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ASYMMETRIC SUPERLINEAR PROBLEMS UNDER STRONG
RESONANCE CONDITIONS

LEANDRO RECOVA, ADOLFO RUMBOS

Abstract. We study the existence and multiplicity of solutions of the problem

−∆u = −λ1u
− + g(x, u), in Ω;

u = 0, on ∂Ω,
(1)

where Ω is a smooth bounded domain in RN (N ≥ 2), u− denotes the negative

part of u : Ω → R, λ1 is the first eigenvalue of the N -dimensional Laplacian

with Dirichlet boundary conditions in Ω, and g : Ω × R → R is a continuous
function with g(x, 0) = 0 for all x ∈ Ω. We assume that the nonlinearity

g(x, s) has a strong resonant behavior for large negative values of s and is

superlinear, but subcritical, for large positive values of s. Because of the lack
of compactness in this kind of problem, we establish conditions under which

the associated energy functional satisfies the Palais-Smale condition. We prove

the existence of three nontrivial solutions of problem (1) as a consequence of
Ekeland’s Variational Principle and a variant of the mountain pass theorem

due to Pucci and Serrin [14].

1. Introduction

Let Ω denote a bounded, connected, open subset of RN , for N > 2, with smooth
boundary ∂Ω. We are interested in the existence and multiplicity of solutions of
the semilinear elliptic boundary value problem (BVP):

−∆u = −λ1u
− + g(x, u), in Ω;

u = 0, on ∂Ω,
(1.1)

where u− denotes the negative part of u : Ω→ R, λ1 is the first eigenvalue of the N -
dimensional Laplacian with Dirichlet boundary conditions in Ω, and g : Ω×R→ R
and its primitive

G(x, s) =
∫ s

0

g(x, ξ)dξ, for x ∈ Ω and s ∈ R, (1.2)

satisfy the following conditions:

(A1) g ∈ C(Ω× R,R) and g(x, 0) = 0 for all x ∈ Ω.
(A2) lims→−∞ g(x, s) = 0, uniformly for a.e. x ∈ Ω.
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(A3) There exists a constant σ such that 1 6 σ < (N + 2)/(N − 2) for N > 3,
or 1 6 σ <∞ for N = 2, and

lim
s→+∞

g(x, s)
sσ

= 0,

uniformly for a.e. x ∈ Ω.
(A4) There are constants µ > max

{
2, 2Nσ

N+2

}
and so > 0 such that

0 < µG(x, s) 6 sg(x, s), for s > so and x ∈ Ω.

(A5) lims→−∞G(x, s) ≡ G−∞, uniformly in x, where G−∞ ∈ R.
Writing

q(x, s) = −λ1s
− + g(x, s), for (x, s) ∈ Ω× R, (1.3)

we assume further that
(A6) q ∈ C1(Ω× R,R) and q(x, 0) = 0; and
(A7) ∂q

∂s (x, 0) = a, for all x ∈ Ω, where a > λ1.
We determine conditions under which the BVP in (1.1) has nontrivial solutions.

By a solution of (1.1) we mean a weak solution; i.e, a function u ∈ H1
0 (Ω) satisfying∫

Ω

∇u · ∇v dx+ λ1

∫
Ω

u−v dx−
∫

Ω

g(x, u)v dx = 0, for all v ∈ H1
0 (Ω), (1.4)

where H1
0 (Ω) is the Sobolev space obtained through completion of C∞c (Ω) with

respect to the metric induced by the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

, for all u ∈ H1
0 (Ω).

The weak solutions of (1.1) are the critical points of the functional J : H1
0 (Ω)→

R given by

J(u) =
1
2

∫
Ω

|∇u|2 dx− λ1

2

∫
Ω

(u−)2 dx−
∫

Ω

G(x, u(x)) dx, (1.5)

for u ∈ H1
0 (Ω). Indeed, the functional J given in (1.5) is in C1(H1

0 (Ω),R) with
Fréchet derivative at every u ∈ H1

0 (Ω) given by

J ′(u)v =
∫

Ω

∇u ·∇v dx+λ1

∫
Ω

u−v dx−
∫

Ω

g(x, u)v dx, for all v ∈ H1
0 (Ω). (1.6)

Thus, comparing (1.4) with (1.6), we see that critical points of J are weak solutions
of (1.1).

In many problems, the following condition, known as the Palais-Smale condition,
is usually needed to prove the existence of critical points of a functional.

Definition 1.1 (Palais-Smale Sequence). Let J ∈ C1(X,R), where X is a Banach
space with norm ‖ · ‖. A sequence (um) in X satisfying

J(um)→ c and ‖J ′(um)‖ → 0 as m→∞,

is said to be a Palais-Smale sequence for J at c.
If (um) is a sequence satisfying

(i) |J(um)| 6M for all m = 1, 2, 3, . . . and some M > 0;
(ii) ‖J ′(um)‖ → 0 as m→∞,

we say that (um) is a Palais-Smale sequence for J .
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Definition 1.2 (Palais-Smale Condition). A functional J ∈ C1(X,R), where X is
a Banach space with norm ‖ · ‖, is said to satisfy the the Palais-Smale condition
at c, denoted (PS)c, if every Palais-Smale sequence for J at c has a convergent
subsequence. In particular, if J has a Palais-Smale sequence at c, and J satisfies
the (PS)c condition, then c is a critical value of J .

We say that J satisfies the (PS) condition if every (PS) sequence for J has a
convergent subsequence.

It follows from condition (A2) and (1.3) that

lim
s→−∞

q(x, s)
s

= λ1, for all x ∈ Ω. (1.7)

The condition in (1.7) makes the BVP in (1.1) into a problem at resonance. Exis-
tence for problems at resonance is sometimes obtained by imposing a Landesman-
Lazer type condition on the nonlinearity. The authors of this article obtained
existence and multiplicity for the BVP (1.1) in [15] for the case in which

lim
s→−∞

g(x, s) = g−∞(x)

exists for all x ∈ Ω, and ∫
Ω

g−∞(x)ϕ1(x) dx > 0, (1.8)

where ϕ1 is an eigenfunction of the N -dimensional Laplacian over Ω corresponding
to the eigenvalue λ1, with ϕ1(x) > 0 for all x ∈ Ω. In the case in which the
Landesman-Lazer condition (1.8) holds, the authors were able to prove that the
functional J defined in (1.5) satisfies the (PS) condition.

Note that the assumption in (A2) prevents condition (1.8) from holding true.
So that, a Landesman-Lazer type condition does not hold for the problem at hand.
As a consequence, we will not be able to prove that the functional J satisfies
the (PS) condition. We will, however, be able to show that J satisfies the (PS)c
condition at values of c that are not in an exceptional set, Λ. In the case in which
conditions (A1)–(A5) hold true, we will prove in the next section that the functional
J ∈ C1(H1

0 (Ω),R) given in (1.5) satisfies the (PS)c condition provided that

c 6= −G−∞|Ω|, (1.9)

where |Ω| denotes the Lebesgue measure of Ω; thus, the exceptional set in this case
is

Λ = {−G−∞|Ω|}. (1.10)

It is not hard to see that the functional J defined in (1.5) does not satisfy the (PS)c
condition at c = c−∞ ≡ −G−∞|Ω|. Indeed, the sequence of functions (um) given
by

um = −mϕ1, for m = 1, 2, 3, . . . ,

is a (PS)c−∞ sequence, as a consequence of assumptions (A2) and (A5). However,

‖um+1 − um‖ = ‖ϕ1‖, for all m = 1, 2, 3, . . . ;

so that (um) has no convergent subsequence.
This lack of compactness is typical of problems at strong resonance. The term

strong resonance refers to the situation described by the assumptions in (A2) and
(A5) and was introduced by Bartolo, Benci and Fortunato in [3]. In [3], the authors
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consider problems similar to (1.1) in which g is bounded, and in which the excep-
tional set is a singleton as in (1.10); more precisely, the authors of [3] consider the
class of BVPs of the form

−∆u = qk(u), in Ω;
u = 0, on ∂Ω,

(1.11)

where
qk(s) = λks− g(s),

with λk an eigenvalue of the Laplacian, and g : R → R a bounded, continuous
function with

lim
|s|→∞

sg(s) = 0.

Furthermore, the authors of [3] assume that the function

G(s) =
∫ s

−∞
g(ξ) dξ

is defined for all s ∈ R, and satisfies G(s) > 0 for all s ∈ R, and

lim
s→∞

G(s) = 0.

The authors of [3] proved existence of weak solutions of BVP (1.11) by introducing a
compactness condition (Condition (C)) that replaces the (PS) condition, and using
the new condition to prove a variant of the deformation lemma.

In [7] and [8], Costa and Silva are able to obtain some of the existence and
multiplicity results of Bartolo, Benci and Fortunato [3] by establishing that the
associated functional J satisfies the (PS)c condition for values of c that are not in an
exceptional set. More recently, Hirano, Li and Wang [12] have used Morse Theory
to obtain multiplicity results for this type of problems with strong resonance. In
[12], the exceptional set, Λ, consists of a finite number of values. They are able
to compute critical groups around the values in Λ; that is, critical groups are
computed at values where the (PS) condition fails. These critical groups are then
incorporated into a new version of the Morse inequality, which allowed the authors
of [12] to obtain multiplicity results.

In all the articles cited so far, the nonlinearity g is assumed to be bounded. In the
present work, we relax that assumption by allowing g(x, s) to grow superlinearly,
but subcritically, in s, for positive values of s (see (A3) and (A4)), while g(x, s) is
bounded for negative values of s (see (A2)).

For additional information on problems at strong resonance in the context of
critical point theory, the reader is referred to the works of Arcoya and Costa [2], Li
[13], and Chang and Liu [6], and the bibliographies found in those papers.

After establishing that the functional J defined in (1.5) satisfies the (PS)c condi-
tion for c 6= −G−∞|Ω| in Section 2, under assumptions (A1)–(A6), we then proceed
to show in Section 3 that J has a local minimizer distinct from 0, provided that
(A5) holds with G−∞ 6 0, and (A7) also holds. In subsequent sections, we in-
troduce an additional condition on the nonlinearity that will allow us to prove the
existence of more critical point of J . In particular, we will assume the following:

(A8) there exists s1 > 0 such that g(x, s1) = 0 for all x ∈ Ω.
In Section 4, we prove that if, in addition to (A1)–(A5), with G−∞ 6 0, (A6) and
(A7), we also assume (A8), then J has a second local minimizer distinct from 0.
Finally, in Section 5, we prove the existence of a third nontrivial critical point of J
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by means of a variant of the mountain-pass theorem proved by Pucci and Serrin in
[14].

2. Proof of the Palais-Smale Condition

In this section we prove that the functional J defined in (1.5), where g and
its primitive G satisfy the conditions in (A1)–(A5), satisfies the (PS)c condition
provided that c 6= −G−∞|Ω|.

Proposition 2.1. Assume that g and G satisfy (A1)–(A5), and define J as in
(1.5). Then, J satisfies the (PS)c for c 6= −G−∞|Ω|.

Proof. Assume that c 6= −G−∞|Ω| and let (um) be a sequence in H1
0 (Ω) satisfying

J(um)→ c and ‖J ′(um)‖ → 0 as m→∞. (2.1)

Thus, according to (1.5) and (1.6),
1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx−
∫

Ω

G(x, um(x)) dx→ c, as m→∞, (2.2)

and ∣∣∣ ∫
Ω

∇um · ∇v dx+ λ1

∫
Ω

u−mv dx−
∫

Ω

g(x, um)v dx
∣∣∣ 6 εm‖v‖, (2.3)

for all m and all v ∈ H1
0 (Ω), where (εm) is a sequence of positive numbers that

tends to 0 as m→∞.
We will show that (um) has a subsequence that converges in H1

0 (Ω). It follows
from (A2) that there exists s1 > 0 such that

− 1 6 g(x, s) 6 1, for s < −s1, and all x ∈ Ω. (2.4)

Consequently,

− |s| 6 sg(x, s) 6 |s|, for s < −s1, and all x ∈ Ω, (2.5)

and
− C1 − |s| 6 G(x, s) 6 C1 + |s|, for s < −s1, and all x ∈ Ω, (2.6)

for some positive constant C1. Combining (2.5) and (2.6), and using the continuity
of g, we can find a positive constant C2 such that

− C2 − 3|s| 6 sg(x, s)− 2G(x, s) 6 C2 + 3|s|, for s 6 0, and all x ∈ Ω. (2.7)

Similarly, we obtain from (A3) that there exists a positive constant C3 such that

|g(x, s)| 6 C3 + |s|σ, for s > 0 and x ∈ Ω. (2.8)

Finally, we obtain from (A4) that there exist positive constants C4 and C5 such
that

G(x, s) > C4s
µ − C5, for s > 0 and x ∈ Ω. (2.9)

Now, it follows from (2.2) that there exists a positive constant C6 such that∣∣∣ ∫
Ω

|∇um|2 dx− λ1

∫
Ω

(u−m)2 dx−
∫

Ω

2G(x, um(x)) dx
∣∣∣ 6 C6, for all m. (2.10)

Taking v = um in (2.3), we obtain∣∣∣ ∫
Ω

|∇um|2 dx− λ1

∫
Ω

(u−m)2 dx−
∫

Ω

g(x, um(x))um(x) dx
∣∣∣ 6 εm‖um‖, (2.11)

for all m.
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Combining (2.10) and (2.11) we then obtain that∣∣∣ ∫
Ω

[g(x, um(x))um(x)− 2G(x, um(x))] dx
∣∣∣ 6 C6 + εm‖um‖, for all m. (2.12)

Next, define the sets

Ω−m = {x ∈ Ω | um(x) < 0}; Ω+
m = {x ∈ Ω | um(x) > 0};

Ωom = {x ∈ Ω | 0 6 um(x) 6 so}; Ωsom = {x ∈ Ω | um(x) > so}.

Then, using the estimate in (2.7),∣∣∣ ∫
Ω−m

[g(x, um(x))um(x)− 2G(x, um(x))] dx
∣∣∣ 6 C + 3‖u−m‖L1 , for all m. (2.13)

Note: From this point on in this paper, the symbol C will be used to represent any
positive constant. Thus, C might represent different constants in various estimates,
even within the same inequality.

It follows from (2.12) and (2.13) that∣∣∣ ∫
Ω+
m

[g(x, um(x))um(x)− 2G(x, um(x))] dx
∣∣∣ 6 C + εm‖um‖+ 3‖u−m‖L1 , (2.14)

for all m.
Using the continuity of g and G we deduce the existence of a positive constant

C such that∫
Ωom

[g(x, um(x))um(x)− 2G(x, um(x))] dx 6 C, for all m. (2.15)

On the other hand, using (A4) we obtain that

(µ− 2)
∫

Ωsom

G(x, um(x)) dx 6
∫

Ωsom

[g(x, um(x))um(x)− 2G(x, um(x))] dx,

for all m; so that, using this estimate in conjunction with (2.15), (2.13), (2.12) and
the assumption that µ > 2, we obtain that∫

Ωsom

G(x, um(x)) dx 6 C + 3‖u−m‖L1 + εm‖um‖, for all m. (2.16)

Noting that Ω+
m = Ωom ∪ Ωsom , we obtain from (2.16) that∣∣∣ ∫

Ω+
m

G(x, um(x)) dx
∣∣∣ 6 C + 3‖u−m‖L1 + εm‖um‖, for all m. (2.17)

Next, we take v = −u−m in (2.3) to obtain∣∣∣ ∫
Ω

|∇u−m|2 dx− λ1

∫
Ω

(u−m)2 dx−
∫

Ω−m

g(x, um)um dx
∣∣∣ 6 εm‖u−m‖, (2.18)

We get from (2.5) and (2.6) that∣∣∣ ∫
Ω−m

g(x, um(x))um(x) dx
∣∣∣ 6 C + ‖u−m‖L1 , for all m, (2.19)

and ∣∣∣ ∫
Ω−m

G(x, um(x)) dx
∣∣∣ 6 C + ‖u−m‖L1 , for all m. (2.20)
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Taking v = u+
m in (2.3) we then get∣∣∣ ∫

Ω

|∇u+
m|2 dx−

∫
Ω+
m

g(x, um)um dx
∣∣∣ 6 εm‖u+

m‖, for all m. (2.21)

It follows from (2.21), (2.17) and (2.14) that∫
Ω

|∇u+
m|2 dx 6 C + εm‖u+

m‖+ 2εm‖um‖+ 6‖u−m‖L1 , for all m,

which can be rewritten as∫
Ω

|∇u+
m|2 dx 6 C + 3εm‖u+

m‖+ 2εm‖u−m‖+ 6‖u−m‖L1 , for all m, (2.22)

by the triangle inequality.
We claim that, if (1.9) holds true, then (u−m) is bounded. We argue by contra-

diction. Suppose, passing to a subsequence if necessary, that

‖u−m‖ → ∞, as m→∞. (2.23)

It follows from (2.22), the Cauchy-Schwarz inequality, and the Poincaré inequality
that

‖u+
m‖ 6 C + C

√
1 + ‖u−m‖, for all m. (2.24)

Combining (2.24) and (2.23) we then deduce that

lim
m→∞

‖u+
m‖

‖u−m‖
= 0. (2.25)

Next, define

vm = − u−m
‖u−m‖

, for all m; (2.26)

so that ‖vm‖ = 1 for all m. We may therefore extract a subsequence (vmk) of (vm)
such that

vmk ⇀ v (weakly) as k →∞, (2.27)
for some v ∈ H1

0 (Ω). We may also assume, passing to further subsequences if
necessary, that

vmk → vin L2(Ω) as k →∞, (2.28)

vmk(x)→ v(x) for a.e. x ∈ Ω as k →∞. (2.29)

Now, it follows from (2.3) and the fact that umk = u+
mk
− u−mk that∣∣∣− ∫

Ω

∇u−mk · ∇v dx+ λ1

∫
Ω

u−mkv dx
∣∣∣

6 εmk‖v‖+
∫

Ω

|∇u+
mk
· ∇v| dx+

∫
Ω

|g(x, umk(x))||v| dx,
(2.30)

for all k and all v ∈ H1
0 (Ω). Using the Cauchy-Schwarz inequality, we can rewrite

the estimate in (2.30) as∣∣∣ ∫
Ω

∇u−mk · ∇v dx− λ1

∫
Ω

u−mkv dx
∣∣∣

6 εmk‖v‖+ ‖u+
mk
‖‖v‖+

∫
Ω

|g(x, umk(x))||v| dx,
(2.31)

for all k and all v ∈ H1
0 (Ω).
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Next, we estimate the last integral on the right-hand side of (2.31) by first writing∫
Ω

|g(x, umk(x))||v| dx

=
∫

Ω−mk

|g(x, umk(x))||v| dx+
∫

Ω+
mk

|g(x, umk(x))||v| dx,
(2.32)

for all k and all v ∈ H1
0 (Ω).

To estimate the first integral on the right-hand side of (2.32), we use (2.4), the
Cauchy-Schwarz inequality, and the Poincaré inequality to get that∣∣ ∫

Ω−mk

|g(x, umk(x))||v| dx
∣∣ 6 C‖v‖, for all k and all v ∈ H1

0 (Ω). (2.33)

To estimate the second integral in the right-hand side of (2.32), apply Hölder’s
inequality with p = 2N/(N + 2) and q = 2N/(N − 2) for N > 3. If N = 2, take
1 6 p 6 µ/σ, which can be done because (A4) implies that pσ < µ. Then,∣∣ ∫

Ω+
mk

|g(x, umk)||v| dx
∣∣ 6 (∫

Ω+
mk

|g(x, umk)|p
)1/p(∫

Ω

|v|q
)1/q

;

so that, in view of (2.8) and the Sobolev embedding theorem,∣∣ ∫
Ω+
mk

|g(x, umk)||v| dx
∣∣ 6 C(∫

Ω

(C + |u+
mk
|σ)p dx

)1/p

‖v‖, (2.34)

for all k and all v ∈ H1
0 (Ω). We then obtain from (2.34) and Minkowski’s inequality

that ∣∣ ∫
Ω+
mk

|g(x, umk)||v| dx
∣∣ 6 C(1 + ‖u+

mk
‖σLpσ )‖v‖, (2.35)

for all k and all v ∈ H1
0 (Ω).

Combining (2.32) with the estimates in (2.33) and (2.35), we then obtain that∫
Ω

|g(x, umk(x))||v| dx 6 C(1 + ‖u+
mk
‖σLpσ )‖v‖, (2.36)

for all k and all v ∈ H1
0 (Ω).

Finally, combining the estimates in (2.31) and (2.36),∣∣∣ ∫
Ω

∇u−mk · ∇v dx− λ1

∫
Ω

u−mkv dx
∣∣∣ 6 C(1 + ‖u+

mk
‖+ ‖u+

mk
‖σLpσ )‖v‖, (2.37)

for all k and all v ∈ H1
0 (Ω).

Next, divide on both sides of (2.37) by ‖u−mk‖ and use (2.26) to get∣∣∣ ∫
Ω

∇vmk · ∇v dx− λ1

∫
Ω

vmkv dx
∣∣∣

6 C
( 1
‖u−mk‖

+
‖u+

mk
‖

‖u−mk‖
+
‖u+

mk
‖σLpσ

‖u−mk‖

)
‖v‖,

(2.38)

for all k and all v ∈ H1
0 (Ω).

We will show next that

lim
k→∞

‖u+
mk
‖σLpσ

‖u−mk‖
= 0. (2.39)



EJDE-2017/1149 SUPERLINEAR PROBLEM UNDER STRONG RESONANCE 9

Using the estimates in (2.9) and (2.17) we obtain∫
Ω

(u+
mk

)µ dx 6 C + C‖u−mk‖+ εmk‖umk‖, for all k, (2.40)

where we have also used the Cauchy-Schwarz and Poincaré inequalities. It then
follows from (2.40) that

‖u+
mk
‖Lµ 6 C(1 + ‖u−mk‖

1/µ + ‖umk‖1/µ), for all k. (2.41)

Next, dividing on both sides of (2.41) by ‖u−mk‖
1/σ and using the fact that

‖umk‖ 6 ‖u+
mk
‖+ ‖u−mk‖

we obtain
‖u+

mk
‖Lµ

‖u−mk‖1/σ
6 C

( 1
‖u−mk‖1/σ

+
‖u−mk‖

1/µ

‖u−mk‖1/σ
+
‖u+

mk
‖1/µ

‖u−mk‖1/σ
)
, for all k,

which we can rewrite as
‖u+

mk
‖Lµ

‖u−mk‖1/σ
6 C

( 1
‖u−mk‖1/σ

+
1

‖u−mk‖1/σ−1/µ
+
(‖u+

mk
‖

‖u−mk‖

)1/µ 1
‖u−mk‖1/σ−1/µ

)
, (2.42)

for all k. Now, in view of (A4) we see that µ > σ; we then obtain from (2.23) and
(2.25), in conjunction with (2.42), that

lim
k→∞

‖u+
mk
‖Lµ

‖u−mk‖1/σ
= 0. (2.43)

Next, using the condition µ > pσ in (A4) to apply Hölder’s inequality with
p1 = µ/pσ and p2 its conjugate exponent we obtain

‖u+
mk
‖pσLpσ =

∫
Ω

(u+
mk

)pσ dx 6
( ∫

Ω

(u+
mk

)µ dx
)pσ/µ|Ω|1/p2 ;

so that,
‖u+

mk
‖σLpσ 6 C‖u+

mk
‖σLµ , for all k,

and, dividing on both sides by ‖u−mk‖,
‖u+

mk
‖σLpσ

‖u−mk‖
6 C

( ‖u+
mk
‖Lµ

‖u−mk‖1/σ
)σ
, for all k. (2.44)

It then follows from (2.43) and (2.44) that

lim
k→∞

‖u+
mk
‖σLpσ

‖u−mk‖
= 0,

which is (2.39).
Using (2.23), (2.25) and (2.39), we obtain from (2.38) that

lim
k→∞

∣∣∣ ∫
Ω

∇vmk · ∇v dx− λ1

∫
Ω

vmkv dx
∣∣∣ = 0, for all v ∈ H1

0 (Ω). (2.45)

It then follows from (2.26), (2.27) and (2.45) that∫
Ω

∇v · ∇v dx− λ1

∫
Ω

vv dx = 0, for all v ∈ H1
0 (Ω);

so that, v is a weak solution of the BVP
−∆u = λ1u, in Ω;
u = 0, on ∂Ω .

(2.46)
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Now, it follows from (2.18) that∣∣∣ ∫
Ω

|∇u−mk |
2 dx− λ1

∫
Ω

(u−mk)2 dx
∣∣∣ 6 εmk‖u−mk‖+

∣∣∣ ∫
Ω−mk

g(x, umk)umk dx
∣∣∣, (2.47)

for all k; where, according to (2.19),∣∣ ∫
Ω−m

g(x, umk(x))umk(x) dx
∣∣ 6 C(1 + ‖u−mk‖), for all k. (2.48)

Thus, combining (2.47) and (2.48),∣∣∣ ∫
Ω

|∇u−mk |
2 dx− λ1

∫
Ω

(u−mk)2 dx
∣∣ 6 C(1 + ‖u−mk‖), for all k. (2.49)

Next, divide on both sides of (2.49) by ‖u−mk‖
2 and use (2.26) to obtain∣∣1− λ1

∫
Ω

(vmk)2 dx
∣∣ 6 C( 1

‖u−mk‖2
+

1
‖u−mk‖

)
, for all k. (2.50)

It then follows from (2.23), (2.28) and (2.50) that

λ1

∫
Ω

(v)2 dx = 1,

from which we conclude that v is a nontrivial solution of BVP (2.46). Consequently,
since vm 6 0 for all m, according to (2.26), we obtain that

v = −ϕ1, (2.51)

where ϕ1 is the eigenfunction for the BVP (2.46) corresponding to the eigenvalue
λ1 with

ϕ1 > 0 in Ω and ‖ϕ1‖ = 1.

We therefore obtain from (2.51) that

v < 0 in Ω. (2.52)

Furthermore,
∂v

∂ν
> 0 on ∂Ω, (2.53)

where ν denotes the outward unit normal vector to ∂Ω. We can then conclude from
(2.25), (2.29), in conjunction with (2.52) and (2.53), that

umk(x)→ −∞ for a.e. x ∈ Ω. (2.54)

Thus, using (A5) and the Lebesgue dominated convergence theorem, we obtain
from (2.54) that

lim
k→∞

∫
Ω

G(x, umk(x)) dx = G−∞|Ω|. (2.55)

It then follows from (2.55) and the first assertion in (2.1) that

lim
k→∞

(1
2

∫
Ω

|∇umk |2 dx−
λ1

2

∫
Ω

(u−mk)2 dx
)

= c+G−∞|Ω|. (2.56)

Next, we go back to the estimate in (2.3) and set v = u+
mk

to obtain∣∣∣ ∫
Ω

|∇u+
mk
|2 dx−

∫
Ω

g(x, u+
mk

)u+
mk

dx
∣∣∣ 6 εmk‖u+

mk
‖, for all k,
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or, dividing by ‖u+
mk
‖,∣∣∣‖u+

mk
‖ −

∫
Ω

g(x, u+
mk

)
u+
mk

‖u+
mk‖

dx
∣∣∣ 6 εmk , for all k. (2.57)

Now, it follows from (2.54) that

u+
mk
→ 0 a.e. as k →∞.

Therefore, it follows from the assumption that g(x, 0) = 0 in (A1), together with
the Lebesgue dominated convergence theorem and the estimate in (2.57), that

lim
k→∞

‖u+
mk
‖ = 0. (2.58)

Next, set V = span{ϕ1} and W = V ⊥; so that, H1
0 (Ω) = V ⊕W .

Write u−mk = vk + wk, for each k, where vk ∈ V and wk ∈ W . Once again, use
the estimate in (2.3), this time with v = wk, to obtain∣∣∣ ∫

Ω

|∇wk|2 dx− λ1

∫
Ω

w2
k dx−

∫
Ω

g(x, umk(x))wk dx
∣∣∣ 6 εmk‖wk‖, (2.59)

for all k.
Now, since wk ∈W , we have that

λ2

∫
Ω

w2
k dx 6

∫
Ω

|∇wk|2 dx, for all k, (2.60)

where λ2 denotes the second eigenvalue of the N -dimensional Laplacian over Ω with
Dirichlet boundary conditions. Consequently,(

1− λ1

λ2

)
‖wk‖2 6

∫
Ω

|∇wk|2 dx− λ1

∫
Ω

w2
k dx, for all k. (2.61)

Thus, setting α = 1− λ1
λ2

in (2.61), we obtain from (2.61) and (2.59) that

α‖wk‖2 6 εmk‖wk‖+
∣∣∣ ∫

Ω

g(x, umk(x))wk dx
∣∣∣, for all k, (2.62)

where α > 0.
Next, we divide on both sides of (2.62) by ‖wk‖ to get

α‖wk‖ 6 εmk +
∣∣∣ ∫

Ω

g(x, umk(x))
wk
‖wk‖

dx
∣∣∣, for all k. (2.63)

Now, it follows from (2.63), (2.54), assumption (A2), and the Lebesgue dominated
convergence theorem that

lim
k→∞

‖wk‖ = 0. (2.64)

Next, we observe that∫
Ω

|∇umk |2 dx =
∫

Ω

|∇u+
mk
|2 dx+

∫
Ω

|∇vk|2 dx+
∫

Ω

|∇wk|2 dx, for all k,

and ∫
Ω

(u−mk)2 dx =
∫

Ω

v2
k dx+

∫
Ω

w2
k dx, for all k;

consequently,
1
2

∫
Ω

|∇umk |2 dx−
λ1

2

∫
Ω

(u−mk)2 dx

=
1
2
‖u+

mk
‖2 +

1
2

∫
Ω

|∇wk|2 dx−
λ1

2

∫
Ω

w2
k dx,

(2.65)
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for all k, where we have used the fact that vk ∈ V for all k. It follows from (2.58),
(2.64), (2.60) and (2.65) that

lim
k→∞

(1
2

∫
Ω

|∇umk |2 dx−
λ1

2

∫
Ω

(u−mk)2 dx
)

= 0. (2.66)

Combining (2.56) and (2.66) we obtain

G−∞|Ω|+ c = 0,

which is in direct contradiction with (1.9). We therefore conclude that (u−m) is
bounded.

Since, (u−m) is bounded, it follows from (2.22) that (u+
m) is also bounded. Con-

sequently, (um) is bounded.
We will next proceed to show that (um) has a subsequence that converges

strongly inH1
0 (Ω). To see why this is the case, first write the functional J : H1

0 (Ω)→
R defined in (1.5) in the form

J(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

Q(x, u(x)) dx, for all u ∈ H1
0 (Ω),

where

Q(x, s) =
∫ s

0

q(x, ξ) dξ, for all x ∈ Ω and s ∈ R,

where q is as given in (1.3). It follows from (1.3) and the assumptions in (A2)
and (A3), that q(x, s) has subcritical growth in s, uniformly in x ∈ Ω; so that, the
derivative map of J , ∇J : H1

0 (Ω)→ H1
0 (Ω), is of the form

∇J = I −∇Q, (2.67)

where ∇Q : H1
0 (Ω)→ H1

0 (Ω), given by

〈∇Q(u), v〉 =
∫

Ω

g(x, u(x))v(x) dx, for u, v ∈ H1
0 (Ω),

is a compact operator.
Now, it follows from the second condition in (2.1) and (2.67) that

um −∇Q(um)→ 0, as m→∞. (2.68)

Since we have already seen that the (PS)c sequence (um) is bounded, we can
extract a subsequence, (umk), of (um) that converges weakly to some u ∈ H1

0 (Ω).
Therefore, given that the map ∇Q : H1

0 (Ω)→ H1
0 (Ω) is compact, we have that

lim
k→∞

∇Q(umk) = ∇Q(u). (2.69)

Thus, combining (2.68) and (2.69), we obtain that

lim
k→∞

umk = ∇Q(u).

We have therefore shown that (um) has a subsequence that converges strongly in
H1

0 (Ω), and the proof of the fact that J satisfies that (PS)c condition, provided
that c 6= −G−∞|Ω|, is now complete. �
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3. Existence of a local minimizer

Assume that g and G satisfy conditions (A1)–(A7) hold. In this section, we will
use Ekeland’s Variational Principle and a cutoff technique similar to that used by
Chang, Li and Liu in [5] to prove the existence of a nontrivial solution of problem
(1.1) for the case in which G−∞ 6 0 in (A5).

To do that, we first define g̃ ∈ C(Ω× R,R) by

g̃(x, s) =

{
g(x, s), for s < 0,
0, for s ≥ 0.

(3.1)

Define a corresponding functional J̃ : H1
0 (Ω)→ R by

J̃(u) =
1
2

∫
Ω

|∇u|2 dx− λ1

2

∫
Ω

(u−)2 dx−
∫

Ω

G̃(x, u) dx, u ∈ H1
0 (Ω), (3.2)

where

G̃(x, s) =
∫ s

0

g̃(x, ξ) dξ, for x ∈ Ω and s ∈ R. (3.3)

Then, J̃ ∈ C1(H1
0 (Ω),R). We claim that J̃ is bounded below. In fact, by condition

(A5) and (3.1), it follows that

|G̃(x, s)| 6Mo, for all x ∈ Ω and s ∈ R, (3.4)

for some Mo > 0. Then, using (3.1) and (3.4), we can write

J̃(u) =
1
2

∫
Ω

|∇u|2dx− λ1

2

∫
Ω

(u−)2dx−
∫

Ω

G̃(x, u)dx,

>
1
2
‖u+‖2 +

1
2
‖u−‖2 − λ1

2
‖u−‖L2 −Mo|Ω|,

(3.5)

for all u ∈ H1
0 (Ω). It then follows from (3.5) and the Poincaré inequality that

J̃(u) > −Mo|Ω|, for all u ∈ H1
0 (Ω);

so that J̃ is bounded below. Thus, the infimum of J̃ over H1
0 (Ω) exists; we can,

therefore define
c1 = inf

u∈H1
0 (Ω)

J̃(u). (3.6)

Notice that, since J̃(0) = 0, we must have c1 6 0. In fact, we presently show that,
if (A6) and (A7) hold, then

c1 < 0. (3.7)
To do this, first use (1.3) and (A7) to compute

lim
s→0−

g(x, s)
s

= a− λ1;

so that

lim
s→0−

g(x, s)
s

> 0,

for all x ∈ Ω, by the assumption on a in (A7). Consequently, there exists s1 < 0
such that

g(x, s) < 0, for s1 < s < 0,

and all x ∈ Ω. It then follows from the definition of G̃ in (3.3) that

G̃(x, s) > 0 for s1 < s < 0, and all x ∈ Ω. (3.8)
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Next, let ε > 0 be small enough so that

s1 < −εϕ1(x) < 0, for all x ∈ Ω. (3.9)

We then have that ∫
Ω

G̃(x,−εϕ(x)) dx > 0, (3.10)

by (3.8) and (3.9). It then follows from the definition of J̃ in (3.2) and (3.10) that

J̃(−εϕ1) = −
∫

Ω

G̃(x,−εϕ(x)) dx < 0.

Consequently, in view of the definition of c1 in (3.6), we obtain that c1 < 0, which
is (3.7).

We now use (3.6) and a consequence of Ekeland’s Variational Principle (see [10,
Theorem 4.4]) to obtain, for each positive integer m, um ∈ H1

0 (Ω) such that

J̃(um) 6 inf
u∈H1

0 (Ω)
J̃(u) +

1
m
, for all m, (3.11)

and
‖J̃ ′(um)‖ ≤ 1

m
, for all m;

we therefore obtain a (PS)c sequence for c = c1. Consequently, if J̃ happens to
satisfy the (PS)c condition at c = c1, we would conclude that c1 is a critical value
of J̃ . We will show shortly that this is the case if we assume that G−∞ given in
(A5) satisfies

G−∞ 6 0. (3.12)

We will first establish that J̃ satisfies the (PS)c provided that c 6= −G−∞|Ω|.

Proposition 3.1. Assume that g and G satisfy (A1), (A2) and (A5), and define
J̃ as in (3.2), where G̃ is given in (3.3) and (3.1). Then, J̃ satisfies the (PS)c
condition for c 6= −G−∞|Ω|.

Proof. Assume that c 6= −G−∞|Ω| and let (um) be a (PS)c sequence for J̃ ; that is,

1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx−
∫

Ω

G̃(x, um) dx→ c, as m→ +∞, (3.13)

and, ∣∣∣ ∫
Ω

∇um · ∇ϕdx+ λ1

∫
Ω

u−mϕdx−
∫

Ω

g̃(x, um)ϕdx
∣∣∣ ≤ εm‖ϕ‖, (3.14)

for all m and all ϕ ∈ H1
0 (Ω), where (εm) is a sequence of positive numbers such

that εm → 0 as m→∞. Write um = u+
m − u−m. We will show that (u+

m) and (u−m)
are bounded sequences.

First, let’s see that (u+
m) is bounded. Setting ϕ = u+

m in (3.14) we have∣∣∣ ∫
Ω

|∇u+
m|2 dx−

∫
Ω

g̃(x, um)u+
m dx

∣∣∣ ≤ εm‖u+
m‖ for all m. (3.15)

By (3.1) and the assumption in (A2), it can be shown that g̃(x, um) is bounded for
all x ∈ Ω. Then, using Hölder and Poincaré’s inequalities, we obtain that∣∣ ∫

Ω

g̃(x, um)u+
m dx

∣∣ ≤ C‖u+
m‖, (3.16)
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for some constant C > 0. Then, from (3.15) and (3.16), we obtain that

‖u+
m‖2 ≤ (C + εm) ‖u+

m‖, for all m,

which shows that (u+
m) is a bounded sequence.

Next, let us show that (u−m) is a bounded sequence. Suppose that this is not the
case; then, passing to a subsequence if necessary, we may assume that

‖u−m‖ → ∞ as m→∞. (3.17)

Define

vm = − u−m
‖u−m‖

, for all m. (3.18)

Then, since ‖vm‖ = 1 for all m, passing to a further subsequences if necessary, we
may assume that there is v ∈ H1

0 (Ω) such that

vm ⇀ v (weakly) in H1
0 (Ω), as m→∞; (3.19)

vm → v in L2(Ω), as m→∞; (3.20)

vm(x)→ v(x) for a.e. xin Ω, as m→∞. (3.21)

Now, writing um = u+
m − u−m in (3.14) we have∣∣∣ ∫

Ω

∇u+
m · ∇ϕdx−

∫
Ω

∇u−m · ∇ϕdx+ λ1

∫
Ω

u−mϕdx−
∫

Ω

g̃(x, um)ϕdx
∣∣∣ 6 εm‖ϕ‖,

for all ϕ ∈ H1
0 (Ω) and all m, from which we obtain that∣∣∣−∫

Ω

∇u−m ·∇ϕdx+λ1

∫
Ω

u−mϕdx−
∫

Ω

g̃(x, um)ϕdx
∣∣∣ 6 (εm+C‖u+

m‖)‖ϕ‖, (3.22)

for all ϕ ∈ H1
0 (Ω), all m, and some constant C > 0, by the Cauchy-Schwarz and

Poincaré inequalities.
Now, we divide both sides of (3.22) by ‖u−m‖ and use (3.18) to obtain∣∣∣ ∫
Ω

∇vm ·∇ϕdx−λ1

∫
Ω

vmϕdx−
∫

Ω

g̃(x, um)
‖u−m‖

ϕdx
∣∣∣ 6 (εm + C‖u+

m‖
‖u−m‖

)
‖ϕ‖, (3.23)

for all ϕ ∈ H1
0 (Ω) and all m. Since g̃ is bounded, by condition (A2) and (3.1), we

obtain from (3.17) that

lim
m→+∞

g̃(x, um(x))
‖u−m‖

= 0, for a. e. x ∈ Ω.

It then follows from the Lebesgue dominated convergence theorem that

lim
m→+∞

∫
Ω

g̃(x, um(x))
‖u−m‖

ϕdx = 0, for all ϕ ∈ H1
0 (Ω). (3.24)

Therefore, using (3.19), (3.20), (3.24), (3.17), the fact that the sequence (u+
m) is

bounded, and letting m→∞ in (3.23), we obtain∫
Ω

∇v · ∇ϕdx− λ1

∫
Ω

vϕ dx = 0, for all ϕ ∈ H1
0 (Ω);

so that, v is a weak solution of the BVP

−∆u = λ1u, in Ω;
u = 0, on ∂Ω.

(3.25)



16 L. RECOVA, A. RUMBOS EJDE-2017/149

Next, we set ϕ = vm in (3.23) to get∣∣∣1− λ1

∫
Ω

v2
m dx−

∫
Ω

g̃(x, um)
‖u−m‖

vm dx
∣∣∣ 6 εm + C‖u+

m‖
‖u−m‖

, for all m, (3.26)

where we have also used the definition of vm in (3.18).
Now, using the Cauchy-Schwarz and Poincaré inequalities, we obtain that∣∣∣ ∫

Ω

g̃(x, um)
‖u−m‖

vm dx
∣∣∣ 6 C

‖u−m‖
, for all m, (3.27)

for some positive constant C, since g̃ is bounded. We then get from (3.27) and
(3.17) that

lim
m→∞

∫
Ω

g̃(x, um)
‖u−m‖

vm dx = 0. (3.28)

Thus, letting m→∞ in (3.26) and using (3.20), (3.28), and (3.17), we obtain that

λ1

∫
Ω

v2dx = 1,

which shows that v is a nontrivial solution of (3.25).
Now, it follows from (3.18) and (3.21) that

v(x) 6 0, for a. e. x ∈ Ω.

Consequently, since v is nontrivial, it must be the case that

v = −ϕ1, (3.29)

where ϕ1 is the eigenfunction of the BVP problem (3.25) corresponding to the
eigenvalue λ1 with ϕ1 > 0, ‖ϕ1‖ = 1. Thus, v < 0 ∈ Ω and ∂v/∂ν > 0 on ∂Ω,
where ν is the outward unit normal vector to ∂Ω.

Next, we write um = u+
m − u−m and use (3.18) to get

um

‖u−m‖
=

u+
m

‖u−m‖
+ vm, for all m;

so that, by the fact that (u+
m) is bounded and (3.17), we may assume, passing to a

further subsequence if necessary, that
um(x)
‖u−m‖

→ −ϕ1(x), for a. e. x ∈ Ω, as m→∞, (3.30)

where we have also used (3.21) and (3.29). It then follows from (3.30) that

um(x)→ −∞ for a. e. x ∈ Ω, as m→∞. (3.31)

Then, using condition (A5) and the Lebesgue dominated convergence theorem, we
conclude from (3.13) that

lim
m→∞

(1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx
)

= c+G−∞|Ω|. (3.32)

Next, we divide both sides of (3.15) by ‖u+
m‖ to obtain∣∣∣‖u+

m‖ −
∫

Ω

g̃(x, um)
‖u+

m‖
u+
m dx

∣∣∣ 6 εm, for all m. (3.33)

Notice that ∫
Ω

g̃(x, um)
‖u+

m‖
u+
m dx =

∫
Ω

g̃(x, u+
m)

u+
m

‖u+
m‖

dx, for all m;



EJDE-2017/1149 SUPERLINEAR PROBLEM UNDER STRONG RESONANCE 17

so that, using the Cauchy-Schwarz and Poincaré inequalities,∣∣ ∫
Ω

g̃(x, um)
‖u+

m‖
u+
m dx

∣∣ 6 C√∫
Ω

g̃(x, u+
m(x))2 dx, for all m, (3.34)

and some positive constant C. Now, it follows from (3.31) that

u+
m(x)→ 0 for a.e x ∈ Ω, as m→∞;

consequently, using the assumption (A1) along with the Lebesgue dominated con-
vergence theorem, we obtain from (3.34) that

lim
m→∞

∫
Ω

g̃(x, um)
‖u+

m‖
u+
m dx = 0. (3.35)

Therefore, letting m tend to ∞ in (3.33) and using (3.35) we obtain that

lim
m→∞

‖u+
m‖ = 0. (3.36)

Thus, combining (3.32) and (3.36) we can then write

lim
m→∞

(1
2

∫
Ω

|∇u−m|2 dx−
λ1

2

∫
Ω

(u−m)2 dx
)

= c+G−∞|Ω|. (3.37)

We may now proceed as in the proof of Proposition 2.1 in Section 2 to show that

lim
m→∞

(1
2

∫
Ω

|∇u−m|2 dx−
λ1

2

∫
Ω

(u−m)2 dx
)

= 0.

Hence, in view of (3.37), we obtain that c+G−∞|Ω| = 0, which contradicts the as-
sumption that c 6= −G−∞|Ω|. We therefore conclude that (u−m) must be a bounded
sequence. Thus, since we have already seen that (u+

m) is bounded, we see that (um)
is bounded.

We have therefore shown that any (PS)c sequence with c 6= −G−∞|Ω| must be
bounded. The remainder of this proof now proceeds as in the proof of Proposition
2.1 presented in Section 2, using in this case the fact that g̃ is bounded. �

Now, if we assume that the value G−∞ given in (A5) satisfies the condition in
(3.12), then we would have that −G−∞|Ω| > 0. Consequently, in view of (3.7), we
see that the value of c1 given in (3.6) is such that

c1 < −G−∞|Ω|;

therefore, J̃ satisfies the (PS)c condition at c = c1. Hence, by the discussion
preceding the statement of Proposition 3.1, c1 is a critical value of J̃ . Thus, there
exists u1 ∈ H1

0 (Ω) that is a global minimizer for J̃ . We note that u1 6≡ 0 in Ω by
(3.7).

Now, since the function g̃ defined in (3.1) is locally Lipschitz (refer to assumption
in (A6)), it follows that u1 is a classical solution of the problem

−∆u = −λ1u
− + g̃(x, u), in Ω;

u = 0, on ∂Ω,
(3.38)

(see Agmon [1]).
Let Ω+ = {x ∈ Ω | u1(x) > 0}. Then, by the definition of g̃ in (3.1), u1 solves

the BVP
−∆u = 0, in Ω+;
u = 0, on ∂Ω,

(3.39)



18 L. RECOVA, A. RUMBOS EJDE-2017/149

which has only the trivial solution u ≡ 0. Thus, Ω+ = ∅ and therefore u1 6 0 in Ω.
Before we state the main result of this section, though, we will discuss some

properties of the critical point u1.
Since we have already seen that u1 6 0 in Ω, it follows from the definition of g̃ in

(3.1) that u1 is also a solution of the BVP (1.1); consequently, u1 is also a critical
point of J . We will show shortly that u1 is a local minimizer for J .

Since u1 is a solution of the BVP (3.38), then u1 is also a solution of the BVP

−∆u− p(x)u = λ1u1 − g−(x, u1(x)), in Ω;
u = 0, on ∂Ω,

(3.40)

where

p(x) =

{
g+(x,u1(x))

u1(x) , if u1(x) < 0;

0, if u1(x) = 0.
(3.41)

Now, it follows from (3.40) and the fact that u1(x) 6 0 for all x ∈ Ω that u1 solves

−∆u− p(x)u 6 0, in Ω;
u = 0, on ∂Ω.

(3.42)

Thus, since p(x) 6 0, according to (3.41), we can apply the Hopf’s Maximum
Principle (see, for instance, [11, Theorem 4, p. 333]) to conclude that

u1(x) < 0, for all x ∈ Ω, (3.43)

since u1 is nontrivial, and

∂u1

∂ν
(x) > 0, for x ∈ ∂Ω, (3.44)

where ν denotes the outward unit normal vector to the surface ∂Ω. We can then
use (3.43) and (3.44), and the assumption that Ω is bounded to show that there
exists δ > 0 such that, if u ∈ C1(Ω) ∩H1

0 (Ω) is such that

‖u− u1‖C1(Ω) < δ,

then
u(x) < 0, for all x ∈ Ω.

Consequently, if u is in a δ-neighborhood of u1 in the C1(Ω) topology, then

J(u) = J̃(u) > J̃(u1) = J(u1);

so that u1 is a local minimizer of J in the C1(Ω) topology. It then follows from a
result of Brezis and Nirenberg in [4] that u1 is also a local minimizer for J in the
H1

0 (Ω) topology. We have therefore demonstrated the following theorem.

Theorem 3.2. Assume that g and G satisfy conditions (A1)–(A4). Assume also
that (A6) and (A7) are satisfied. If (A5) holds true with G−∞ 6 0, then the
BVP (1.1) has a nontrivial solution, u1, that is a local minimizer of the functional
J : H1

0 (Ω)→ R defined in (1.5).

In the next section, we will provide additional conditions on the nonlinearity, g,
that will allow us to show that the functional J defined in (1.5) has another local
minimizer.
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4. Existence of a second local minimizer

In addition to (A1)–(A5), with G−∞ 6 0, and (A6)–(A7), we will assume
(A8) there exists s1 > 0 such that g(x, s1) = 0 for all x ∈ Ω.

In this case, we consider the truncated nonlinearity g : Ω× R→ R given by

g(x, s) =

{
g(x, s), for 0 6 s 6 s1,

0, elsewhere.
(4.1)

The corresponding primitive,

G(x, s) =
∫ s

0

g(x, ξ) dξ, for all x ∈ Ω and s ∈ R,

is then given by

G(x, s) =


0, if s 6 0;
G(x, s), if 0 < s 6 s1;
G(x, s1), if s > s1,

(4.2)

where G is as given in (1.2).
In view of the definitions of g and G in (4.1) and (4.2), respectively, we see that

g and G are bounded functions. Thus there exist positive constants M1 and M2

such that

|g(x, s)| 6M1, for all x ∈ Ω and s ∈ R, (4.3)

|G(x, s)| 6M2, for all x ∈ Ω and s ∈ R.

The corresponding truncated functional, J : H1
0 (Ω)→ R is then given by

J(u) =
1
2

∫
Ω

|∇u|2 dx− λ1

2

∫
Ω

(u−)2 dx−
∫

Ω

G(x, u) dx, u ∈ H1
0 (Ω), (4.4)

where G is given in (4.2). We then get that J is Fréchet differentiable with contin-
uous derivative given by

〈∇J(u), ϕ〉 =
∫

Ω

∇u · ∇ϕdx+ λ1

∫
Ω

u−ϕdx−
∫

Ω

g(x, u)ϕdx, (4.5)

for all u and ϕ in H1
0 (Ω).

Next, we show that J satisfies the (PS)c condition for c 6∈ Λ, where the excep-
tional set, Λ, in this case is

Λ = {0}.

Proposition 4.1. Assume that g and G satisfy (A1), (A2) and (A8), and define
J as in (4.4), where G is given in (4.2). Then, J satisfies the (PS)c for c 6= 0.

Proof. Let (um) be a (PS)c sequence for J , where

c 6= 0; (4.6)

so that, according to (4.4) and (4.5)
1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx−
∫

Ω

G(x, um) dx→ c, as m→∞, (4.7)

and ∣∣∣ ∫
Ω

∇um · ∇ϕdx+ λ1

∫
Ω

u−mϕdx−
∫

Ω

g(x, um)ϕdx
∣∣∣ 6 εm‖ϕ‖, (4.8)
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for all m and all ϕ ∈ H1
0 (Ω), where (εm) is a sequence of positive numbers that

tends to 0 as m→∞.
Writing um = u+

m − u−m for all m, and taking ϕ = u+
m in (4.8) we obtain∣∣∣‖u+

m‖2 −
∫

Ω

g(x, u+
m)u+

m dx
∣∣∣ 6 εm‖u+

m‖, for all m. (4.9)

Using (4.3) we then estimate∣∣ ∫
Ω

g(x, u+
m)u+

m dx
∣∣ 6 C‖u+

m‖, for all m, (4.10)

where we have also used the Cauchy-Schwarz and Poincaré inequalities. Combing
(4.9) and (4.10) we then get that

‖u+
m‖2 6 C‖u+

m‖, for all m, (4.11)

where we have used the fact that εm → 0 as m→∞.
It follows from (4.11) that the sequence (u+

m) is bounded in H1
0 (Ω).

Next, we show that (u−m) is also bounded in H1
0 (Ω). If this is not the case, we

may assume, passing to a subsequence if necessary, that

‖u−m‖ → ∞ as m→∞. (4.12)

Define

vm = − u−m
‖u−m‖

, for all m. (4.13)

Then, since
‖vm‖ = 1, for all m, (4.14)

passing to a further subsequences if necessary, we may assume that there is v ∈
H1

0 (Ω) such that

vm ⇀ v (weakly) in H1
0 (Ω), as m→∞; (4.15)

vm → v in L2(Ω), as m→∞; (4.16)

vm(x)→ v(x) for a.e. xin Ω, as m→∞. (4.17)

Now, writing um = u+
m − u−m in (4.8) we have∣∣∣ ∫

Ω

∇u−m · ∇ϕdx+ λ1

∫
Ω

u−mϕdx−
∫

Ω

g(x, um)ϕdx
∣∣∣ 6 (εm +C‖u+

m‖)‖ϕ‖, (4.18)

for all m and all ϕ ∈ H1
0 (Ω), where we have also used the Cauchy-Schwarz and

Poincaré inequalities.
Next, divide both sides of (4.18) by ‖u−m‖ and use (4.13) to obtain∣∣∣ ∫
Ω

∇vm ·∇ϕdx−λ1

∫
Ω

vmϕdx−
∫

Ω

g(x, um)
‖u−m‖

ϕdx
∣∣∣ 6 (εm + C‖u+

m‖
‖u−m‖

)
‖ϕ‖, (4.19)

for all ϕ ∈ H1
0 (Ω) and all m.

Using the estimate in (4.3) and (4.12) we obtain

lim
m→∞

∣∣∣ ∫
Ω

g(x, um)
‖u−m‖

ϕdx
∣∣∣ = 0, for all ϕ ∈ H1

0 (Ω). (4.20)

Combining (4.19) and (4.20) we then get

lim
m→∞

∣∣∣ ∫
Ω

∇vm · ∇ϕdx− λ1

∫
Ω

vmϕdx
∣∣∣ = 0, for all ϕ ∈ H1(Ω), (4.21)
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where we have used (4.12) and the facts that (u+
m) is bounded in H1

0 (Ω) and εm → 0
as m→∞.

Now, it follows from (4.15), (4.16) and (4.21) that∫
Ω

∇v · ∇ϕdx− λ1

∫
Ω

vϕ dx = 0, for all ϕ ∈ H1
0 (Ω); (4.22)

so that, v is a weak solution of the BVP

−∆u = λ1u, in Ω;
u = 0, on ∂Ω.

Next, we take ϕ = vm in (4.19) and use (4.14) to obtain∣∣∣1− λ1

∫
Ω

v2
m dx−

∫
Ω

g(x, um)
‖u−m‖

vm dx
∣∣∣ 6 εm + C‖u+

m‖
‖u−m‖

, for all m, (4.23)

where, by (4.3), (4.12) and (4.16),

lim
m→∞

∣∣ ∫
Ω

g(x, um)
‖u−m‖

vm dx
∣∣ = 0. (4.24)

Thus, using (4.12), and the facts that (u+
m) is a bounded sequence and εm → 0 as

m→∞, we obtain from (4.23) and (4.24) that

lim
m→∞

∣∣∣1− λ1

∫
Ω

v2
m dx

∣∣∣ = 0;

so that, in view of (4.16),

λ1

∫
Ω

v2 dx = 1, (4.25)

from which we conclude that v 6≡ 0. Thus, v is an eigenfunction of −∆ with
Dirichlet boundary conditions over Ω. It follows from this observation and (4.22), in
conjunction with (4.25), that ‖v‖ = 1. Consequently, we obtain from the definition
of vm in (4.13) and from (4.17) that

v = −ϕ1. (4.26)

Recall that we have chosen ϕ1 so that ϕ1 > 0 in Ω and ‖ϕ1‖ = 1.
Next, writing um = u+

m − u−m and using (4.13), we obtain

um

‖u−m‖
=

u+
m

‖u−m‖
+ vm, for all m;

so that, by the fact that (u+
m) is bounded and (4.12), we may assume, passing to a

further subsequence if necessary, that

um(x)
‖u−m‖

→ −ϕ1(x), for a. e. x ∈ Ω, as m→∞, (4.27)

where we have also used (4.17) and (4.26). It then follows from (4.27) that

um(x)→ −∞ for a. e. x ∈ Ω, as m→∞. (4.28)

Then, using the definition of G in (4.2) and the Lebesgue dominated convergence
theorem, we conclude from (4.28) that

lim
m→∞

∫
Ω

G(x, um(x)) dx = 0;
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so that, in conjunction with (4.7),

lim
m→∞

(1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx
)

= c. (4.29)

We may now proceed as in the proof of Proposition 2.1 and show that

lim
m→∞

(1
2

∫
Ω

|∇um|2 dx−
λ1

2

∫
Ω

(u−m)2 dx
)

= 0. (4.30)

Note that (4.29) and (4.30) are in contradiction with (4.6). Consequently, (u−m) is
also bounded in H1

0 (Ω). Therefore, as in the last portion of the proof of Proposition
2.1, we can show that (um) has a convergent subsequence. We have therefore
established the fact that J satisfies the (PS)c condition, provided that c 6= 0. �

It follows from the definition of J in (4.5) and the estimate in (4.4) that J is
bounded from below in H1

0 (Ω). Indeed, we obtain the estimate

J(u) >
1
2
‖u+‖2 +

1
2
‖u−‖2 − λ1

2
‖u−‖2L2 −M2|Ω|, for all u ∈ H1

0 (Ω);

so that, using the Poincaré inequality,

J(u) >
1
2
‖u+‖2 −M2|Ω|, for all u ∈ H1

0 (Ω),

from which we obtain that

J(u) > −M2|Ω|, for all u ∈ H1
0 (Ω).

Set
c2 = inf

v∈H1
0 (Ω)

J(v). (4.31)

We will show that, if (A6) and (A7) hold, then

c2 < 0. (4.32)

Indeed, for
0 < t <

s1

maxx∈Ω ϕ1(x)
,

compute

J(tϕ1) = J(tϕ1) =
t2

2
−
∫

Ω

G(x, tϕ1(x)) dx,

so that
d

dt

[
J(tϕ1)

]
= t−

∫
Ω

g(x, tϕ1(x))ϕ1(x) dx,

d2

dt2
[
J(tϕ1)

]
= 1−

∫
Ω

∂g

∂s
(x, tϕ1(x))(ϕ1(x))2 dx.

It then follows from (4) and (A6) and (A7) that

lim
t→0+

d2

dt2
[J(tϕ1)] = 1− a

∫
Ω

ϕ2
1 dx,

or

lim
t→0+

d2

dt2
[J(tϕ1)] = 1− a

λ1
< 0,

since a > λ1 according to (A7). Consequently, there exists t1 > 0 such that

J(t1ϕ1) < 0.
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Thus, in view of (4.31), the assertion in (4.32) follows.
In view of (4.32) and the result in Proposition 4.1 we see that J satisfies the

(PS)c2 condition. Thus, given the definition of c2 in (4.31), the argument invoking
Ekeland’s Variational Principle leading to Theorem 3.2 in Section 3 can now be
used to obtain a minimizer, u2, of J . Furthermore, as was done in Section 3, we
can use the Maximum Principle to conclude that

0 < u2(x) < s1, for all x ∈ Ω;

so that, u2 is also a critical point of J . Indeed, u2 is a local minimizer of J by
the Brézis and Nirenberg result in [4]. We have therefore established the following
multiplicity result.

Theorem 4.2. Assume that g and G satisfy conditions (A1)–(A5), with G−∞ 6 0,
and (A6)–(A8). Let J : H1

0 (Ω) → R be the C1 functional defined in (1.5). In
addition to the local minimizer, u1, of J given by Theorem 3.2, which is a negative
solution of the BVP (1.1), there exists another local minimizer, u2, of J that yields
a positive solution of the BVP (1.1).

5. Existence of a third nontrivial critical point

In the previous section we saw that, if g and G satisfy conditions (A1)–(A5), with
G−∞ 6 0, and (A6)–(A8)), then the functional J defined in (1.5) has two local min-
imizers distinct from 0. In this section we prove the existence of a third, nontrivial,
critical point of J . This will follow from following variant of the Mountain-Pass
Theorem first proved by Pucci and Serrin in 1985, [14].

Theorem 5.1 ([14, Theorem 1]). Let X be a real Banach space with norm ‖ · ‖
and J : X → R be a C1 functional. Let uo and u1 be distinct points in X. Assume
that there are real numbers r and R such that

0 < r < ‖u1 − uo‖ < R,

and a real number a such that

J(uo) 6 a J(u1) 6 a,

J(v) > a for all v such that r < ‖v − uo‖ < R.

Put
Γ = {γ ∈ C([0, 1], X)|γ(0) = uo, γ(1) = u1}, (5.1)

and let
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)). (5.2)

Assume further that any sequence (un)∞n=1 in X such that

J(un)→ c as n→∞,
J ′(un)→ 0, as n→∞

possesses a convergent subsequence. Then, there exists a critical point u in X
different from uo and u1, corresponding to the critical value c given in (5.2).

In [14], Pucci and Serrin apply the result in Theorem 5.1 to the case in which
uo and u1 are two distinct local minima of the functional J . Thus, according to
Theorem 5.1, if the functional J satisfies the (PS)c condition, where c is as given in
(5.2), we would obtain a third critical point of J distinct from the two minimizers.
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We summarize this observation in the following corollary to the Pucci-Serrin result
in Theorem 5.1.

Corollary 5.2. [14, Corollary 1] Suppose that J has two distinct local minimizers,
uo and u1. Let c be as given in (5.2) and suppose that J satisfies the (PS)c condition.
Then, J possesses a third critical point.

According to Proposition 2.1, we will be able to apply Corollary 5.2 to our
problem provided we can show that c 6= −G−∞|Ω|. Since we are also assuming
that G−∞ 6 0, we will be able to obtain a third nontrivial critical point of J if we
can prove that c given by (5.2) is negative. This can be achieved if we can show that
there is some path γ in Γ defined in (5.1), connecting the two local minimizers, such
that J(γ(t)) < 0 for all t ∈ [0, 1]. To do this, we borrow an idea used by Courant
[9] in the proof of the so called Finite Dimensional Mountain-Pass Theorem. With
these observations in mind, we are ready to prove the main result of this section.

Theorem 5.3. Let J satisfies the conditions (A1)–(A5), with G−∞ 6 0, and (A6)–
(A8). Let J : H1

0 (Ω) → R be the C1 functional defined in (1.5), and u1 and u2 be
the two local minimizers of J given by Theorem 4.2. Then, J has a third nontrivial
critical point. Consequently, the BVP (1.1) has three nontrivial weak solutions.

Proof. Let u1 and u2 denote the two local minimizers of J given by Theorem 4.2.
We then have that u1 and u2 are nontrivial and u1 6= u2. Furthermore,

J(u1) < 0 and J(u2) < 0. (5.3)

Define
Γ = {γ ∈ C([0, 1], H1

0 (Ω))|γ(0) = u1, γ(1) = u2}, (5.4)

and put
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)). (5.5)

Arguing by contradiction, assume that u1, u2 and 0 are the only critical points
of J . Then, certainly, there is a path γo ∈ Γ that does not contain 0. Then, u1 and
u2 are the only critical points of J along γo. Set

γo([0, 1]) = M ∪N,

where M = {γo(t) ∈ H1
0 (Ω) : t ∈ [0, 1] and J(γo(t)) > 0} and N = γo([0, 1])\M .

We will consider two cases M = ∅ and M 6= ∅ separately.
If M = ∅, then J(γo(t)) < 0 for all t ∈ [0, 1]. Hence, in view of the definition

of c in (5.5), c < 0. Consequently, by Proposition 2.1 and the assumption that
G−∞ 6 0, J satisfies the (PS)c condition. Thus, we can apply Corollary 5.2 with
X = H1

0 (Ω) to conclude that J has a critical point, u, distinct from u1 and u2.
Furthermore, u 6= 0, since c < 0. This would contradict the initial assumption that
there are no critical point of J other than 0, u1 and u2.

Next, assume that M 6= ∅. Observe that u1, u2 /∈ M in view of (5.3). Then, M
contains no critical points of J ; consequently, ∇J(γo(t)) 6= 0 for all t ∈ [0, 1] such
that γo(t) ∈M , where ∇J is the gradient of J obtained by the Riesz Representation
Theorem for Hilbert spaces. In particular, since M is compact, there exists δ > 0
such that

‖∇J(u)‖ ≥ δ, for all u ∈M. (5.6)
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It then follows from that assumption that J is C1 that there exists ε > 0 such that

‖∇J(v)‖ ≥ δ

2
for all v ∈Mε = {v ∈ H1

0 (Ω)|dist(v,M) < ε}. (5.7)

Notice that Mε is an open neighborhood of M which does not contain u1 and u2

because they are local minimizers of J .
Next, let ρ ∈ Cc(H1

0 (Ω),R) denote a function with supp(ρ) ⊂ Mε such that
ρ(u) = A, for u ∈ M , and 0 ≤ ρ(u) ≤ A for all u ∈ H1

0 (Ω), where A a positive
constant to be chosen shortly. Define the following deformation η : H1

0 (Ω) × R →
H1

0 (Ω) given by

η(u, t) = u− tρ(u)∇J(u), for u ∈ H1
0 (Ω) and t ∈ R. (5.8)

It then follows that
d

dt
J(η(u, t)) = 〈∇J(η(u, t)), ηt(u, t)〉

= 〈∇J(η(u, t)),−ρ(u)∇J(η(u, t))〉
= −ρ(u)‖∇J(η(u, t))‖2,

(5.9)

for u ∈ H1
0 (Ω) and t ∈ R. In particular, it follows from (5.9) and (5.8) that

d

dt
J(η(u, t))

∣∣
t=0

= −ρ(u)‖∇J(u)‖2, for all u ∈ H1
0 (Ω). (5.10)

Note that, for points u ∈ H1
0 (Ω) such that ρ(u) > 0, it follows from (5.6) and (5.7)

that

ρ(u)‖∇J(η(u, t))‖2 > ρ(u)
δ2

4
> 0. (5.11)

Hence, by (5.10) and the assumption that J ∈ C1(H1
0 (Ω),R), we obtain that, for

each u ∈ H1
0 (Ω) such that ρ(u) > 0, there exists a neighborhood U of u and Tu > 0

such that

d

dt
J(η(u, t)) < −ρ(u)

2
‖∇J(u)‖2, for u ∈ U and |t| < Tu. (5.12)

On the other hand, if ρ(u) = 0, it follows from the definition of η in (5.8) that
η(u, t) = u for all t ∈ R so that

d

dt
[η(u, t)] = 0, for t ∈ R.

Therefore,

d

dt
J(η(u, t)) = 0, for all t ∈ [0, 1], u ∈ X with ρ(u) = 0. (5.13)

Since supp(ρ) is compact, it follows from (5.11), (5.12) and (5.13) that there exists
T > 0 such that

d

dt
J(η(u, t)) ≤ −ρ(u)

8
δ2, for u ∈ H1

0 (Ω) and |t| < T.

Consequently,

J(η(u, T )) ≤ J(u)− ρ(u)
8

δ2T, for all u ∈ H1
0 (Ω). (5.14)
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Next, define γ(t) = η(γo(t), T ), for all t ∈ [0, 1]. Note that γ ∈ Γ. Indeed, since
u1 /∈ Mε and u2 /∈ Mε, we have, by the properties of ρ and the definition of η in
(5.8), that

η(ui, T ) = ui, for i = 1, 2.

Now, if v ∈ N , it follows from (5.14) that

J(η(v, T )) < 0, for all u ∈ N. (5.15)

On the other hand, for v ∈M , using (5.14), we obtain that

J(η(v, T )) ≤ L− A

8
δ2T, for all u ∈M, (5.16)

where we have set L = maxt∈[0,1] J(γo(t)). Choose A = 12L
δ2T . Then, it follows from

(5.16) that

J(η(v, T )) 6 −L
2
< 0, for v ∈M. (5.17)

Therefore, by combining (5.15), (5.17) and the choice of A, we conclude that

J(η(γo(t), T )) < 0, for all t ∈ [0, 1].

Therefore, the path γ = η(γo, T ) connecting the two local minimizers u1 and u2 is
such that

J(γ(t)) < 0, for all t ∈ [0, 1].

Consequently, by the definition of c in (5.5) and (5.4), c < 0. It then follows, by
the result of Proposition 2.1 and the assumption that G−∞ 6 0, that J satisfies the
(PS)c condition. We can therefore apply Corollary 5.2, with X = H1

0 (Ω), to obtain
a critical point u of J different from u1 and u2 and such that u 6= 0. However, this
contradicts the assumption that 0, u1 and u2 are the only critical points of J . We
therefore obtain the existence of a third nontrivial critical point of J . �

Remark: We provide an example of a function g that satisfies the conditions
(A1)–(A8), and to which the results in Theorem 5.3 will apply. In this example we
assume that N > 3.

Let s1 denote a positive real number; r be a real number satisfying

max
( 2
N − 2

, 1
)
< r <

N + 2
2(N − 2)

;

and a a real number with a > λ1. To construct g, let g0 : Ω×R→ R be a continuous
function satisfying the following conditions:

(a) g0(x, 0) = 0 and g0(x, s) = 0 for all x ∈ Ω and s > s1;
(b) the derivative of g0 has a jumping discontinuity at 0 prescribed by

lim
s→0−

g0(x, s)
s

= a− λ1 and lim
s→0+

g0(x, s)
s

= a+ sr−1
1 ,

uniformly for a.e x ∈ Ω;
(c) lims→−∞ g0(x, s) = 0;
(d) lims→−∞G0(x, s) = G−∞ where G0(x, s) =

∫ s
0
g(x, ξ)dξ, for x ∈ Ω, s ∈ R.

Then, the function g : Ω× R→ R given by

g(x, s) = g0(x, s) + (s+)r − sr−1
1 s+, for x ∈ Ω, and s ∈ R,

where s+ denotes the positive part of s, satisfies the conditions (A1)–(A8).
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