtain that
lim wy,, = VO(u).
k—o0
We have therefore shown that (u,,) has a subsequence that converges strongly in

H{(9), and the proof of the fact that .J satisfies that (PS), condition, provided
that ¢ # —G_|Q], is now complete. O
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3. EXISTENCE OF A LOCAL MINIMIZER

Assume that g and G satisfy conditions (A1)—(A7) hold. In this section, we will
use Ekeland’s Variational Principle and a cutoff technique similar to that used by
Chang, Li and Liu in [5] to prove the existence of a nontrivial solution of problem
for the case in which G_ < 0 in (A5).

To do that, we first define g € C(Q x R,R) by

~ g(z,s), fors <0,
g(z,s) =
0, for s > 0.

Define a corresponding functional J : HY(Q) — R by

:1/ \Vu\Qda:—ﬁ (u_)de—/é(x7u)dx, u € Hy(Q), (3.2)
2 Ja 2 Ja Q

where

G(z,s) = /08 g(z,&)d¢, for x € Q and s € R. (3.3)

Then, J € C1(HE(R2),R). We claim that J is bounded below. In fact, by condition
(A5) and (3.1)), it follows that

G (x, 5)| < Mo, for all z € Q and s € R, (3.4)
for some M, > 0. Then, using (3.1)) and ( ., we can write

() /|wd 7/ dx—/Gxu -

Hlﬁll2 H ’||2**||u Iz = M|,

for all u € H(Q). It then follows from and the Poincaré inequality that
J(u) > —MO|Q\7 for all u € Hy(Q);

so that J is bounded below. Thus, the infimum of J over H}(Q) exists; we can,
therefore define

= inf  J(uw). 3.6
“ ue}‘?é(m () (36)

Notice that, since j(O) = 0, we must have ¢; < 0. In fact, we presently show that,
if (A6) and (A7) hold, then
¢ <0. (3.7)
To do this, first use and (A7) to compute
lim M =a— Aq;
s—0~ S
so that

lim 912:%)
S

s—0~

>0,

for all x € Q, by the assumption on a in (A7). Consequently, there exists s; < 0
such that
g(z,s) <0, fors <s<0,

and all z € Q. It then follows from the definition of G in (3.3) that
G(z,s) >0 fors; <s<0, and all z € Q. (3.8)
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Next, let € > 0 be small enough so that

s1 < —ep1(z) <0, forallze Q. (3.9
We then have that
/ Gz, —ep(z)) dz > 0, (3.10)
Q

by (3.8) and (3.9). It then follows from the definition of J in (13.2) and (3.10) that
J(—epy) = — / G(z, —ep(z)) dz < 0.
Q

Consequently, in view of the definition of ¢; in (3.6), we obtain that ¢; < 0, which

is (B.7)-
We now use (3.6 and a consequence of Ekeland’s Variational Principle (see [10,
Theorem 4.4]) to obtain, for each positive integer m, u,, € Hg(Q) such that
~ ~ 1
J < inf J —, for all m, 3.11
(tm) o) (w)+—, forallm (3.11)
and

b7 1
[T (um) || < o for all m;

we therefore obtain a (PS), sequence for ¢ = ¢;. Consequently, if J happens to
satisfy the (PS), condition at ¢ = ¢;, we would conclude that ¢; is a critical value

of J. We will show shortly that this is the case if we assume that G_,, given in
(A5) satisfies
G_0 <0. (3.12)

We will first establish that J satisfies the (PS). provided that ¢ # —G_s|9).

Proposition 3.1. Assume that g and G satisfy (A1), (A2) and (A5), and define

J as in (3.2)), where G is gien in (3.3) and (3.1). Then, J satisfies the (PS).
condition for ¢ # —G_|Q].

Proof. Assume that ¢ # —G_|Q| and let (u,,) be a (PS), sequence for J; that is,

1 ~
f/ |Vum|2d$—ﬁ/(ufn)2dx—/G(x,um)dx—>c, as m — oo, (3.13)
2 Ja 2 Ja Q

and,

| [ Fum-Vodatni [wppdo= [ Gounpds| <cnliel (310
Q Q Q

for all m and all ¢ € H}(Q), where (g,,,) is a sequence of positive numbers such
that £, — 0 as m — oco. Write u,, = u;l, — u,,,. We will show that (u;}) and (u,,)
are bounded sequences.

First, let’s see that (u;) is bounded. Setting ¢ = u., in we have

)/ |Vu;;|2dx—/?j(x,um)u; dx‘ <emllut || for all m. (3.15)
Q Q

By (3.1) and the assumption in (A2), it can be shown that g(z, um) is bounded for
all z € €. Then, using Holder and Poincaré’s inequalities, we obtain that

\/g(x,um)u;dx\ < Cllut ], (3.16)
Q



EJDE-2017/1149 SUPERLINEAR PROBLEM UNDER STRONG RESONANCE 15

for some constant C' > 0. Then, from (3.15) and (3.16]), we obtain that
[uhl? < (C+em) ufy]l,  for all m,

which shows that (u) is a bounded sequence.
Next, let us show that (u.,) is a bounded sequence. Suppose that this is not the

case; then, passing to a subsequence if necessary, we may assume that

lu, || — o0 as m — oco. (3.17)
Define
U = — uT , for all m. (3.18)
[[um |

Then, since ||v,,|| = 1 for all m, passing to a further subsequences if necessary, we

may assume that there is v € H}(Q) such that
vm — v (weakly) in Hy(Q), as m — oo; (3.19)
U — v in L3(Q), asm — oo; (3.20)
vm(x) — v(z) for a.e. xin Q, as m — oo. (3.21)

Now, writing ., = u}> —u,. in (3.14) we have
’/ Vui'n-Vgadx—/ Vu,_n-Vapdx—i—)\l/ u;lapdx—/ﬁ(x,um)godx < emllells
Q Q Q Q
for all ¢ € H}(Q) and all m, from which we obtain that
|- [ VunVodains [unpdo- [ Gaun)ods] < EnClufDlel, (322)
Q Q Q

for all ¢ € HE(Q), all m, and some constant C' > 0, by the Cauchy-Schwarz and

Poincaré inequalities.
Now, we divide both sides of (3.22) by |lu.. || and use (3.18]) to obtain

R R R N e e
o Q o |[luml [[um |
for all p € H}(Q) and all m. Since g is bounded, by condition (A2) and (3.1)), we
obtain from (3.17) that

(G ED)

metosluml|

=0, fora. e x€q.

It then follows from the Lebesgue dominated convergence theorem that

lim /ggﬁﬂgﬁwmza for all p € HZ (). (3.24)
Q

m—too [[wm |

Therefore, using (3.19), (3.20), (3.24), (3.17), the fact that the sequence (u},) is
bounded, and letting m — oo in (3.23)), we obtain

/ Vv -Vedr — )\1/ vodr =0, forall o € H}(Q);
Q Q
so that, v is a weak solution of the BVP
—Au = Mu, in
u=0, on 0f.

(3.25)
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Next, we set ¢ = v, in (3.23)) to get
‘1 -\ / U72n dx —/ g(x’iwvm dm‘ < LM, for all m, (3.26)
Q o |lumll [[wml

where we have also used the definition of v,, in (3.18).
Now, using the Cauchy—Schwarz and Poincaré inequalities, we obtain that

’/ 9, tm) ‘ < Ci , for all m, (3.27)
Tl [ |

for some positive constant C, since g is bounded. We then get from (3.27)) and

BI7) that

lim g(vaWn)
m—20 Jo  |luml|

Thus, letting m — oo in (3.26)) and using (3.20)), (3.28]), and (3.17), we obtain that

A1 / vide =1,
Q

which shows that v is a nontrivial solution of (|3.25)).
Now, it follows from (|3.18)) and (3.21)) that

v(z) <0, fora.e ze€Q.

mdz = 0. (3.28)

Consequently, since v is nontrivial, it must be the case that

v =—p, (3.29)

where ¢7 is the eigenfunction of the BVP problem corresponding to the
eigenvalue \; with ¢; > 0, ||¢1]] = 1. Thus, v < 0 € Q and dv/Ov > 0 on 09,
where v is the outward unit normal vector to 0f2.

Next, we write u,, = u;, —u,, and use to get

Um, ut

lum | Ilum]

+ Uy, for all m;

so that, by the fact that (u}) is bounded and (3.17)), we may assume, passing to a
further subsequence if necessary, that

u|m(7|) — —pi(x), fora.e x€Q, asm — oo, (3.30)
Um
where we have also used (3.21]) and (3.29). It then follows from ([3.30) that

Um(x) = —oc0 fora. e. z €, as m — oo. (3.31)

Then, using condition (A5) and the Lebesgue dominated convergence theorem, we
conclude from (3.13) that

lim (%/ |vum|2dx—ﬁ/(u;)2dx) = c+G_o|Q. (3.32)
Q Q

m—00 2

Next, we divide both sides of (3.15) by ||u}|| to obtain

)|| el —/ ”x fﬁz) ut dx‘ Em, for all m. (3.33)
Q

Notice that

_ +
/g(x’ifm)u:rndx:/g(x ) de, for all m;
o o

[[wm | S ud
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so that, using the Cauchy-Schwarz and Poincaré inequalities,

|/ ‘a: uﬁl )k da| < \// ))2dz, for all m, (3.34)
Um

and some positive constant C. Now, it follows from (3.31) that

ub(z) =0 foraex e, asm— oo;

consequently, using the assumption (Al) along with the Lebesgue dominated con-
vergence theorem, we obtain from (3.34)) that

9(, )

lim ut dr = 0. (3.35)
m—o0Jo  |um]|
Therefore, letting m tend to co in (3.33)) and using (3.35) we obtain that
lim |ju} || = 0. (3.36)
Thus, combining (3.32)) and (3.36)) we can then write
1 A
Jim f/ Vs dz — 2L / (upde) =+ G_elQ] (337

We may now proceed as in the proof of Proposition 2.1]in Section 2] to show that

A
. < — 2 M —\2 _
mlgr(lx) 2/Q|Vum\ dx 5 /Q(um) d:v) 0.

Hence, in view of ([3.37), we obtain that ¢+ G_|Q| = 0, which contradicts the as-
sumption that ¢ # —G_|€2]. We therefore conclude that (u,,) must be a bounded
sequence. Thus, since we have already seen that () is bounded, we see that (u,,)
is bounded.

We have therefore shown that any (PS),. sequence with ¢ # —G_|2| must be
bounded. The remainder of this proof now proceeds as in the proof of Proposition
presented in Section [2| using in this case the fact that g is bounded. O

Now, if we assume that the value G_. given in (A5) satisfies the condition in
(3-12)), then we would have that —G_|Q| = 0. Consequently, in view of (3.7), we
see that the value of ¢; given in (3.6) is such that

c < —G_OQ‘Q|;

therefore, J satisfies the (PS), condition at ¢ = ¢;. Hence, by the discussion
preceding the statement of Proposition c1 is a critical value of J. Thus, there
exists u; € HL(Q) that is a global minimizer for J. We note that u; # 0 in Q by
BD.

Now, since the function g defined in is locally Lipschitz (refer to assumption
n (A6)), it follows that uy is a classical solution of the problem

—Au=-Mu" +g(x,u), in

3.38
uw=0, ondQ, ( )

(see Agmon [T]).
Let Q@ = {2z € Q| ui(x) > 0}. Then, by the definition of g in (3.1]), u; solves
the BVP
—Au =0, in Qy;

u=0, on 0f), (3-39)
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which has only the trivial solution u = 0. Thus, Q4 = 0 and therefore u; < 0 in Q.

Before we state the main result of this section, though, we will discuss some
properties of the critical point u.

Since we have already seen that u; < 0 in €, it follows from the definition of g in
that uy is also a solution of the BVP ; consequently, u; is also a critical
point of J. We will show shortly that u; is a local minimizer for .J.

Since uy is a solution of the BVP , then w4 is also a solution of the BVP

—Au — p(x)u = Mug — g_(%ul(x)), in Q;

3.40
u=0, on 9Jf, ( )
where
gt (z,u1(2)) if .
p(.’L‘) — uy () y 1 Ul(fﬂ) < Oa (341)
0, if uy (z) = 0.

Now, it follows from (3.40)) and the fact that u;(x) < 0 for all z € Q that u; solves
—Au—p(x)u <0, inQ

u=0, on dN. (3.42)

Thus, since p(xz) < 0, according to (3.41]), we can apply the Hopf’s Maximum
Principle (see, for instance, [I1, Theorem 4, p. 333]) to conclude that

up(z) <0, forall z €, (3.43)
since u; is nontrivial, and
%(m) >0, forz e 09, (3.44)

where v denotes the outward unit normal vector to the surface 02. We can then
use (3.43) and (3.44), and the assumption that {2 is bounded to show that there
exists § > 0 such that, if u € C*(Q) N HJ () is such that

lu—uller @) <6

then
u(z) <0, forall z €.

Consequently, if u is in a d-neighborhood of u; in the C1(£2) topology, then

T(u) = J(u) > J(ur) = J(w);
so that u; is a local minimizer of J in the C'*(Q) topology. It then follows from a
result of Brezis and Nirenberg in [4] that u; is also a local minimizer for J in the
H{ () topology. We have therefore demonstrated the following theorem.

Theorem 3.2. Assume that g and G satisfy conditions (A1)—(A4). Assume also
that (A6) and (A7) are satisfied. If (A5) holds true with G_o < 0, then the
BVP (1.1) has a nontrivial solution, uy, that is a local minimizer of the functional

J: H () — R defined in (1.5)).

In the next section, we will provide additional conditions on the nonlinearity, g,
that will allow us to show that the functional J defined in (1.5) has another local

minimizer.
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4. EXISTENCE OF A SECOND LOCAL MINIMIZER

In addition to (A1)—(A5), with G_o < 0, and (A6)—(AT7), we will assume
(A8) there exists s; > 0 such that g(z,s1) = 0 for all x € Q.
In this case, we consider the truncated nonlinearity g: 2 x R — R given by

for 0 < s < s1,
G(z, ) = g(x,s), for s< 81 (4.1)
0, elsewhere.
The corresponding primitive,
G(z,s) = / g(z,8)d¢, forallz € Qand s € R,
0
is then given by
0, if s <0;
G(z,s) =< G(z,s), if0<s<sg; (4.2)

G(x, 31), if s > sq,

where G is as given in .

In view of the definitions of g and G in and 7 respectively, we see that
g and G are bounded functions. Thus there exist positive constants M; and Ms
such that

M, forallzc QandscR, (4.3)
M,, forallz € QandséeR.

9(z, 5)]|
Gz, )]

NN

The corresponding truncated functional, J: H(£2) — R is then given by
_ 1 A _
J(u) = 7/ IVul? do — = / (u™)? dx — / Gz,u)de, we HYQ), (4.4)
2 Ja 2 Jo Q

where G is given in (4.2)). We then get that .J is Fréchet differentiable with contin-
uous derivative given by

(VJ(u),p) :/QVu-V(pdac—i—)\l/ﬂu_godx—/Qg(:mu)apdx, (4.5)

for all u and ¢ in Hj(Q). B
Next, we show that J satisfies the (PS)_ condition for ¢ ¢ A, where the excep-

tional set, A, in this case is

A = {0}.
Proposition 4.1. Assume that g and G satisfy (Al), (A2) and (A8), and define
J as in , where G is given in , Then, J satisfies the (PS). for ¢ # 0.
Proof. Let (u,,) be a (PS), sequence for J, where
c #0; (4.6)

so that, according to (4.4 and (4.5

1 _
f/ |Vt | do — M / (u,)?de — | G(z,up)dr —c, asm — oo, (4.7)
2 Ja 2 Ja Q

and
’/Vum-dex—&—)\l/u;godac—/g(x,um)gadx <emllell, (4.8)
Q Q Q
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for all m and all ¢ € Hg (), where (e,,) is a sequence of positive numbers that
tends to 0 as m — oo.
Writing w,, = u}, — u,, for all m, and taking ¢ = u;}, in (4.8) we obtain

[ /Qﬁ(x,lﬁ)era:‘ emllut]l, for all m. (4.9)

Using (4.3) we then estimate
’/g(z,u ut dz| < Cllutl,  for all m, (4.10)
Q

where we have also used the Cauchy-Schwarz and Poincaré inequalities. Combing

(4.9) and (4.10) we then get that

lum|? < Clluzll,

for all m, (4.11)

where we have used the fact that ¢,, — 0 as m — oo.

It follows from that the sequence (u;) is bounded in HE(Q).

Next, we show that (u;,) is also bounded in Hg (). If this is not the case, we
may assume, passing to a subsequence if necessary, that

lu || = 00 as m — oo. (4.12)
Define B
U = — UT , for all m. (4.13)
[[tm |
Then, since
lom|| =1, for all m, (4.14)

passing to a further subsequences if necessary, we may assume that there is v €
H}(Q) such that

Vm — v (weakly) in Hj(Q), as m — oo; (4.15)
U — v in L3(Q), asm — oo; (4.16)
vm () = v(z) for ae. zin 2, asm — oco. (4.17)

Now, writing u,, = u} —u, in (4.8) we have
)/ Vu, -Veodr + A\ / U pdr — / g(m,um)godx‘ < (em +Clluf DNl (4.18)
Q Q Q

for all m and all p € H(Q), where we have also used the Cauchy-Schwarz and
Poincaré inequalities.

Next, divide both sides of (4.18) by ||u.,|| and use (4.13]) to obtain
= +
’/ va-chdx—)\l/vmgadx—/ Mg@dx‘ < (LW)H@H, (4.19)
Q Q o |uml [l

for all p € H}(Q) and all m.
Using the estimate in and (| we obtain

lim ’/ ‘r “ﬁ@ ) 0, forall p € HY(Q). (4.20)
Um

m—0o0

Combining (4 and (| we then get
lim ‘/ Vo, - Vodr — X\ / Umgodac‘ =0, forall pec H(Q), (4.21)
Q Q

m—00
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where we have used (4.12)) and the facts that (u;}) is bounded in H}(2) and &,,, — 0

as m — OQ.

Now, it follows from (4.15)), (4.16) and (4.21) that

/ Vv -Vepdr — )\1/ vpdr =0, forall ¢ € HY(Q); (4.22)
Q Q

so that, v is a weak solution of the BVP
—Au = M\u, in
u=0, on Jf.

Next, we take ¢ = vy, in (4.19) and use (4.14]) to obtain
‘1 — A\ / vfn dx —/ Mvm dx‘ < L_”um”, for all m, (4.23)
Q Q

[[tm | [l
where, by (4.3]), (4.12) and (4.16)),
lim \/ 9@, tm) o] = 0. (4.24)
m—oo [[tm ||

Thus, using (4 , and the facts that ( m) is a bounded sequence and ¢, — 0 as
m — 00, we obtaln from ) and (4.24)) that

lim ‘1 -\ / Ufndx‘ = 0;
m—00 Q
so that, in view of (4.16)),
)\1/ v dr =1, (4.25)
Q

from which we conclude that v # 0. Thus, v is an eigenfunction of —A with
Dirichlet boundary conditions over 2. It follows from this observation and (4.22), in
conjunction with (4.25)), that ||v|| = 1. Consequently, we obtain from the definition

of v, in ([{.13) and from (4.17) that
v=—p. (4.26)

Recall that we have chosen ¢ so that ¢1 > 0in Q and |j¢q|| = 1.
Next, writing u,, = u;, — u,, and using (4.13]), we obtain

Um, ut

lumll ~ Tl

so that, by the fact that (u;) is bounded and (4.12), we may assume, passing to a
further subsequence if necessary, that

+ Uy, for all m;

ulmExH) — —pi(x), fora.e x€Q, asm — oo, (4.27)
Um
where we have also used (4.17) and (4.26)). It then follows from (4.27) that

Um(x) = —oc0  for a. e. x € Q, as m — oo. (4.28)

Then, using the definition of G in (4.2 and the Lebesgue dominated convergence
theorem, we conclude from (4.28]) that

lim [ G(z,um(z))dz = 0;

m—00 O
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so that, in conjunction with (4.7),
1 A
lim (= / |Vt |? da — 71 / (u,)? dx) =c (4.29)
m— 00 Q
We may now proceed as in the proof of Proposition [2.1] and show that

lim / V|2 dae — 7/( g)de) —0. (4.30)

m— 00

Note that (4.29) and are in contradiction with (4.6). Consequently, (u.) is
also bounded in H&(Q) Therefore, as in the last portion of the proof of Proposition

we can show that (u;,,) has a convergent subsequence. We have therefore
established the fact that J satisfies the (PS), condition, provided that ¢ #0. O

It follows from the definition of J in (4.5) and the estimate in (4.4) that J is
bounded from below in H}(Q). Indeed, we obtain the estimate

A
Flu™[3e = Mo, for all u € HY(Q);

— 1 1
T(w) > St P+ 5l -
so that, using the Poincaré inequality,
— 1
J(u) > §||u+||2 — My|Q|, for all u € H}(Q),
from which we obtain that

J(u) = —M,|Q, for all u € Hy(9).

Set
= inf J(v). 4.31
o= inf Tw) (131)
We will show that, if (A6) and (A7) hold, then
ez < 0. (4.32)
Indeed, for
O<t<—23t
max, g ¢1(x)
compute
_ t2
Tter) = I(ten) = 5 ~ [ Glastpr(o) o
Q
so that

G o] =t = [ glotr@)er(o) do

4 Tee] =1 [ Hiator(@) (1) de

It then follows from (4 and (A6) and (A7) that
2

. 1 2
th n o [J(te1)] =1 a/ggal dz,
or
d2
lim —[J(¢ =1-—
Jim Gl (ton)] = )\1 <0,

since a > A; according to (A7). Consequently, there exists t; > 0 such that
7(t1§01) < 0.
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Thus, in view of , the assertion in follows.

In view of and the result in Proposition |4.1| we see that J satisfies the
(PS),, condition. Thus, given the definition of ¢ in (4.31), the argument invoking
Ekeland’s Variational Principle leading to Theorem [3.2] in Section [3] can now be
used to obtain a minimizer, ug, of .J. Furthermore, as was done in Section [3| we
can use the Maximum Principle to conclude that

0 < ug(x) < sp, forallzel

so that, ug is also a critical point of J. Indeed, us is a local minimizer of J by
the Brézis and Nirenberg result in [4]. We have therefore established the following
multiplicity result.

Theorem 4.2. Assume that g and G satisfy conditions (A1)—(A5), with G_o <0,
and (A6)—(A8). Let J: Hj(Q) — R be the C' functional defined in (LE). In
addition to the local minimizer, uy, of J given by Theorem[3.3, which is a negative
solution of the BVP , there exists another local minimizer, us, of J that yields
a positive solution of the BVP .

5. EXISTENCE OF A THIRD NONTRIVIAL CRITICAL POINT

In the previous section we saw that, if g and G satisfy conditions (A1)—(A5), with
G_oo <0, and (A6)—(A8)), then the functional J defined in has two local min-
imizers distinct from 0. In this section we prove the existence of a third, nontrivial,
critical point of J. This will follow from following variant of the Mountain-Pass
Theorem first proved by Pucci and Serrin in 1985, [14].

Theorem 5.1 ([14, Theorem 1]). Let X be a real Banach space with norm || - ||
and J: X — R be a C' functional. Let u, and uy be distinct points in X. Assume
that there are real numbers r and R such that

0<r<lu —u,| <R,
and a real number a such that
J(uo) <a  J(up) < a,
JW) = a for all v such that r < ||v — u,| < R.

Put
I'={vy € C([0,1], X)[7(0) = uo,¥(1) = u1}, (5.1)
and let
¢= Inf o J(7(t))- (5.2)

Assume further that any sequence (uy)S2 1 in X such that
J(up) = ¢ asn— oo,
J'(u,) — 0, asn — oo

possesses a convergent subsequence. Then, there exists a critical point uw in X
different from u, and uy, corresponding to the critical value ¢ given in (5.2)).

In [I4], Pucci and Serrin apply the result in Theorem to the case in which
u, and u; are two distinct local minima of the functional J. Thus, according to
Theorem if the functional J satisfies the (PS), condition, where c is as given in
(5.2), we would obtain a third critical point of J distinct from the two minimizers.
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We summarize this observation in the following corollary to the Pucci-Serrin result
in Theorem B.11

Corollary 5.2. [14, Corollary 1] Suppose that J has two distinct local minimizers,
Uy anduy. Let ¢ be as given in (5.2)) and suppose that J satisfies the (PS), condition.
Then, J possesses a third critical point.

According to Proposition we will be able to apply Corollary to our
problem provided we can show that ¢ # —G_|Q2|. Since we are also assuming
that G_,, < 0, we will be able to obtain a third nontrivial critical point of J if we
can prove that ¢ given by is negative. This can be achieved if we can show that
there is some path v in I" defined in , connecting the two local minimizers, such
that J(v(t)) < 0 for all ¢t € [0,1]. To do this, we borrow an idea used by Courant
[9] in the proof of the so called Finite Dimensional Mountain-Pass Theorem. With
these observations in mind, we are ready to prove the main result of this section.

Theorem 5.3. Let J satisfies the conditions (A1)—(Ab), with G_ < 0, and (A6)—
(A8). Let J: H}(Q2) — R be the C* functional defined in (LF), and ui and us be
the two local minimizers of J giwen by Theorem[{.2 Then, J has a third nontrivial
critical point. Consequently, the BVP has three nontrivial weak solutions.

Proof. Let u; and uy denote the two local minimizers of J given by Theorem |4.2
We then have that u; and wuy are nontrivial and u; # uy. Furthermore,

J(u1) <0 and  J(uz) <O0. (5.3)
Define
I = {y € C([0,1], H5(2))I7(0) = ur,¥(1) = uz}, (5.4)
and put
¢=inf Jnax, J(7(1))- (5.5)

Arguing by contradiction, assume that w1, us and 0 are the only critical points
of J. Then, certainly, there is a path v, € I' that does not contain 0. Then, u; and
ug are the only critical points of J along ~,. Set

%([0,1]) = M UN,

where M = {v,(t) € H3(Q) : t € [0,1] and J(7,(¢)) = 0} and N = ~,([0,1])\ M.
We will consider two cases M = () and M ## ) separately.

If M = 0, then J(v,(t)) < 0 for all ¢t € [0,1]. Hence, in view of the definition
of ¢ in (5., ¢ < 0. Consequently, by Proposition and the assumption that
G_o <0, J satisfies the (PS). condition. Thus, we can apply Corollary with
X = H}(Q) to conclude that J has a critical point, @, distinct from u; and wus.
Furthermore, w # 0, since ¢ < 0. This would contradict the initial assumption that
there are no critical point of J other than 0, u; and wus.

Next, assume that M # (). Observe that u;,us ¢ M in view of . Then, M
contains no critical points of J; consequently, V.J(7,(t)) # 0 for all ¢ € [0,1] such
that v,(t) € M, where VJ is the gradient of J obtained by the Riesz Representation
Theorem for Hilbert spaces. In particular, since M is compact, there exists § > 0
such that

IVJ(u)|| > 9, forallue M. (5.6)
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It then follows from that assumption that J is C! that there exists € > 0 such that
0

IVJ(v)| > g forallveM. = {v € H}(Q)|dist(v, M) < &}. (5.7)

Notice that M. is an open neighborhood of M which does not contain u; and wus
because they are local minimizers of J.

Next, let p € C.(HE(Q),R) denote a function with supp(p) C M. such that
p(u) = A, for u € M, and 0 < p(u) < A for all u € H}(2), where A a positive
constant to be chosen shortly. Define the following deformation n: H}(2) x R —
H}(Q) given by

n(u,t) = u —tp(u)VJ(u), foruec Hy(Q) andtcR. (5.8)
It then follows that
d

= (VI (1, )), =p(u) VI ({1, ) (5:9)
= —p(u)|[VJ (n(u, )%,
for u € H}(Q) and ¢t € R. In particular, it follows from (5.9) and (5.§)) that

d
%J(n(u,t))hzo = —p(u)||[VJ(u)||?, for all u € HI(Q). (5.10)
Note that, for points u € H} () such that p(u) > 0, it follows from (5.6) and (5.7)

that
2

p(w) VI (n(u, )| > p(U)% > 0. (5.11)

Hence, by (5.10) and the assumption that J € C1(H}(Q),R), we obtain that, for
each u € H}(Q) such that p(u) > 0, there exists a neighborhood U of u and T,, > 0
such that

%J(n(u,t)) < —@HVJ(u)HQ, for u € U and |t| < Ty,. (5.12)

On the other hand, if p(u) = 0, it follows from the definition of n in (5.8) that
n(u,t) = u for all ¢ € R so that

%[n(u,tﬂ =0, forteR.
Therefore,
d
dt
Since supp(p) is compact, it follows from (5.11]), and that there exists

T > 0 such that

J(n(u,t)) =0, foralltel0,1], u € X with p(u) =0. (5.13)

%J(n(u,t)) < —@52, for u € Hy () and |t| < T.

Consequently,

J((u,T)) < J(u) — @521 for all u € Hj (). (5.14)
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Next, define v(t) = n(v,(t),T), for all t € [0,1]. Note that v € T'. Indeed, since
up ¢ M. and us ¢ M., we have, by the properties of p and the definition of 1 in

(3), that
n(u;, T) = u;, fori=1,2.

Now, if v € N, it follows from (5.14]) that

J(n(v,T)) <0, forallue N. (5.15)
On the other hand, for v € M, using (5.14)), we obtain that
A
J(n(v, T)) < L— —62T, for all u € M, (5.16)

where we have set L = max;eo1] J(7o(t)). Choose A = 3% Then, it follows from
(5.16) that
Jn(v,T)) < —g <0, forve M. (5.17)
Therefore, by combining , and the choice of A, we conclude that
J(M(7(t), T)) <0, foralltel0,1].

Therefore, the path v = n(v,,T") connecting the two local minimizers u; and ug is
such that
J(y(t)) <0, foralltel0,1].

Consequently, by the definition of ¢ in and (5.4), ¢ < 0. It then follows, by
the result of Proposition[2.1] and the assumptlon that G_., < 0, that J satisfies the
(PS). condition. We can therefore apply Corollary. 5.2L with X = H}(Q), to obtain
a critical point @ of J different from u; and ws and such that w # 0. However, this
contradicts the assumption that 0, u; and us are the only critical points of J. We
therefore obtain the existence of a third nontrivial critical point of J. O

Remark: We provide an example of a function g that satisfies the conditions
(A1)—(A8), and to which the results in Theorem will apply. In this example we
assume that N > 3.
Let s; denote a positive real number; r be a real number satisfying
2 1) o< N +2
_° r< — ° .
N -2’ 2(N —2)’
and a a real number with a > ;. To construct g, let go: xR — R be a continuous
function satisfying the following conditions:
(a) go(x,0) =0 and go(z,s) =0 for all x € Q and s > s1;
(b) the derivative of gy has a jumping discontinuity at 0 prescribed by

lim M:a—)\l and lim M
s—0— S s—0+ S

max (

—1
=a+s]

uniformly for a.e x € €Q;
(¢) lims— oo go(z,5) = 0;
(d) lims——o0 Go(x,8) = G_o Where Go(z,8) = [ g(x,£)d¢, for z € Q, s € R.

Then, the function g : Q2 x R — R given by
g(z,8) = go(x,s) + (s7)" —s771st, forz e, and s€R,
where st denotes the positive part of s, satisfies the conditions (A1)—(AS).
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