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ABSTRACT. This article is devoted to the study of the parameter’s set where
the Green’s function related to a general linear n*"-order operator, depending
on a real parameter, T,,[M], coupled with many different two point boundary
value conditions, is of constant sign. This constant sign is equivalent to the
strongly inverse positive (negative) character of the related operator on suitable
spaces related to the boundary conditions.

This characterization is based on spectral theory, in fact the extremes of
the obtained interval are given by suitable eigenvalues of the differential op-
erator with different boundary conditions. Also, we obtain a characterization
of the strongly inverse positive (negative) character on some sets, where non
homogeneous boundary conditions are considered. To show the applicability of
the results, we give some examples. Note that this method avoids the explicit
calculation of the related Green’s function.
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1. INTRODUCTION

The study of the qualitative properties of the solution of a nonlinear two-point
boundary-value problems for differential equations has been widely developed in
the literature.

This work is devoted to the study of the strongly inverse positive (negative) char-
acter of the general n*"- order operator coupled with different boundary conditions.
In order to do that, we characterize the parameter’s set where the related Green’s
function is of constant sign. Our characterization is based on the spectral theory,
actually, the extremes of the parameter’s interval, where the Green’s function is of
constant sign, are just the eigenvalues of the given operator with suitable related
boundary conditions.

This result avoids the requirement of obtaining the explicit expression of the
Green’s function, which can be very complicate to work with. In a wider class
of situations, specially in the non constant coefficients case, it is not possible to
obtain such an expression. Moreover, a slight change on the operator or in the
boundary conditions may produce a big change on the expression of the related
Green’s function and its behavior. So, it is very useful to give a direct and easy
way to characterize its sign.

It is well-known that the constant sign of the Green’s function related to the
linear part of a nonlinear problem is equivalent to the validity of the method of
lower and upper solutions, coupled with monotone iterative techniques, that allows
to deduce the existence of solution of such a problem, see for instance [2], [3] 17, 2T].

Moreover, by using the constant sign of the related Green’s function, nonex-
istence, existence and multiplicity results for nonlinear boundary-value problems
are derived, by means of the well-known Kranosel’skil contraction/expansion fixed
point theorem [20], from the construction of suitable cones on Banach spaces
[, 4 M1, 19, 24). The combination of these two methods has also been proved
as a useful tool to ensure the existence of solution [5l, [6] [16], [I8], 23].

It is important to point out that the study of the constant sign of the related
Green’s function has been widely developed along the literature, by means of study-
ing its expression [8, [@] 10, 22]. In all of them the expression of the Green’s func-
tion has been obtained in order to prove the optimality of the previously obtained
bounds. This work generalizes the ones given in [I2] for the problems with the
so-called (k,n — k) boundary conditions and in [I4] for a fourth order problem with
the simply supported beam boundary conditions.

In this article, we study a huge number of different boundary conditions including
the previously mentioned.

First, we introduce two sets of indices which describe the boundary conditions
in each case. Let k € {1,...,n — 1} and consider the following sets of indices
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{o1,...,06} C{0,...,n—1} and {e1,...,en—r} C {0,...,n — 1}, such that
0<o01 <0< <o <n—1, 0<eg << <egp_r<n—1.

Definition 1.1. Let us say that {o1,...,01} —{e1,...,en_i} satisfy property (N,)

if
Y1+ 1>h, Vhe{l,...n-1}. (1.1)
o'j<h €j<h
Notation 1.2. Let us denote a, 8 € {0,...,n — 1}, such that
a¢{or,...,ox}, andifa#0, {0,...,a—1}C{o1,...,0k}, (1.2)

Bé¢{er,.. . en—k}, andif 5#0, {0,....,8—1}C{er,...,en—k}. (1.3)

Note that o < k and 8 < n — k. Let us define the following family of nt_order
linear differential equations

To[Mu(t) = u™ () + pr u D () + -+ (pu(t) + M)u(t) =0, tel, (1.4)

where I = [a,b] is a real fixed interval, M € R a parameter and p; € C"7(I) are
given functions.
Note that this equation represents a general n order equation. In fact, we could
think of
W () + py (I (E) + -+ Ba(B)ult) =0, tE T,

where .

ﬁn(t):pn(t)+m Dn(s)ds =pn(t)+ M, tel.

So, if p, is a function of average equals to zero, the parameter M represents the
average of the coefficient of v and, as a consequence, the problem of finding the
values of M for which the Green’s function has constant sign is equivalent to look
for the values of the average of such a coefficient.

We study , coupled with the boundary conditions:

u(”l)(a) — .= u(”’“)(a) =0, (1.5)
WED(B) = - = ulEnR)(B) = 0. (1.6)

This boundary conditions cover many different problems. As an example, we
can consider n = 4, {01,02} = {0,2} and {e1,e2} = {0,2} which correspond to the
simply supported beam boundary conditions.

Note that, in the second order case, the Neumman conditions do not satisfy
property (N,). However, Dirichlet and Mixed conditions are included.

In this article, we will illustrate the obtained results with an example based on
the choice of {01,092} = {0,2} and {e1,e2} = {1, 2}.

We consider the following definitions related to the boundary conditions (|1.5)-
[L9):

Xt = {ue oM a7 (@) = - = ul (@) = D (0) w9
- ... = u(E"*")(b) — 0}'

Remark 1.3. In this article we consider different choices of boundary conditions.
Sometimes, we do not know the relative position of the given indices which define the
spaces of definition. In particular, if we consider the following boundary conditions

u(‘“)(a) == u(ak—l)(a) =0,
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u(a) =0,
U(El)(b) _ = u(a"*’“)(b) =0,
with a defined by (|1.2]).

To point out this setting of the indices we use the following notation:

Xy = {we 0w (e) = - =u () =0,
u("‘)(a) — 07u(51)(b) S u(anfk)(b) = 0}'
Analogously, we denote the following sets of functions:
X{pe ) = {ue O ™) = =) =0,
W (@) = 0,0V (B) = - = w0 () = 0},
X — fue on(1) u (@) = - = w1 (@) = 0,
W) =+ = ulr-(5) = 0, u(b) = 0},
X = fue ey ul (@) = - = (@) =0,
’U/(El)(b) - = u(an,kq)(b) — O,u(ﬁ)(b) _ 0}.

For instance, if n =4, 01 =0, 00 = 2,61 = 0 and g5 = 1, then X{{Zi?}} = X{{g’ll}},

where 01 = 0 < a = 1. On another hand, if 01 = 2, 05 = 3, ¢y =0 and 3 = 1,

then Xijiiiff = Xg))’;}}: where « =0 < 01 = 2.

So, we are interested into characterize the parameter’s set for which the operator
T,,[M] is either strongly inverse positive or negative on X{{jifrkik}

Moreover, once we have obtained such a characterization with the homogeneous
boundary conditions —, we study its strongly inverse positive (negative)
character on related spaces with non homogeneous boundary conditions.

The work is structured as follows, at first, in order to make the paper more
readable, we introduce a preliminary section where some previous known results
are shown. After that, in the next section, we introduce the hypotheses that both
the operator T,,[M] and the boundary conditions should satisfy to our results be
applied. In Section [ we obtain the expression of the related adjoint operator
and boundary conditions. We deduce suitable properties of them. Next section is
devoted to the study of operator T),[M] for a given M = M that satisfies some
suitable previously introduced hypotheses. After that, in the two next sections,
we study the existence and properties of the related eigenvalues of the operator
and its adjoint, respectively, together to additional properties of the associated
eigenfunctions. Section [8] is devoted to prove the main result of the work, where
the characterization of the interval of parameters, where the Green’s function has
constant sign, is attained. At the end of such a section, some examples are shown.
In Section [I0] we obtain a necessary condition that M should verify, in order
to allow T,,[M] to be strongly inverse negative (positive) on the non considered
cases on Section At the end of such a section, we prove that this necessary
condition can give an optimal interval in some cases. Once we have worked with
the homogeneous boundary conditions, we obtain a characterization for a particular
case of non homogeneous boundary conditions. Finally, we study a class of operators
that satisfy the imposed hypotheses. Moreover, for this type of operators, we obtain
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a characterization for more general non homogeneous boundary conditions. The
section finishes by showing some examples of this class of operators.

2. PRELIMINARIES

In this section, for the convenience of the reader, we introduce the fundamental
tools in the theory of disconjugacy and Green’s functions that will be used in the
development of further sections.

Definition 2.1. Let pp € C"*(I) for k = 1,...,n. The n'"-order linear differen-
tial equation (|1.4)) is said to be disconjugate on I if every non trivial solution has
less than n zeros on I, multiple zeros being counted according to their multiplicity.

Definition 2.2. The functions uq,...,u, € C"(I) are said to form a Markov
system on the interval I if the n Wronskians

Uq UL
W(ug,...,ug) = : : , k=1,...,n, (2.1)
ufeD u}(ﬂkq)

are positive throughout 1.
The following results about this concept are collected on [I5, Chapter 3].

Theorem 2.3. The linear differential equation (1.4) has a Markov fundamental
system of solutions on the compact interval I if and only if it is disconjugate on I.

Theorem 2.4. The linear differential equation (1.4) has a Markov system of so-
lutions if and only if the operator T,,[M] has a representation

ds1l d d,1d, 1
T, M|y = cop——— = (——=(— 2.2
n[Mly = vivz U"dt(vn dt( i@ y»))’ (2:2)
where vy, >0 on I and v, € C"*Y(I) fork=1,...,n.

To introduce the concept of Green’s function related to the nt*-order scalar prob-
lem (|1.4)—(1.6]), we consider the following equivalent first-order vectorial problem:

2 (t)=A{t)z(t), tel, Bz(a)+Cx(b) =0, (2.3)
with z(t) € R™, A(¢t), B,C € M xn, defined by
u(t)

u'(t)
=] | Aw= ! It ,
=D GO T ) | o@D
bir -+ bin €11 Cin
B = : : , C= : : , (2.4)
bnl e bnn Cnl e Cnn
where b 14, =1for j=1,...,kand ¢jyx14e;, = 1for j =1,...,n—k; otherwise,

bij =0 and Cij = 0.

Definition 2.5. We say that G is a Green’s function for problem (2.3)) if it satisfies
the following properties:

(1) G=(Gij)ijeqr,.ny: U XD\{(t, 1), t €T} — Myxn.
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(2) G is a C! function on the triangles {(t,s) € R?, a < s <t < b} and

{(t,s) eR?, a<t<s<bl
(3) For all i # j the scalar functions G; ; have a continuous extension to I x I.
(4) For all s € (a,b), the following equality holds:

%G(t, s) = A(t)G(t,s), foralltel\{s}.

(5) For all s € (a,b) and i € {1,...,n}, the following equalities are fulfilled:
tlilgl+ Gii(t,s) = tEI;lﬁ Gii(s,t) =1+ tlirgl+ Gii(s,t) =1+ tlir;lﬁ Gii(t,s).
(6) For all s € (a,b), the function t — G(t, s) satisfies the boundary conditions
BG(a,s) +CG(b,s) = 0.

Remark 2.6. On the previous definition, item (G5) can be modified to obtain the
characterization of the lateral limits for s = a and s = b as follows:

lim Gi’i(t, a) =1+ lim Gi,i(aj), and lll’lfl GZ’Z(b,t) =1+ hIlI)l Glﬂ(t,b)
t—b— t—b—

t—at t—a™T

It is well known that Green’s function related to this problem is given by the
following expression [2, Section 1.4]

G(t,s)
gl(t7s) g?(tas) gnfl(tws) gM(ta S)
_| Zots)  Zets) o Zgaalts)  Gouts) [ (2D
871—1 8n—1 ' 8n—1 an—l
STt s)  Fmmrga(t,s) o sErgn—1(ts)  GEmrgm(t.s)

where gps(t, s) is the scalar Green’s function related to T,[M] on Xéjiik;k}
Using Definition we can deduce the properties fulfilled by gas (¢, s). In partic-
ular, gy € C’”*Q(I x I) and it is a C™ function on the triangles a < s <t < b and

a <t < s <b. Moreover it satisfies, as a function of ¢, the two-point boundary-value

conditions (|1.5)-(1.6) and solves equation (1.4)) whenever t # s.

In [12] gn—;(t,s) are expressed as functions of gas(t,s) forall j =1,...,n—1 as
follows:
S =, &

In—j (tv 8) = (71) ﬁgM(ta 3) + ; Q; (8) D5’ gM(tv 5) ’ (26)
where o/ (s) are functions of py(s),..., p;(s) and of its derivatives up to order
(j — 1) and follow the recurrence formula

a(s) =0, (2.7)
al(s)=0, i>j+1>1, (2.8)
i/
CYJO—H(S) = pj+1(s) - (Ot%) (S)a J > 07 (29)
alt(s) = 7(0/:_1(3) + (ag')’(s)), 1<i<j. (2.10)
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The adjoint of the operator T, [M] is given by the following expression, see for
details [2 Section 1.4] or [I5, Chapter 3, Section 5],

ToMJo(6) = (<100 + 3 (=1 (pacyv)” () + (ul) + Mo(e) . (211)

j=1
and its domain of definition is
n j—1
D(T;[M]) = {v ec™(): (=11~ (p_0) =170 (5)u (@ (b)
j=1 =0
n j—1
j i j i i 2.12
= Z (=177 (pr—j0) I (@)u? (a) (2.12)

(with po = 1), Vu € D(T,L[M])}.
Next result appears in [I5, Chapter 3, Theorem 9.

Theorem 2.7. Fquation (1.4) is disconjugate on an interval I if and only if the
adjoint equation, T [M]y(t) = 0 is disconjugate on I.

We denote g3,(t,s) as the Green’s function related to the adjoint operator,
Tx[M]. In [2 Section 1.4] it is proved the following relationship

grr(t,8) = g (s, t). (2.13)
Now, let us define the operator
To[(=1)" M] := (=1)"T;[M], (2.14)
we deduce, from the previous expressions, that
g1 m(t,s) = (=1)"gar (t,5) = (=1)"gn (s, 1) , (2.15)

where g(_1ynas(t, s) is the scalar Green’s function related to operator fn[(—l)"M]
in D (T:[M]).
Obviously, Theorem [2.7| remains true for operator T,,[(—1)" M].

Definition 2.8. Operator T,,[M] is inverse positive (negative) on X{{;:}:;k} if

every function u € X{{jiik;’“} such that T,,[M]wu > 0 on I, satisfies u > 0 (u < 0)
on I.

Next results are consequence of the ones proved on [2, Section 1.6, Section 1.8]
for several two-point n-order operators.
Theorem 2.9. Operator T,,[M] is inverse positive (negative) on X};Z;k} if
and only if Green’s function related to problem (1.4)—(1.6) is non-negative (non-
positive) on its square of definition.

Theorem 2.10. Let My, My € R and suppose that operators T,,[M;], j = 1,2,
{511'“7571,719}
{0'17---70'k}

operators T,,[M;] and suppose that both functions have the same constant sign on

I x I. Then, if M1 < My, it is satisfied that go < g1 on I X I.

are invertible on X Let gj, j = 1,2, be Green’s functions related to
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Theorem 2.11. Let My < M < My be three real constants. Suppose that operator
T,,[M] is invertible on xleveni} for M = M;, j =1,2 and that the correspond-

{o1,on}
ing Green’s function satzsﬁes g2 < g1 <0 (resp. 0< gy <g¢g1)onlIxI. Then
the operator T, [M] is invertible on X{{ji ’22}"} and the related Green’s function g

satisﬁesgggggglg()(Ogggﬁgggl) on I x1I.

Now, we introduce a stronger concept of inverse positive (negative) character.

Definition 2.12. Operator T,[M] is strongly inverse positive on X%{;ii’;’“} if
every function u € X{{; i"}’“} such that T,,[M]w = 0 on I, must verify « > 0 on

(a,b) and, moreover, u(o‘)( ) > 0 and u?)(b) > 0 if B is even, v (b) < 0 if 3 is
odd, where o and (3 are defined in (1.2]) and (1.3]), respectively.

{e1,sEn—k}
{0'1,...,0'k} lf
every function u € X}L{Zi’_”’i"}k} such that T,,[M]u = 0 on I, must verify v < 0 on
(a,b) and, moreover, u(®(a) < 0 and u'®(b) < 0 if 3 is even, u'® (b) > 0 if 3 is
odd, where o and (3 are defined in (1.2]) and (1.3]), respectively.

Definition 2.13. Operator T;,[M] is strongly inverse negative on X

Analogously to Theorem [2.9] the following ones can be shown.

Theorem 2.14. Operator T,[M] is strongly inverse posztwe on Xfii Zk 2 if
and only if Green’s function related to problem (L.4)~(1.6]), gar(¢,s), satzsﬁes the
following properties:

o gr(t,s) >0 ae. on (a,b) x (a,b).

. aa;th s |t_ >0 for a.e. s € (a, b)

. Ei[;gM t,s |t p > 0if B is even and é)tﬁng (t,s ‘t , < 0if B is odd for a.e.

€ (a,b).

Theorem 2.15. Operator T,,[M] is strongly inverse negatwe on X}L{El’ e ’“} if

,,,,,

and only if Green’s function related to problem (1.4)—(1.6), gar(¢,s), satzsﬁes the
following properties:

e grn(t,s) <0 ae. on (a,b) x (a,b).

) %gM(t,s)’t:a <0 for a.e. s € (a,b).

. %gM(t,s)L:b < 04f B is even and gTBBgM(t,s)‘t:b > 0 4f B is odd for a.e.
s € (a,b).

Next, we introduce two conditions on gps(t, s) that will be used in this paper.
(A2.1) Suppose that there is a continuous function ¢(t) > 0 for all ¢ € (a,b) and
k1,ke € L1(I), such that 0 < ky(s) < ka(s) for a.e. s € I, satisfying
d(t) k1(s) < gm(t,s) < @(t) ka(s), ae. (t,8) €I xI.

(A2.2) Suppose that there is a continuous function ¢(t) > 0 for all ¢ € (a,b) and

k1,ke € L1(I), such that k;i(s) < ka(s) < 0 a.e. s € I, satisfying
d(t) k1(s) < gm(t,s) < @(t) ka(s), ae. (t,8) €I xI.
Finally, we introduce the following sets that characterize where the Green’s func-
tion is of constant sign,

Pr={MeR:gu(t,s)>0V(ts)elxI}, (2.16)
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Ny ={M eR:gy(t,s) <0V(t,s) el x1}. (2.17)

Note that, using Theorem [2.10] we can affirm that the two previous sets are real
intervals (which can be empty in some situations).

The next results describe one of the extremes of the two previous intervals (see
[2, Theorems 1.8.31 and 1.8.23]).

Theorem 2.16. Let M € R be fized. If T,,[M] is an invertible operator on the set

{61"”’2;’“} and its related Green’s function satisfies condition (A2.1), then the

following statements hold:

e There is A\ > 0, the least eigenvalue in absolute value of operator T, [M]

on X%;ii’;;k} Moreover, there exists a nontrivial constant sign eigen-
function corresponding to the eigenvalue \1.

e Green’s function related to operator T,[M] is nonnegative on I x I for all
M e (M — )\1,]\7[].

e Green’s function related to operator T, [M] cannot be nonnegative on I X I
for all M < M — \;.

o If there is M € R for which Green’s function related to operator T,[M] is

non-positive on I x I, then M < M — ).

Theorem 2.17. Let M € R be fived. If T,,[M] is an invertible operator on the set
Xxlevenskd ond its related Green’s function satisfies condition (A2.2), then the

{0'1 ,..‘,O'k}
following statements hold:

o There is Ay < 0, the least eigenvalue in absolute value of operator T,,[M]

on X{{;Z;k} Moreover, there exists a nontrivial constant sign eigen-
function corresponding to the eigenvalue \o.

e Grreen’s function related to operator T, [M] is non-positive on I x I for all
M e [M,M — \y).

e Green’s function related to operator T,[M] cannot be non-positive on I x I
for all M > M — \s.

o [f there is M € R for which Green’s function related to operator T,[M] is
nonnegative on I x I, then M > M — ).

Next results give some relevant properties of the intervals Ny and Pr.

Theorem 2.18. Let M € R be fived. If T,,[M] is an invertible operator on the set
xlevenanl gnd its related Green’s function satisfies condition (A2.1); then if the

{01,001}

interval N # (), then sup(N7) = inf(Pr).
Theorem 2.19. Let M € R be fized. If T,,[M] is an invertible operator on the set
Xi{z’i’;?} and its related Green’s function satisfies condition (A2.2); then if the
interval Pr # 0, then sup(Np) = inf(Pr).

By using these results, we know that one of the extremes of the interval of
constant sign of the Green’s function, if it is not empty, is characterized by its first
eigenvalue. So, the rest of the paper is devoted to characterize the other extreme
of the interval, provided that it is bounded.

3. HYPOTHESES ON THE OPERATOR T,,[M]

As we have mentioned at the introduction, the aim of this work is to generalize
the results given in [12] and [14].
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In [I2], the problems studied are the so-called (k,n — k) boundary conditions
which correspond to {o1,...,0k} ={0,...,k—1} and {e1,...,6n—k} ={0,...,n—
k—1}. We will characterize the parameter’s set where the Green’s function has con-
stant sign, by assuming that the boundary conditions satisfy (N, ), which, clearly,
holds for (k,n — k).

By using Theorems [2.3| and under the hypothesis that is disconjugate
on [a, b], it is proved in [I2] the existence of a decomposition as follows:

d <Tk_1u(t)

Tou(t) = u(t), Tru(t)=— (D)

=7 ), k=1,...,n,

where v, > 0, v, € C™(I) such that
T [Mu(t) =vi(t) ...v(t) Thu(t), tel,

and, moreover, this decomposition satisfies, for every u € X {{8 ’::Ik}*l}:
Tou(a) = -+ =Tg_qu(a) =0,
Tou(b) == n,k,lu(b) =0.

In [T4], it is studied a fourth order problem coupled with the simply supported
beam boundary conditions, that is, {01,092} = {€1,e2} = {0,2}. It is also obtained
a decomposition as follows:

Tou(t) = u(t), Tru(t)

d(M)7 k=1,...,4,

R ANE0)
where vy, > 0, vy € C*(I) such that
T4[M]u(t) = Ul(t) Ce 1}4(t) T4u(t) , tel,

and, moreover, this decomposition satisfies, for every u € X }822]% :

Tou(a) = Tou(a) =0,

Tou(b) = Tou(b) =0.

Furthermore, the simplest n'"-order operator which we can study is T}, [0]u(t) =
u(™(t). Tt is obvious that such an operator satisfies
d (Tk_lu(t)

Tou(t) = u(t), Tiult) = 5 (=5

), k=1,...,n,

where vy, =1 on [ and
T.[0]u(t) = vi(t) ... v, (¢) Tou(t), tel,
X{El ..... En,—k}:

and, moreover, this decomposition satisfies, for every u € {o1ion]

Ty, u(a) = u(‘”)(a) =0,...,T,u(a) = u("’“)(a) =0,
Tou(d) =u D) =0,...,T., ,u(d) =u+(b)=0.
Thus, it is natural to impose that the operator T, [M] satisfies the following
property.
Definition 3.1. We say that the operator T,,[M] satisfies the property (T,;) on

{{:‘Z’;;’“} if and only if there exists the following decomposition:

d kalu(t)

Tou(t) = u(t), T t—;(————
ou(t) =u(t), Tru(t) (D)

== ) k=1,....n, (3.1)
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where v, > 0, vy, € C™(I) such that

To[Mu(t) = vi(t) ... on(8) Tou(t), te€l, (3.2)
and, moreover, such a decomposition satisfies, for every u € Xi{jii:}k b

To,u(a) =+ =Tyula) =0,

Toud)=---=T,, ,ulb)=0.

As we have shown above, the operator T}, [M]u(t) = u(™(t) + Mu(t) satisfies
property (Ty) for M = 0. Indeed, the existence of such a decomposition for M = M
allows to express the operator T},[M] as a composition of operators of order 1
verifying the boundary conditions given on —. That is, in order to study
the oscillation, we can think that the operator T, [M]u(t) has an analogous behavior
to u(™(t).

Remark 3.2. By Theorems and the disconjugacy of the linear differen-
tial equation (1.4) on I is a necessary condition for the operator T,,[M] to satisfy

property (T;) on Xi{ji ?,:}k} Furthermore, as it has been proved in [12], the dis-
conjugacy hypothesis is also a sufficient condition for the operator T,,[M] to satisfy

property (Ty) on X{{g ____ N f} 2

Remark 3.3. There may exist different decompositions (3.1) depending on the
choice of vy for k = 1,...,n. Moreover, even if we are not able to obtain such a
decomposition, we cannot ensure that it does not exist, unless we prove that the
linear differential equation (|1.4)) is not disconjugate.
In [12], it is shown that
1
v1(t) ... ve(t)

where py, € C" (1), for every i = 1,...,£, and £ = 0,...,n. Now, let us see that
pe, (t) = ag(oa(t), ., 0e(0))vy(8) + - - + af(vi(t), ..., ve(8))vg(t) (3.4)

Tyu(t) = uO () + pe, a0 () + e, (Bult),  (3.3)

ey () = ag(vi(t), ..., ve(D)o] (8) + -+ a~ (va(E), ..., ve(t)) vy (¢) (3.5)
+ fa(vr(t), ..., ve(t), v (t), ..., vp(t)), ’
pes () = ag(va(t), ..., ve(£)o)" (8) + -+« + a5 2 (va(E), .. ., ve(£))vg” o (t) (3.6)
+ f3(vi(t), .- ve(t), vy (t), - o vp(t), 07 (8), - v q (1)) .
—at(vi(8), ..., ve(t)o'?
be, (t) - é( (t)ﬂ 5 Z(t)) 1 (t) (37)

F fo(01(8), -y ve(8), 01 (0, v (8), 0TI (E), 08 T (8))

where a! € O ((0,+00)"), fi € C>=((0,00)" x R(i_l)zl_ziw) forall £ =0,...,n
i=1,...,0and j=1,....0 —i+ 1.

We can see that for £ = 1 the result is true:
d <U(t) ) _u@®)  wn(@)
dt\vi(t))  wi(t)  v3(D)

Tyu(t) = u(t), (3.8)

hence a}(z) = — 5.
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Suppose, by induction hypothesis, that the result is true for a given £ > 1. Then,
let us see what happens for ¢ + 1.

1 pe(t) (o pe, ()
T, u(t) = — —u(z)t+17u(€ 1){; +-|—67ut ,

eru(t) = o (111 (). vesr(t) ®) Vo1 (t) ®) Vg1 (1) ( )>

or, which is the same,
1
_ (£+1) ()

T[+1U(t) 0 (t) - 1}@+1(t) u (t) + Pe+1, (t)u (t) + + pl+1e+1 (t)u(t) ’

where

d (pe;_,(t) pe; (1) .
P, (1) £< vet1(t) ) vy (t) 2=ist
d ( pe,(t)
Petie (t) = @(wil(t)) ’

which clearly satisfy (3.4)—(3.7)) for ¢+ 1.

Example 3.4. Now, let us show, as an example, the expression of Thu(t):

) = 5 (G

)y 200 + 00
v1(t)va(t) vi(t)vs(t
() ()0l ()b () + va(t) (2017 (1) — va (B)e] (1))
v} (t)v3(t)
In this case, al(z,y) = —wf—y, aj(z,y) = —ﬁ, al(z,y) = —ﬁ and f(z,y,2,t) =
aczt—Q—Qyz2

Remark 3.5. From the arbitrariness of the choice of u € X{el’“"a"”“}, if the

{o1,.,06}
operator T, [M] satisfies the property (T;;) on ijiiz;k} then, for each ¢ which
belongs to {o1,...,0%}, we have that
1
vi(a)...ve(a)
implies that pg, (@) = 0 for each h € {1,...,£¢} such that £ — h ¢ {o1,...,0%}.
Analogously, for each £ € {e1,...,ep_}

a0+ P O 0 (u(t) = 0.
implies that py, (b) = 0 for each h € {1,...,¢} such that £ — h ¢ {e1,...,en—k}.

Tyu(a) = u(a) + pe, ()u'"V(a) + - pe,(a)ula) =0,

Tgu(b) =

Now, we deduce two results which are a straight consequence of property (T})
and previous Remark.
Lemma 3.6. Let M € R be such that T,[M] satisfies property (T;) on the set
ijiiz;’“} If u € C™([a,c)), where ¢ > a, is a function that satisfies u'®)(a) =

o=l (a) =0, for £ =1,...,k, then
Tou(a) =+ =Ty, ,ula) =0,
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Ty ula) = f(a)ul™ (a),

where
1

=
J®) v1(t) ... Ug, (%)
In particular, w9 (a) = 0 if and only if T,,u(a) = 0.

Proof. We only have to take into account expression (3.3)) and Remarkto deduce
the result directly. O

>0, tel.

We have an analogous result for ¢ = b.

Lemma 3.7. Let M € R be such that T,[M] satisfies property (T;) on the set
X{{:‘Z’;;’“} Ifu € C"((c, b)), where ¢ < b, is a function that satisfies u(**) (b) =

co=ulEe-)(b) =0, for € {1,...,n —k}, then
Teu(d)=--- =T, ,u(b) =0,

Er—1
T, u(b) = g(b)u'* (b),
where

(t) — ;

T = @) oe, (1)
In particular, if u)(b) = 0, then T-,u(b) = 0.
As in Lemma the proof follows from (3.3) and Remark Now, we prove
a preliminary result, which ensures that Green’s function is well-defined for the
operator T,[M] on X{El"“’s""“}, provided that it satisfies the property (Ty) on

{010}

>0,tel.

{e1,-s€n—k}
{0'1,~~-70'k}

Lemma 3.8. Let M € R be such that T,[M] satisfies property (T;) on the set
xleveenskt ppen {o1,.-yor}—{e1,...,en—r} satisfy (N,) if and only if M =0

{01,001}
is not an eigenvalue of T,[M] on Xg;i;;k}

Proof. To prove the sufficient condition, let us consider u € X %{jii’;;’“}} such that

T.[Mu(t)=0,teI.

We will see that necessarily « = 0 in I. Since the operator T, [M] satisfies the

property (T;) on X{{jii—kik}v we can use the decomposition given in (3.1)); so, we

have
0 =T, [Mu(t) = vi(t) ...v,(t) Tou(t), tel,

which, since vy ,...,v, > 0, implies that

d (Th_1u(t

Tou(t) = 7(;1&()) =0, tel,

dt \  v,(t)

hence T”v#(?)(t) is a constant function on I. So, since v, > 0 on I, T,,_qu(t) is of
Tnfzu(t)

constant sign on I. Hence is a monotone function, with at most one zero

vp—2(t)
on I. As before, since v,—2(t) > 0 on I, we can conclude that T, _su(t) can have at
most one zero on I. Proceeding analogously, we conclude that u can have at most

n — 1 zeros on 1.
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If Tyu #0 for all ¢ =1,...,n — 1, then each time that Tyu(a) = 0 or Tyu(b) =0
a possible oscillation is lost. Indeed, if the maximum number of zeros for Tyu on [
is h and one of them is found in either ¢ = a or ¢ = b, then Tyu can have at most
h — 1 sign changes on I (h — 2 if both Tyu(a) = Tyu(b) = 0). Since T}, [M] satisfies
property (T4) on ijii’;ik}, Tyu(a) = 0 or Tyu(b) = 0, at least n times.

If Tyu(t) #0 for all ¢ =1,...,n — 1, n possible oscillations are lost, since u can
have n — 1 zeros with maximal oscillation, this implies that necessarily u = 0.

If there exists some £ € {1,...,n — 1}, such that Tyu(t) = 0 on I, let us choose
the least ¢ that satisfy this property. With the same arguments as before, we can
conclude that the maximum number of zeros which u can have is ¢ — 1.

Using the fact that {o1,...,01} — {e1,...,en—i} satisfy (N,), we know that
Tru(a) = 0 or Tru(b) = 0 at least £ times from h = 0 to £. Therefore, we lose £

possible oscillations, hence u = 0. And, we can conclude that 0 is not an eigenvalue
v {517---75n7k}
of T,,[M] on X{ol,...,ak} .
Reciprocally, to prove the necessary condition, let us assume that {o1,...,0} —

{e1,...,en—r} do not satisfy (N,). Then, there exists hg € {1,...,n— 1} such that

D1+ Y 1<hg.

gj <hg £j <ho
Thus, there always exists a nontrivial function verifying the boundary conditions
(1.5)-(1.6]) for oy < ho and e, < hg such that Thu(t) = 0.
Trivially, Tglu(i 0 and T, u(b) = 0 for either o, > hg or €, > hg. Thus, by
3

applying Lemmas and inductively, we conclude that u € xlerenaid g

{o1,-s01}

consequence, it is obvious that M = 0 is an eigenvalue of T,,[M] on X {{;Z’S’“}

4. STUDY OF THE ADJOINT OPERATOR, T [M]

To obtain the characterization of the Green’s function sign, as it has been done
in [I2] and [I4], it is necessary to study the adjoint operator, T.*[M], defined in
. So, this section is devoted to make an analysis of such an operator and
some of its properties in relation with the hypotheses on operator T, [M] given in
the previous section.

So, we describe the space D(T;*[M]), defined in by taking into account

that, in our case, D(T,[M]) = X [ErEnon),

{01,001}

Let us denote D(T¥[M]) = xEenid and consider the sets

{01, sou}
{61, 0k} {1, s Tk} C{0,...,n — 1},
such that 0; < dj41 and 75 < Tj4q, fori=1,...;k—land j7=1,...,n -k — 1,
satisfying:
{o1,..cyop,m—1—711,...,n—1—7,}=1{0,...,n—1}
{e1,. - yén—psm—1—061,...,m—1—=0;,}={0,...,n—1}.
Remark 4.1. By the definition of a and 8 given in and , respectively,

we haveao =n—1—7,_p and B=n—1— .

Hence we choose u € Xgiiz;k}, such that

u(n—l—n)<a) =1,
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'U;(Z)(a)zo, Vi:O7~"7n_1,i7én—1—T17
u(l)(b) =0, Vi=0,...,n—1.

Thus, from (2.12)) we can conclude that every v € X*{El""’a””‘}, satisfies

{o1,.,0k}
n—1
W@+ 3 (1" (o) H T (@) = 0.
J=n—Tm1
Proceeding analogously for 7o, ..., 7,—_k, we can obtain the boundary conditions
for the adjoint operator at ¢ = a, and working at t = b for §1,...,d, we are

able to complete the boundary conditions related to the adjoint operator. So, we

conclude that every v € xle ekt ey C™(I) function that satisfies the following

{0’1 ..... Uk}
conditions
n—1
dW(@)+ Y ()" (pumge) T (@) = 0, (4.1)
J=n—T71
n—1
,U(Tnfk—l)(a) + Z (_1)n—j<pn_j'u)('rn7k71+j—n)(a) =0, (4.2)
J=n—Tp_k—1
n—1 ) )
U(Tn—k)(a)+ Z (=)™ (p -’]_})(Tnfk'i‘.]—n)(a)_o; (4.3)
J=Nn—Tn_k
n—1 .
o)+ D ()" (paye) () =0, (4.4)
j=n—4;
n—1 .
U(ékfl)(b)-i‘ ( 1)n—j(p ,jv)(ék’l-ﬁ_n)(b) =0, (4 5)
j=n—0k_1
n—1 ) .
) (b) + (=1)" 7 (pa—yv) M (B) = 0 (4.6)
]:’I’Lfék

Let us denote n, v € {0,...,n — 1} as follows

ne¢{r,. ..,7n-k}, andif n£0, {0,...,n =1} C {1, ..., Tk}, (4.7)
v & {01,...,0}, andif y#0, {0,...,7y—1} C {01,...,0k}. (4.8)
Remark 4.2. As in Remark [L.1] we have that n =n—1—o0p and y =n—1—g,_j.

From the boundary conditions (4.1)-(.6), since p; € C™"7J(I), the following
assertions are fulfilled:

o If n#0, for all v € Xfifl_"'.”(;i""“} it is satisfied v(a) = --- = v (a) = 0.
o Ify#£0, for all v € X1 it s satisfied v(b) = = v~V (b) = 0.

Example 4.3. Let us consider the fourth order operator T4[M] coupled with the
boundary conditions

u(a) = u"(a) = u'(b) =u"(b) =0. (4.9)
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Now, we describe the domain of definition of the adjoint operator, T;[M]. In this
case, {r1,72} = {0,2} and {d1,02} = {0,3}. Thus, from (4.1))-(4.6), we deduce
that:

X*{l 2} {U c C4 (I) : v(a) = v”(a) _pl(a)v'(a) = ’U(b) =0,

(0.2} (4.10)
V@ (b) = pr(b)0" (b) + (p2(b) — 20/ (b =0}.
Definition 4.4. We say that operator T [M] satisfies property (7);) on the set
X terenai} if, there exists a decomposition:

{0'1""70'k}
Tio(t) = wo(t)v(t), Tiv(t) = (D) (Ti_o(t)) , k=1,...,n, (4.11)
where wy, > 0, w,, € C™(I) and
Tr[Mu(t) =Trv(t), t €.

Moreover, this decomposition satisfies that for every v € X;ifl """ sn-t},

Ok}
Tiv(a)=---=T; wv(a)=0, (4.12)
T§v(b) =---=T5v(b)=0. (4.13)

Lemma 4.5. Let M € R be such that T,[M] satisfies property (T;) on the set
{e1,en—k}
{o1,...,06}

set X*{El ..... 5n—k}'

{01 70k}

. Then the adjoint operator T;'[M| also satisfies property (T5) on the

Proof. From [15, Chapter 3, Theorem 10], it is fulfilled that if T,,[M]v satisfies
(3.2)), then T*[M] can be decomposed as:

1

rit) = o (i (i o @0 ) @

Hence,

-1 d
’Un+17k( )dt (Tk 1U( )) ;

50, the existence of the decomposition given in (4.11)) is proved by taking wq(t) =
v1(t) ... vn(t) and w(t) = vpp1-k(t) for k=1,...,n

Let us see that for every v € X ;éfl UET]L, “}_the boundary conditions (4.12)-(4.13)

Tov(t) =v1(t) .. v (t)v(t), and Trou(t) =

are satisfied.

Obviously, the expression of the n*'- order scalar problem 7 as a first
order vectorial problem, given in , does not depend on the property (Ty) of
T,[M]. In our case, using the decomposition given by (T;), we can transform
the n*-order problem T,[M]u(t) = 0 into a first-order vectorial problem in an

alternative way as follows

U,(t)=A1(t)Uu(t), tel, BUu(a)+CU,(b)=0, (4.15)
with B, C' € M, «, defined in and U, (t) € R™, A1(t) € My xn, defined by
0 w() 0 ... 0
wult) 0 0 v ... 0
u2u(t)
' 0 0 0 un(t)

tn(t) 0 0 0 ... 0
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where wug, (t) := Tk‘l(?)(t) for/{=1,....,nand u € X}L{El"”’e"gk}. Indeed, if 1 < ¢ <
Ve T1,..,0k
n—1:
d (Ty—1u(t) Tyu(t)
u(t) == = t) = t t
i) = 5 (o) = ) = vt e, 0.
and, if { =n
d (Th—1u(t T [M]u(t
= 2 () gy DO
dt \ vp_1(t) v1(t) ... vn(t)
Taking into account that T},[M] satisfies property (Ty) on X%;ii:;k}7 we have
u01+1u(a) == uO’kJrlu(a’) = u81+1u(b) == uan—k+1u(b) =0. (417)

Moreover, using similar arguments, by means of the decomposition (4.14)), we can
transform the n*"-order scalar problem

T:[Mu(t) =0, tel, (4.18)

coupled with the boundary conditions (4.1))—(4.6) into the equivalent first-order
vectorial problem

ZI(t)y=-AT@t) Z,(t), tel, (4.19)
where A;(t) € M,,xy, is defined in and Z,(t) € R" is given by
21, (t)
zw =",
N0

with zg,(t) :=Tx_,v(t) for £=0,...,n—1and v € X?jilaiaﬁ’k}
Indeed, if 2 < ¢ < mn:

20, (t) = % (T v(t) = T 10 (—Vnt1—(n—r41) (1)) = —ve(t) 2e-1, (1),
and, if £ = 1:
21,(t) = % (Tr_1o(t)) = —v1(t) Tro(t) = —vi(t) T,y [M]v(t) = 0.

Let us consider the n*®-order linear differential operators T,,[M] and T*[M] in a
vectorial way as follows:

T, [M] Uu(t) = Uy (t) — Ax(t) Uu(t) ,
T [M] Zy(t) = = Z,(t) — AT (t) Zo(2),
with U, (t), Z,(t) € R and A;(t) € M,,«,, previously defined.

As it can be seen in [2, Section 1.3], T*”[M] is the adjoint operator of T},"[M]
and vice-versa. As consequence, by definition of adjoint operator, we have that for

every u € xlevenokt and v e X*{El"“’s""“}, the following equality is fulfilled

{o1,..;,01} {o1,...;06}

(T, [M)Uu(t), Zo(t)) = (Uu(t), T;"[M] Zy(t)) ,

where (-,-) is the scalar product in £2(I,R™). Moreover, from [2, Section 1.3], we
have

(U(a), Zo(a)) = (Uu(b), Zo (b)), Vu € X Tmsnomk gy g yrlenmenid

{o1,0y0n} {1,008}
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Taking into account the boundary conditions (4.17)), we conclude that for every
v E Xﬁflgi}’k} it is satisfied:

Zn*Tlv(a) == ZTL*T'VLU(G’) = anfslv(b) == Z”l*(skv(b) = 0’

which implies that

Trv(a)=---=T; wva)=T5vb)=--=T5vb)=0.
Or, which is the same, 77} [M] satisfies the property (77;) on X?tiflair]t_k} g

Example 4.6. Let us consider the fourth-order operator T4[M]. Moreover, let us
assume that Ty[M] satisfies property (T;) on Xfé;i That is, Tou(a) = Tou(a) =
Tiu(b) = Tou(b) = 0 for all u € X[}

From (3.8)) and Example taking into account the boundary conditions (4.9)),

we obtain that the following equalities are fulfilled for every u € X ES 22}} .

Tou(a) =0,

Tru(a) = —u'(a) 202(@1)/12(&) t v1lajv; (o)

Tou(b) = u(b)

So, Ty[M] satisfies property (Ty) on X{% 22; if and only if, there exists a decompo-

sition as (3.1)-(3.2), where vy, vy € C*(I) are such that:

2vi(a) _  wy(a)
n(@ @)’ (4.20)
vi(b) =v{(b) =0. (4.21)

Let us verify that in such a case, the operator T, [M] satisfies property (T7;)
on Xfézf Y. To do that, we express p; and ps as functions of vy, vs, vz and wvy.
Expanding the related expression ([2.2)) for n = 4, we obtain that

/ / !/ /
4vy 3vy  2vy vy

n=—-——-———"—"7"—",
U1 V2 U3 V4
and
12/2 6/2 2/2 o' vl 6’ vl vl ! v 20l
_ 1at; ) U3 D) V103 UaU3 V1V4 UaVy
P2 = 5 5 + + +
T (%] U3 V1V V1Vs3 VoUs V1V4 VoUy
vivy  6v)  3vi ol
V3V4 V1 V2 V3
Moreover,
’2 72 12 72 " " " 7
;A 3y 2vs vys  Avr 3uy 2vg vy
P =3 2 2 2

VT %5 U3 vy (%4 (%) V3 (0
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Taking into account (4.20)-(4.21]), the boundary conditions for the adjoint op-
erator, given in Example can be expressed in terms of vy, v, vz and vy as
follows:

i ’UZL(G/)) v'(a) _ ’U(b) =0, (422)

(HAOR0) 2470 24010)

va(D)us(b)  v3(0)  wva(b)va(d)  vs(D)ua(b)  wE(D)

3vy(b) | 3vg(b) | 20i(b)

va(b)  ws(b) (D)

Now, let us see that Tjv(a) = T5v(a) = Tiv(b) = Tyv(b) =0 for allv € XI{){;’}Q}.

Trivially, Tjv(a) = v(a) = 0 and T§v(b) = v(b) = 0. Using the decomposition
(4.11)), we have

1 d

T;U(t) = _F(t)ﬁ (m% (Ul (t)UZ(t)U3(t)U4(t)U(t))> ’

from which, considering (4.20)) and (4.22]), we obtain
! 2 ! /!
T;v(a) _ vl(a)UQ(a) (v"(a) + <U2(a) + US(a) + 7}4(&)) ’u/(a)) =0.

va(a)  wsz(a)  wa(a)

Finally,
. L dr-1ds -1 d
Tsolt) ==L (’Ug(t) dt (1;4(15) dt (Ul(t)v2(t)v3(t)v4(t)”(t)))) '
Combining the previous expression with 7, we obtain
" 3up(b) | 2v5(b) | vi(b)\
_ (3) 2 3
T3 0(8) = —o1 () (0@ 0) + ot o UM))U (b)
<4vé(b)vé(b) 2057(b) | 204(b)v)(b) L Us(b)ui(b)
va(b)us(b)  vF(b)  wva(b)va(d)  w3(b)ua(d)
204°(b) | Bv§(b)  Bv§(b) | 20{(B)\ .\ _
TR0 T ml) T wb) T ) )v'®) =0.
As a particular case of Lemma we have proved that if T,[M] satisfies property

(Ty) on X{{éj{, then T;[M] satisfies property (7)) on Xfé;’}z}.

It is obvious that we can enunciate an analogous result to Lemma [£.5] referring
to operator T,[(—1)"M] defined in (2.14]).
Lemma 4.7. Let M € R be such that T,,[M] satisfies property (T;) on the set
xlergnkt ypen T,[(—1)"M] also satisfies property (T}) on x e},

{01,008} {o1,-s01}

Proof. We only have to consider Tyv(t) = (=1)*Tyv(t), €=0,...,1 and the result
follows directly from Lemma [4.5) (]

Arguing as in [I2] to deduce the equality (3.3]), let us see that the expression of
Tyu(t) is given by

Trw(t) = v1(t) .. vn_ O (t) + P, VD) + - + Py, (H)o(t) (4.24)
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where py, € C" ().
For ¢ = 0, we have that Tov(t) = v1(t)...v,(t)v(t). Let us assume that (4.24) is
true for a given ¢ > 0, then, by (4.11)), we have

1(t)(jt (fg’u(t)) .

Un—t

fg+1’l)<t) =

Thus, using the induction hypothesis,

1 d

f£+1v(t) = v —@(t)ﬁ

(Ul(t) 0O () + P, I (E) + -+ P, (t)v(t)) ,

from which follows the expression (4.24)) for ¢+ 1.
Asa conuence of the previous results, we are able to obtain analogous results

to Lemmas [3.6| and [3.7] for T,[(—1)"M].
Lemma 4.8. Let M € R be such that T, [(—1)"M] satisfies the property (T}) on
Xfiflg‘zi”“} If v € C™([a, c)), with ¢ > a, is a function that satisfies (4.1)—(4.2)),

where f(t) = vy (t). e Up—r, _(t) > 0 on I. In particular, if v satisfies (4.3), then
fm_k_v(a) =0.

Proof. The proof is analogous to the one given in Lemma but in this case we
have
j;Tn—k’U(a’) =v1(a) .. ~Un—-rn,k(a)v(7"*’“)(a)

+ Pro, @V (@) 4 4 B (@)v(a).

—k

If (4.3]) is satisfied, then ﬁ'nfw(a) =0, and the result follows. O

Lemma 4.9. Let M € R be such that T,[(—1)"M] satisfies property (T;) on

i}(fif“éi’i‘“ If v € C™((¢,b]), with ¢ < b, is a function that satisfies (4.4])—(4.5]),
en

ftglv(b) == fék—lv<b) =0,
n—1
Too(b) = GO) (v )+ D (1) (pamy0) *HI0))
j=n—0x

where §(t) = vi(t)...vn—s,(t) > 0 on I. In particular, if v satisfies (4.6), then
Ts,.v(b) = 0.

The proof of the above lemma is analogous to the one of Lemma [£8 and is
omitted here.
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5. STRONGLY INVERSE POSITIVE (NEGATIVE) CHARACTER OF OPERATOR T,[M]

In this section we prove that if the operator T),[M] satisfies property (Ty), then
{517~--75n—k}
{01,501}

its related Green’s function satisfies a suitable condition, which allows us to apply
either Theorem 2.16] or Theorem and obtain one of the extremes of the interval

where the related Green’s function is of constant sign. The result is the following.

it is a strongly inverse positive (negative) operator on X Moreover,

Theorem 5.1. Let M € R be such that T, [M] satisfies (Ty) on X lertntd gpg

{Ul 70k}

{o1,...,06t —{e1,...,en—k} satisfy condition (N,). Then the following properties
are fulfilled:

o If n—k is even, then T, [M)] is strongly inverse positive on X{{; ’zz}’“}
and, moreover, the related Green’s function, gy;(t,s), satisfies (A2. 1)

{15 sEn—k}
{010k}
and, moreover, the related Green’s function, g;;(t, s), satisfies (A2.2).

o If n—k is odd, then T,[M] is strongly inverse negative on X

Proof. Firstly, let us verify the strongly inverse positive (negative) character. To
this end, we use the decomposition of T,[M] given on (3.1)). Since vy (t) ...v,(t) >
; if T,.[M]u Z 0 on I, from , we conclude that T,u = 0 on I. Hence, from
we know that L is a nontrivial nondecreasing function, with at most a
sign change on 1. Therefore since v, > 0, we can affirm that T, _;u can have at
most a sign change, being negative at t = a and positive at t = b.
Repeating this process for T,,_pu, with £ = 1,...n, we can affirm that Tou = u
can have at most n zeros on (a,b), whenever the following inequalities are satisfied
forevery £ =1,...,n:

>0, if/iseven
T_su(a ’ " and T,_,u(b) >0. 5.1

‘(){<o, if £ is odd, eu(®) (5:1)
Repeating the same argument as in Lemma we can affirm that each time that
Th—su(a) = 0 or T,,_pu(b) = 0, we lose a possible oscillation and, therefore, a
possible zero of u in (a,b).

From property (T4), we know that for all u € X{{; Z:}’“}
Tou(a) = =Tpula) =T ulb) = =T, _,uld) =0, (5.2)

i.e, we lose the n possible zeros which u could ever have. Thus, we can conclude
that u cannot have any zero on (a,b).

Let us see how is the sign of u(®) (a ) and u(ﬁ)( ) which gives the sign of u. Since
u(a) = - =ul*"Y(a) =0 and u(d) = --- = uB~V(b) = 0, from (3.3 we have

w(®) (a) u®) (b)
vi(a)...va(a) v1(b)...va(b) "
hence, u(®) (a) and Tpu(a), and u®) (b) and Tsu(b) have the same sign, respectively.

If either, Tyu(a) = 0 for any £ ¢ {o1,...,0%}, or Tpu(b) = 0 for any ¢ ¢
{€1,...,En—k}, then we lose another possible oscillation and, necessarily, u = 0
on I which is a contradiction with T,,[M]u 2 0.

Moreover, taking into account (5.2), the sign of Tyu(a) must allow the maximum

number of oscillations for Tyu. Otherwise u = 0 on I which is again a contradiction
with T, [M]u = 0.

T,u(a) = . Tpu(b) = (5.3)
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Notation 5.2. In this work, we understand for conditions of maximal oscillation
those which allow u to have the maximum number of zeros depending on the fixed
boundary conditions without being a trivial solution.

Hence T;,—¢ must verify the conditions for maximal oscillation. That is, T;,—su(a)
must change its sign each time that it is not null, i.e., if T,_,u(a) > 0 for a
given £ = 1,...,n, then T,,_y_qu(a) < 0 and if T),_p_qu(a) = 0, we consider
¢ € {t+1,...,n} suchthat T, ;u(a) # 0and T,,_pu(a) = 0for h € {{+1,...,0-1},
then T, ;u(a) <O0.

From property (Ty), we know that T),_,u(a) vanishes k — « times for ¢ €
{1,...,n — a}. Hence, taking into account the previous argument and the con-
ditions given in , we have

>0, ifn—a—(k—a)=n—Fkiseven,

T, u(a) e (o)
<0, ifn—Fkisodd.

To obtain the previous inequalities, there are considered as many sign changes for

Thu(a) as times that it is non null from h = o to h = n — 1. That is, the n — «
steps minus the k& — a zeros that are found. Thus, from (5.3)
F ke
@ (q) >0, 1 n—=k %s even, (5.4)
<0, ifn—kisodd.
From this, since u # 0 on (a,b), we conclude that
>0te€(a,b), ifn—Fkiseven,
(t) . . (5.5)
<0te(ab), ifn—kisodd.

Taking into account that necessarily Tpu(b) # 0, since 3 ¢ {e1,...,en_k}, from

(5.3) and (5.5) we have:

o If n —k is even

u® () >0, ?f 8 ?s even, (5.6)
<0, if §isodd.
e If n — £k is odd
u® (b) <0, ?f 8 %s even, (5.7)
>0, if §is odd.

Hence, from (5.4)(5.7), we conclude that if n — k is even, then the operator T}, [M]

is a strongly inverse positive operator on ijii’;;’“} and if n — k is odd, then the

operator T,,[M] is a strongly inverse negative operator on X {{Zik?}
Let us see that g;; (¢, s) satisfies condition (A2.1) or (A2.2), respectively. Using
Theorems and it is known that (—1)""%gy(¢t,5) > 0 for a.e. (t,5) €
(a,b) x (a,b). Let us see that, in fact, this inequality holds for all (¢, s) € (a,b) x
(a,b).

For each fixed s € (a,b), let us define uy(t) = (=1)""Fgy(t,s), us € C"2(I)
and us € C™([a, s)U(s,b]). It is known that us(t) > 0 on I, and that it satisfies the
boundary conditions -. Moreover, since gy;(t,s) is the Green’s function

related to the operator T,,[M] on X ekt e have

{o1,,0k}

To[Mus(t) = vi(t) ... vn(t) Thus(t) =0, t#s.
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Since vy ...v, > 0on I, T us(t) =0 if ¢ # s. Hence,

1
Y Tn—lus(t) =C1, t< S,

1 .
m Tho1us(t) =c2, t>s,

where ¢1, co € R are of different sign to allow the maximal oscillation.

Since v, > 0, T,,_1us has the same sign as ¢ or ¢, if t < s or t > s, respectively,
i.e., in order to have maximal number of oscillations, it has two components of
constant different sign. Then, since ﬁ T, _ous is a continuous function, it can
have at most two sign changes and the same happens with T}, _ou.

Proceeding in a similar way, we conclude that with maximal oscillation T;, _sus
can have at most ¢ zeros, for £ = 2,... n. In particular, us has at most n sign
changes on I.

Arguing as before, each time that T,,_sus(a) = 0 or T),_sus(b) = 0 a possible

oscillation is lost. Taking into account that T, [M] satisfies (T;) on X{El’ ’Z’;}"},

we use Lemmas and to affirm that u, satisfies (5.2). Thus, T),— gus(a) or
T—sus(b) vanish n times for £ = 1,...,n. So, we have lost the n possible zeros and
we can affirm that us > 0 on (a,b). Or, which is the same, (—1)""*g,;(t,s) > 0 for
all (¢,s) € (a,b) x (a,b).

Moreover, for each s € (a,b), we obtain the following limits:

(71)n7kg]\7[(t’s) ( l)n kg;gM(tvs)}t:a

R T T L [ L,
ly(s) = i (_1)n_kgl\2(t75) _ (=1)"~ h BgtﬁgM ‘t b
S S EI S L Blb—a)

For each s € (a,b), let us construct the continuous extension on I of ug, as follows

oy ()" gt s)
0= a1

Since us > 0 and (t — a)®(b —t)? > 0 on (a,b), we have that @s > 0 on (a,b).
Moreover, using Theorems[2.14)and 2.15] we can affirm that ¢, (s) > 0 and £5(s) > 0
for a.e. s € (a,b). Hence, for a.e. s € (a,b), Us(a) > 0 and as(b) > 0.
Furthermore, since gy;(t,s) is the related Green’s function of T},[M] on the set
X{Elx En—k}

{01,016}
(t,s) eI x (a,b). Hence, we construct the following functions:

ki(s) = mlnus(t), s € (a,b),

, we also can affirm that there exists K > 0 such that u, < K for every

ka(s) = I?Q;(us(t), s € (a,b),

Taking ¢(t) = (t —a)*(b—t)® > 0 on (a,b), condition (A2.1) is trivially satisfied
if n —k is even with k1 ( k1(s) and ka(s) = k2(s) and condition (A2.2) if n —k

which are continuous on (a,b) and they are positive a.e. in (a,b).
—t
5) =k
is odd with k;(s) = —ka(s) and ko(s) = —k1(s). O

Remark 5.3. From Theorem 1} if T;,[M] satisfies property (T};) on X{{Z iz}—lc}’
then either Theorem [2.16] if n — k is even, or Theorem 2:17] if n — k is odd, can be

applied to operator T}, [M] on such a space.
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Example 5.4. Let us continue the study of the fourth order operator given in
Example From Example we can affirm that T4[M] satisfies condition (T})
if and only if there exists a decomposition — such that — are
satisfied. These equalities are true, in particular, if we choose vy (t) = va(t) =
v3(t) = va(t) = 1 for all ¢ € I. That is, they are valid for the particular case of
operator TJ[0]u(t) = u*(t). Such a choice has been done in order to simplify the
calculations, the applicability of the results can be extended to a more complicated
class of operators.

Now, let us check directly that this operator satisfies the thesis of Theorem
To do that, let us consider I = [0, 1]. In this case, n — k = 2 is even, so let us study
the strongly inverse positive character. If (%) = 0, then u” is a convex function.
Since u”(0) = u”(1) = 0, we have that v” < 0 (if «” = 0, then u¥ = 0 which
is a contradiction). Hence, v’ is a decreasing function on I verifying «/(1) = 0, so
u’ 2 0. In particular, «/(0) > 0.

Finally, taking into account that «(0) = 0, w is an increasing function on I and
it cannot have infinite zeros without being a trivial solution of T [0]u(t) = 0, we
have that u(¢) > 0 for all ¢ € (0, 1].

Now, let us study the related Green’s function, given by the expression:

©.9) Is(t(t?=3t+3)—s?), 0<s<t<1,
gol(t,s) =
’ (s — 1)t (¢ —3s) 0<t<s<l.

Let us see that it satisfies the condition (A2.1). First, it is obvious that go(1,s) =
+s (1—5%) >0 forall s € (0,1). Moreover,

B Fs (12 + (2t — 3)t — 3t +3) 0<s<t<I1,
atgo(tas): 1

Hs—1)2+g(s=1)(t2=3s), 0<t<s<l1,

in particular, %go(t, 8)|t:0 =3 (s—s%) >0forallse(0,1).

Now, let us verify that go(t,s) > 0 on (0,1) x (0,1). If ¢ < s, we have that
s—1<0and t? —3s < —3s+s2 < 0 for all s € (0,1). If t > s, we have
t(t2—3t+3) —s? > s(s?—3543) —s> =3s—4s> + s> > 0 for all s € (0,1).
Hence, go(t,s) > 0 on (0,1) x (0,1).

On the other hand,

’ELs(t) _ go(t,S) _ {

Thus, condition (A2.1) is satisfied for the following functions:

S(t(t?-3t+3)—s?), 0<s<t<1,
s—1)(t* = 3s), 0<t<s<l.

[ N

o) =1,
ki(s) = ki(s) = Itnel}l’lls(t) = és(l —5%),
ka(s) = ka(s) = max, () = S(1— ),

and

1
t s(1—s%) < golt.s) < tg(l —s), forall (t,s)elxI.
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6. EXISTENCE AND STUDY OF THE EIGENVALUES OF OPERATOR T),[M] IN
DIFFERENT SPACES

In [12] and [14], the characterization of the parameters set for which the related
Green’s function is of constant sign has been done by means of spectral theory. In
fact, the extremes of the interval are characterized by suitable eigenvalues of the
operator associated to different boundary conditions.

The characterization here obtained follows the same structure. Thus, in this

section we study the existence of eigenvalues of operator T,,[M] in the spaces

{e1,€n—k} {e1,r€n—k-1} {e1,--ren—klB}
X{ou---ﬁk} ’ X{Olamﬁkla} ’ X{Ul,-wakq} ’
{15 sEn—k} {€15s6n—k—1|8}
{o1,,0k—1]a}’ {01,008} !

Moreover, we study the constant sign of several solutions of the linear differential
equation coupled with different n — 1 additional boundary conditions.
Firstly, let us see a result which allows us to affirm that, under the hypothesis
that the property (Ty) is fulfilled on X {{22::?}’ the operator T},[M] satisfies such
a property in all these spaces.

Lemma 6.1. Let M € R be such that T,[M] satisfies property (T;) on the set
{1, s€n—n}
X

{o1,...,01}

. Then the following properties are fulfilled:

o T,[M)] satisfies the property (Ty) on X lErEnoraad,

{o1,...,oK]a}

o T, [M] satisfies the property (Ty) on XlerenklB}

{0’17...,0'k,1}

o Ifor #k—1, T,[M] satisfies property (Tq) on X lerenand

{o1,..c,0—1]|a}"
o Ife, 1 #n—k—1, T,[M] satisfies the property (T;) on xlevenok-alBY

{01500}

Proof. The proof follows trivially from Lemmas [3.6] and taking into account
that under our hypotheses, from (3.3]), we have

u(® (a)
vi(a)...va(a)

u(P (b)

Tyu(a) = v (b)...vp(b)

. Thu(b) = (6.1)

O

Remark 6.2. If o, = k—1ore,_pr =n—k—1,then o = kor § =n —k,
xleveEnid o e xtEre 6”"k‘1w}, then (6.1))

respectively. So, if either u € (o100 1 ]a} {o1oon}

can be not true.

Example 6.3. Let us consider the fourth-order operator T4[M]. In Example
we have seen that if T4[M] satisfies (T;) on X2 then (4.20)-(4.21) are fulfilled.

{0,2}>
Let us see that, in such a case, (Ty) also holds on X‘gé’}u}, ngil’z}, Xféf]}: and
{0,1}
X{o,z}'
o X1 . Trivially, since Tyu(t) is a linear combination of u(t),...,u®(t),

{0,1,2}"
Tou(a) = Thu(a) = Teu(a) = 0. Moreover, from (3.8)), it follows that

Tru(b) = fZ%Ezgu(b) ~0.

. X{{8i1’2}: Obviously, Tou(a) = Tou(b) = Thu(b) = Tou(b) = 0.
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. ng;f: Directly, Tou(a) = Thu(a) = 0. From (3.8) and Example

Tyu(b) = _U?(g)))u(b) =0 and

01 ()0} (0)o3(b) + v2(b) (207(b) — v (B)1 (1))

Tou(b) = u(b) = 0.
v OO v
o X0} Trivially, Tou(a) = Tou(b) = Tyu(b) = 0. Finally, from Example

0,2}"
Tyu(a) = — 22l @y (q) — o,

As a consequence we can prove the following corollary.

Corollary 6.4. Let M € R be such that T, [M] satisfies property (Ty) on the set
xlerenkd yng {o1,... 01} —{e1,...,en—i} satisfy (N,). Then

{01,101}

o Ifn—Fk is even:

* Ta|M] is strongly inverse positive and satisfies condition (A2.1) on
xlevenont gpg x ek e n addition, en_g £ —k — 1,

{01,001} {01, on_1|a}"

then this property is also fulfilled on X{{;’:::’Z;k_ll’@}.
* T,[M] is strongly inverse negative and satisfies condition (A2.2) on

X{sl »»»»» en—k|B}
{017--471@—1}
fulfilled on X2 o),
e Ifn—Fk is odd:

* Ta|M] is strongly inverse negative and satisfies condition (A2.2) on
xlevmenant gpg xlEveSnmkd e n addition, en_g £ —k — 1,

{o1,..., ok} {o1,..., ok—1la}’

. If, in addition, o # k — 1, then this property is also

then this property is also fulfilled on X{{Z’:::’Z;k_ll’@}.
* T,[M] is strongly inverse positive and satisfies condition (A2.1) on on

X{51 ----- en—k|B}

{017--471@—1}

fulfilled on X {51 i),

€
{o1,..,o]a}

. If, in addition, o, # k — 1, then this property is also

Proof. Tt is obvious that if {o1,...,0k} —{€1,...,en—r | satisfy (N,), then the sets
{o1,...,0kla} —{e1,...,en—k-1}, {o1,...;06—1} —{€1,...,en—k|B} also do.
Moreover, if o, # k—1, then a < o and ife,_ #n—k—1, then 8 < €, _x. So,
if {o1,...,0n}—{e1,...,en_i} satisfy (N,), then {o1,...,0p-1|a}—{e1,...,En—k}
and {01, ...,01}—{e1,...,en—k_1|B} also do. Thus, using Theorem[5.1]and Lemma
[6:1] the result follows. O

Now, from the previous Corollary and the first assertion on Theorems and
[2:17] we obtain, as a direct consequence, the following result.

Corollary 6.5. Let M € R be such that T,[M] satisfies the property (Ty) on
Xxlerenkd ang {o1,...,0} —{e1,...,en—r} satisfy (N,). Then

{o1,..01}
o Ifn—k is even:
— Thereis A1 > 0, the least positive eigenvalue of T,,[M] on iji’;k;k}
Moreover, there exists a nontrivial constant sign eigenfunction corre-
sponding to the eigenvalue \q.
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o Ifn

If k > 1, there is Ny < 0, the largest negative eigenvalue of T),[M]

ElyesEn—k . .. .
on ngi’ o ’Il}ﬁ ' Moreover, there exists a montrivial constant sign
v Ol

eigenfunction corresponding to the eigenvalue \}. -
If k <n—1, there is \j < 0, the largest negative eigenvalue of T,,[M]

1y sEn—k— . .. .
on X{{Ui U’;‘O’j} 1 Moreover, there exists a nontrivial constant sign

eigenfunction corresponding to the eigenvalue \}. -
If o, # k — 1, there is Ay > 0, the least positive eigenvalue of T,,[M]

Ely--En—k . .. .
on Xj{{ai’ o ’;‘}a} Moreover, there exists a nontrivial constant sign
e

eigenfunction corresponding to the eigenvalue \j.
Ifep_ #n—k—1, there is \j > 0, the least positive eigenvalue of

T,.[M] on X}fii?}:;k‘l‘ﬁ} Moreover, there exists a nontrivial con-
stant sign eigenfunction corresponding to the eigenvalue Ny .

— k is odd:

There exists \; < 0, the largest negative eigenvalue of T,[M] on the

set X}L{;Z;k} Moreover, there is a mnontrivial constant sign eigen-
function corresponding to the eigenvalue . -

If k > 1, there is Ay > 0, the least positive eigenvalue of T,[M] on
x tenen—klB}
{o1,s0-1}
function corresponding to the eigenvalue \j.

If k < n—1, there is N\ > 0, the least positive eigenvalue of T, [M]

€1y sEm—k— . .o .
on X{{Ui’ a’;‘;} 1}. Moreover, there exists a nontrivial constant sign

eigenfunction corresponding to the eigenvalue \j.
If o, # k—1, there is Ny < 0, the largest negative eigenvalue of T,,[M]
on Xf{{ji;:j‘}a} Moreover, there exists a nontrivial constant sign
eigenfunction corresponding to the eigenvalue Nj.
Ifen_r #n—k—1, there is \§ <0, the largest negative eigenvalue of

. Moreover, there exists a nontrivial constant sign eigen-

T,[M] on X}L{:Zi’“’l‘ﬁ} Moreover, there exists a nontrivial con-

stant sign eigenfunction corresponding to the eigenvalue Ny .

Example 6.6. Continuing the study of the operator T [M]u(t) = u¥ () + Mu(t)
introduced in Example we can affirm the existence of the eigenvalues of T} [0]
in the different spaces introduced in Example [6.3] and the related constant sign
eigenfunctions.

Next, we

obtain those eigenvalues and related eigenfunctions.

e The eigenvalues of T [0] on X fé 22]% are given by A\ = m*, where m is a positive

solution of the following equation:

tan(m) + tanh(m) = 0. (6.2)

e The least positive eigenvalue is \; = mj] = 2,36502, where m; is the
least positive solution of (6.2). The related constant sign eigenfunctions
are given by:

sinh(mit)  sin(my t)) ’

ult) = K( -

cosh(my) cos(my)

where K € R.
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e The largest negative eigenvalue of T{[0] on Xi{é_}l oy I8 N = —4n*. The
related constant sign eigenfunctions are given by:
u(t) = K (cosh(mt)sin(mwt) — cos(mt) sinh(wt)) ,
where K € R.

e The eigenvalues of T[0] on ngila} are given by A = —m?*, where m is a
positive solution of the following equation:

tan (%) — tanh (;’%) =0. (6.3)

The largest negative eigenvalue is \j, = —m3 & —5,55305%, where my is the least
positive solution of (6.3). The related constant sign eigenfunctions are given by:
mo mo

u(t) = K(cosh (ﬁ(l — t)) sin (\/5(1 — t))
ma . ma2
—cos|—=(1—t smh(— 1-—t )),
(a0 —0)sinn (20 -0
where K € R.
e The eigenvalues of T [0] on X E((J) 21]% are given by A\ = m*, where m is a positive
solution of the following equation:
tan(m) — tanh(m) = 0. (6.4)

The least positive eigenvalue is \§ = mj & 3,9266, where mj is the least positive
solution of (6.4]). The related constant sign eigenfunctions are given by:

ot = K (sinh(m3 £)  sin(mg t)) |

cosh(ms) cos(mg)

where K € R.
The least positive eigenvalue of T [0] on X féﬁ is Ay = 7%. The related constant
sign eigenfunctions are given by:

u(t) = K e ™D (2™ 4 ™ ((e™ — 1) sin(nt) + (=1 — ™) cos(mt)) +€™) ,
where K € R.
Now, we introduce some results that provide sufficient conditions to ensure that
suitable solutions of (|1.4) are of constant sign.
Proposition 6.7. Let M € R be such that T,[M] satisfies property (Ty) on the
set X{{;Z’Z’k} and {o1,...,05 —{€1,...,En—r} satisfy (N,). Ifue C"(I) is a
solution of (L.4) on (a,b), satisfying the boundary conditions:
uw(a) = =ul"(a) =0, (6.5)
uED () = - = uEn-K) () = 0, (6.6)
then it does not have any zero on (a,b) provided that one of the following assertions
is satisfied:

o Letn —k be even: - -
—Ifk>1,0p,#k—1and M € [M — Ny, M — )\}], where:

* Ny > 0 is the least positive eigenvalue of T,[M] on the set
{517---78n7k}
{o1,...,06_1]a}"
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x A, < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elw--aanfk‘ﬁ}
{01,...,0k_1} : _
—Ifk=1,01#0 and M € [M — X, +00), where:
* My > 0 is the least positive eigenvalue of T,,[M] on X{{il}"”’s"’k},
where a = 0. - -
—Ifk>1,0p,=k—1and M € [M — X\i, M — )\}], where:

* A1 > 0 is the least positive eigenvalue of T,,[M] on xlevEnid

A40,...,k—1}

x A, < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elwugan—k‘ﬁ}
{0, k—2} -

— Ifk=1and oy =0 and M € [M — Ay, +00), where:

x A1 > 0 is the least positive eigenvalue of T,,[ M| on X%{gi """ en-1},
o Letn —k be odd: - -
—Ifk>1,0p,#k—1and M € [M — Ny, M — X\j], where:

* Ny < 0 is the largest negative eigenvalue of T,,[M] on the set
{517---7571—k}
{o1,..,06_1]a}"

* XNy > 0 is the least positive eigenvalue of T,,[M]
— Ifk=1,01#0 and M € (—oo, M — \}], where: )
x Ay < 0 is the largest negative eigenvalue of T,[M] on the set

Xi{zl}"”’s"’l}, where o = 0.

—Ifk>1,0p,=k—1and M € [M — Xy, M — \y], where:

*x A1 < 0 is the largest negative eigenvalue of T,[M] on the set

{e1,esEn—k}
Xpol iy

% Ny > 0 is the least positive eigenvalue of T, [M] on Xi{gl_“ e
— Ifk=1and oy =0 and M € (—oo, M — \i], where:
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set

{61 ..... En—k}
X{o} .

on X{517~~-75n—k|6} .

{01,301}

Proof. Firstly, let us see that for M = M every solution of on (a,b) satisfying
the boundary conditions — does not have any zero on (a, b). On the proof of
Lemmal[3.8| we have seen that, without taking into account the boundary conditions,
every solution of for M = M has at most n—1 zeros on (a, b). Let us prove that
this n — 1 possible oscillations are not attained because of the boundary conditions.

Let us denote, up; € C™(I) a solution of verifying the boundary conditions
-. Each time that T, _sup(a) = 0 or T,_pup(b) =0 for £ = 1,...n a
possible oscillation is lost.

Since T,[M] satisfies property (T;) on X{El"”"s””“}7 by applying Lemmas 3.6

{0'1,..470%}
and [3.7] we conclude that for every M € R
Toup(a) = =Ty _,up(a)=0, (6.7)
Toyup () = =1T;, ,um(d) =

In particular, this property holds for M = M. Hence, we lose the n — 1 possible
oscillations and we can affirm that u;; does not have any zero on (a,b).
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Now, to prove the result, let us move uy in a continuous way with M in a
neighborhood of M. We have that uj is a solution of (1.4) on (a,b), hence

T, [Muar(t) = (M — M)up(t), te (a,b). (6.9)

First, let us see that while uj; is of constant sign it cannot have any double zero
on (a,b). Let us assume that uz; > 0 on (a,b) (if uz; < 0 on (a,bd) the arguments
are valid by multiplying by —1). Thus, in equation we have

_ {zo,te(a,b), it M < M,

Tn[MJun () <0, te(ab), if M> M. (6.10)

In both cases, T,,[M]uys is a constant sign function. Then, since vy ...v, > 0,
T, _1uyps is a monotone function with, at most, one zero.

Under analogous arguments, we conclude that T,,_,uys has at most ¢ zeros, for
£ =1,...,n. In particular, up; can have n zeros at most. But, u,; satisfies —
(6.8), i.e., n — 1 possible oscillations are lost. Thus w,; is only allowed to have a
simple zero on (a,b), but this is not possible while it is of constant sign.

Let us assume that k > 1 and o} # k — 1. In such a case, we can affirm that uy,
is of constant sign up to one of the two following boundary conditions is satisfied:

ug\?)(a) =0 or ug\'g)(b) =0.

Now, to see when the sign change begins, let us study the problem with different
signs of M. Since we are considering uy; > 0, it is obvious that

>0, if giseven,

o (6.11)
<0, if gis odd.

ug\?)(a) >0, and ug\g)(b) {

Let us study the behavior of ug\(j) (a) and ug\g) (b), to keep the maximal oscillation,
considered as in Notation [5.2] in each case. In this case, the maximum number of
zeros which u can have, taking into account the boundary conditions -
is 1. Then, a zero on the boundary is allowed without implying that « = 0. If
Tneup(a) =0for ¢ #n—aand n—0 ¢ {o1,...,06-1} or Tp_gups(b) = 0 for
¢C#n—pFandn—{ ¢ {e1,...,6n—k}, then the maximum number of zeros which
u can have is 0 and we cannot have more zeros on the boundary for any nontrivial
solution of . Therefore, let us assume that the only zero which is allowed is
found at T,ups(a) or Tgupr(b).

At first, consider M < M, we have that T,,[M]uys > 0, hence, with maximal
oscillation, if T},_pups(a) # 0 and T), _pups(b) #Oforallf =1,...n is satisfied.

However each time that T,,_,ups(a) = 0, the sign change come on the next ? for
which T\ _;upr(a) # 0. And, if T;,_supr(b) = 0, it changes its sign on the next ? for
which T, ;un(b) # 0 many times as it has vanished. From £ =1 to n — « there
are k — 1 — a zeros for T;,_pups(a) and from £ = 1 to n — (8 there are n — k — (3 zeros
for T,,—sups(b). Hence, to allow the maximal oscillation it is necessary that

>0, fn—a—(k—a—-1)=n—Fk+1is even,
T. 6.12
auM(a){gO, if n —k+1 1is odd, ( )
and
>0, ifn—k—pis
TV OR S ﬁ%beven’ (6.13)
<0, ifn—k—(isodd.
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From (6.1, we can affirm that with maximal oscillation

(a)() >0, ifn—kis odd,
uy, (a
M <0, ifn—kiseven,

and,
o If n — k is even
>0, if §iseven,
uj? (b) e
<0, if gis odd.
o If n —k is odd
<0, if §iseven,
uj? (b) o
>0, if §is odd.
Hence, we arrive at the following conclusions, taking into account (6.11):
e If n—k is even, the maximal oscillation is not allowed for uyy if ug\c,“) (a) #0
for all N between M and M; which implies that ups > 0 on (a,b) for
M € [M — Ny, M.
e If n—k is odd, the maximal oscillation is not allowed for u; if u%ﬂ(b) #0
for all N between M and M; which implies that ups > 0 on (a,b) for
M € [M — Xy, M].

Now, considering M > M, we have that T,,[M]uy; < 0, hence with maximal
oscillation, if T;,_sups(a) # 0 and Ty, —pups(b) # 0, for all £ =1,...n, the following
inequalities are satisfied:
<0, if/is even,

T suns(b) < 0. 6.14
>0, if¢is odd, et (0) (6.14)

Tr—runs(a) {

In this case, since we have contrary signs from the previous case where M < M, to
allow the maximal oscillation, the following inequalities must be satisfied:

<0, ifn—k—1iseven
T, - ’ 6.15
“M(a){zo, ifn—k—1is odd, (6.15)
and
< ifn—k—p31i
Tyun(p)d =00 Em == Fis even, (6.16)
>0, ifn—k—(isodd.

Hence, from (6.1]), we can affirm that with maximal oscillation

@ 0) {g 0, ifn—Fkis odd,

Upr . .
>0, ifn—kiseven,

and,

o If n —k is even

u(ﬂ)(b) <0, if 3is even,
M >0, if §is odd.
o If n —k is odd
u(ﬁ)(b) >0, if §is even,
M <0, if gis odd.
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Hence, we arrive at the following conclusions, taking into account (6.11)):

o If n —k is even, the maximal oscillation is not allowed for w s if ugg)(b) #0
for all N between M and M; which implies that up; > 0 on (a,b) for
M € [M, M — \,).

e If n—k is odd, the maximal oscillation is not allowed for ups if ug\?) (a) #0
for all N between M and M; which implies that upy; > 0 on (a,b) for
M € [M, M — \j).

The proof is complete since if k£ = 1, ug\g)(b) £ 0 for every M # M, because
the contrary will imply that wu,; is a nontrivial solution of the linear differential
equation with a zero of multiplicity n at ¢ = b and this is not possible.

And, if o, = k — 1, consider ug\l/c{*l)(a) instead of ug\?)(a) = u® (a), since it is
the first non null derivative at t = a. Since up; > 0, then ug\]ffl)(a) > 0. But, with
maximal oscillation, Ty_jups(a) follows if M < M and if M > M for
¢ =n—k—1. Hence, from , we can affirm that, with maximal oscillation, the

following inequalities must be fulfilled:

e If M <M

u(k_l)(a) >0, ifn—kisodd,
M <0, ifn—kiseven.

oIfM>M

_ < if n—kis
u%’} 1)(a){_0’ if n — k is odd,

if n — k is even.

Then, we can conclude the proof:

o If n —kis even and M < M, the maximal oscillation is not allowed for u;
if ug\’f_l)(a) # 0 for all N between M and M; which implies that uy; > 0
on (a,b) for M € [M — A\, M].

e If n — kis odd and M > M, the maximal oscillation is not allowed for w s
if u%ﬁk*l)(b) # 0 for all N between M and M; which implies that uy; > 0

on (a,b) for M € [M, M — \y].
O

Example 6.8. From Proposition and Example we can affirm that any
nontrivial solution of T[M] = u*® () + Mu(t) = 0 on [0, 1], verifying the boundary
conditions:

does not have any zero on (0,1) for M € [—7* m3], where m3 = —\; with )\

the first negative eigenvalue of T{[0] on X§8i1’2} and my has been introduced in
Example as the least positive solution of (|6.3)).
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Such functions are given as multiples of the following expression:

cos(m — mt)(sin(m) — sinh(m)) + sin(m — mt)(— cos(m) — cosh(m))

+ sinh(m — mt)(cos(m) 4 cosh(m)) + cosh(m — mt)(sin(m) — sinh(m)) ,
if M= —m* <0,

B —3t2+3t, ifM=0,

e~ Vs ( — (eV2m(=1) o eVamt 4 eV2m 4 1) gin (%)

+(e\/§mt _ 1) cos (m(t—2)) + (e\/imt _ 1) cos (%)) ,

\/5
it M =m*>0.

Now, we enunciate a similar result, which refers to the eigenvalues on the sets
X{El,m,ﬁn—k—ﬂ' and X{Eh-u,t?n—k—l\ﬁ}

{o1,..,oK]a} {01,101}

Proposition 6.9. Let M € R be such that T,,[M] satisfies property (T;) on the
set Xf;ik”“} and {o1,...,01} —{e1,...,en_i} satisfy (No). If ue C™"(I) is a
solution of (L.4) on (a,b) satisfying the boundary conditions:

u(m)(a) _ = u(ffk)(a) =0, (6.17)
uEV () = = ulEnr-1)(p) = 0, (6.18)

then it does not have any zero on (a,b) provided that one of the following assertions
s satisfied:

o Letn —k be even: - -
—Ifepp#n—k—1and M € [M — X, M — \J], where:

* AY > 0 is the least positive eigenvalue of T,,[M] in the set
X{Elv---ygn—k—l‘g}.

{0'1,...,0'k} _
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elw--yanfkfl}.

{o1,0|a} _ _
—Ifenk=n—k—1and M € [M — X\, M — )], where:
* A1 > 0 is the least positive eigenvalue of T},[M] on X%g’l”".’z_]ﬁ_l}.
x NJ < 0 is the largest negative eigenvalue of T,[M] on the set
{0,....k—2}
{o1,...,06]a}"

e Letn —Fk be odd: - -
—Ifk<n—-1,epk#n—k—1and M € [M — Nj, M — N{], where:

x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{€1,~~~,En—1«—1\,3}

{0‘1,.,.,0k} _
x AJ > 0 is the least positive eigenvalue of T,,[M] in the set
X{€1 ~~~~~ €n—k—1}

- Ifk= n{—hl,,Ei';é}O and M € (—oo, M — N{], where: B
x A < 0 is the largest negative eigenvalue of T,[M] on the set
Xi{fl},...,an,l}f where 3 = 0.
—Ifk<n—1,e, p=n—k—1and M € [M — Xy, M — \], where:
* /\1{O<1 0 jiktizf} largest negative eigenvalue of T,,[M] on the set
{0‘1,.,.,17&-} ‘
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x AJ > 0 is the least positive eigenvalue of T,[M] on the set
{e1,en—k—1}
{01, ,0n|a}

—Ifk=n—1ande,_ =0 and M € (—oo, M — \{], where:
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set

{o1,0es0n-1}"

The proof of the above proposition is analogous to the one of Proposition [6.7}
and is omitted here.

Example 6.10. Consider the fourth order differential equation u(*) (t)+Mu(t) = 0
coupled with the boundary conditions u(0) = «”(0) = /(1) = 0. Using Proposition
and Example we conclude that such functions do not have any zero on (0, 1)
if M € [-m3,4m%], where m3 = —\;, with A\; the first negative eigenvalue of T} [0]
on X} 1,2 and m3 has been introduced in Example as the least positive solution
of .

It is not difficult to verify that the solutions of this problem are given as multiples
of the following expression:

sin(mt)  sinh(mt) if M = —m? < 0’

cos(m) cosh(m)

3 —-3t, ifM=0,
e Vi ((e\/ﬁm(t“‘l) +1) sin (L(\gl)) + (eY? 4 V™) sin (m(t+1))

2
+(1- eﬂm(tﬂ)) cos (m(\t/;)) + (eﬂm — eﬁmt) cos (m(\%l))

S

9

SN—

ifM=m*>0.

To complete this section, we show a result which gives an order on the previously
obtained eigenvalues A1, A5 and Aj. First, let us introduce some notation.

Notation 6.11. Let us denote a; € {1,...,n—1} such that ay ¢ {o1,...,0,_1]a}
and {0,...,a17 — 1} C {o1,...,0k-1]a}. Let 81 € {1,...,n — 1} be such that
B1 & A{er,-sen—k-1|8} and {0,..., 81 — 1} C {e1, ..., en—s-1/B}

Proposition 6.12. Let M € R be such that T,,[M] satisfies property (Ty) on
X%{Zi’:i’;;k} and {o1,...,05} — {e1,...,en—i} satisfy (N,). Then the following
assertions are fulfilled:

o Let n — k be even, we have:
— Ifor #k—1, then \; > A\ > 0, where
* Ny > 0 is the least positive eigenvalue of T,,[M] on X [ermennd

{01, s0k—1]a}”

x A1 > 0 is the least positive eigenvalue of T,[M] on X [ErEnid

{o1, 00}
Moreover if there exists A| > A another eigenvalue of T,,[M] on
Xkt ypen A > M.

{o1,...,01}
— Ifen_r #n—k—1, then N > X\ > 0, where B
* Ny > 0 is the least positive eigenvalue of T,,[M] in the set
X{Elwuxfn—kfl‘ﬂ}
{0’1 ..... G’)C} °

x A1 > 0 is the least positive eigenvalue of T,,[M] on X lerenkt

{01,001}

Moreover if there exists | > A1 another eigenvalue of of T,[M] on
X{Ermn it hen N > M.

{01,001}
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e Letn —k be odd, we have:
— Ifor #k—1, then \; < A\ <0, where B
* )\g{< 0 is thf largest negative eigenvalue of T, [M] in the set
€1y 3€n—k
{o1,,0k—1]a}" B
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elwu,ﬁn—k}
{0’1 ..... O’k} : _
Moreover if there exists Nj < A1 another eigenvalue of T,[M] on
X{El’”"g"—k}, then N} < Aj.

{o1,....0k}
— Ifep_p #n—k—1, then \j <X <0, where B
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{El’wwsn—k—l‘ﬂ}.

{o1,,0k} _
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set
X{El ..... E»,,,,)C}
{o1,0}  ~

Moreover if there exists N] < A1 another eigenvalue of T,[M] on
X (et hen M < M.
Proof. At the beginning, we focus on the relation between A; and A;. We have seen
in Proposition that a function ujs, solution of , satisfying the boundary
conditions (6.5)-(6.6)) cannot have any zero on (a,b) for M € [M — Xy, M] if n — k
is even and for M € [M, M — \j] if n — k is odd.

Moreover, it is proved that for M = M, without taking into account the bound-
ary conditions, uy; has at most n — 1 zeros, moreover, conditions — are
satisfied by uy;. Hence, we lose the n — 1 possible oscillations. So, for M = M
with the given boundary conditions, the maximal oscillation is achieved for the

boundary conditions (6.5))-(6.6)).

Let us assume that u;; > 0 (if uy; < 0 the arguments are valid by multiplying

’l,L(g) a
by —1), hence Tpu;(a) = WE))W) > 0.
As we have said before, Thu(a) changes its sign for every h = 0,...,n—1 if it is
non null. From h = « to oy, taking into account (6.7), ¥ — 1 — « zeros for Thu(a)

are found. Hence, with maximal oscillation:

T (a) >0, if(op—a)—(k—1—a)=o0,—k+1is even,
o Uiz (a
M <0, ifop —k+1is odd.

On the other hand, by means of Lemma [3.6] we have
) >0, if oy —k is odd,
u("')(a){ Lok mEo (6.19)

M <0, if o —k is even.

Let us move uy; continuously on M up to M = M — ,\’37. On Pr(i)positiioni we
have proved that ua; has at most n zeros for every M € [M — A5, M| ([M, M — X3]
if n — k is odd) if ups > 0, without taking into account the boundary conditions.
(@)

Since A} is an eigenvalue of T,,[M] on X{{jiizil;l}a}’ we have that Unr—x, (a) =0.

Thus, Touy;_y,(a) = 0. This fact, coupled with the boundary conditions (6.7))-
(6.8). allows us to affirm that uy;_,, cannot lose more oscillations if it is a nontrivial
solution. Hence, the maximal oscillation is verified.
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Since we have moved continuously from M to M —\; and it was assumed u; > 0
on I, we conclude that uy; _», >0, hence

(a1)
uy' (a)
To,ug(a) = —» - _ >0,
a5 () vi(a)... vy, (a)

where a; has been introduced in Notation [6.11

As for M = M, provided it is non null, Tu(a) changes its sign for every h =
0,...,n—1. From h = a3 to o, taking into account (6.7)), kK — oy zeros are found.
Hence, with maximal oscillation

>0, if (o —oq) — (k—a1) =0 —kis even,

To’ 7 \/
Kt ’\S(Q){<O, if o — k is odd.

From Lemma [3.6] again, we have

(o1) (a) {> 0, if o, — k is even, (6.20)

<0, ifop—kisodd.

Hence, since we have been moving with continuity, from (6.19) and (6.20]), we can

ensure the existence of a M between M and M — ), such that ui\%’“)(a) =0. As
consequence:
e Ifn—kiseven, 0 < Ay = M — M < ).
o If n—kisodd, 0>\ = M — M > \,.
The relation between A\; and Aj is proved analogously by using Proposition
The assertion referring to A} is due to the fact that, if 0 < Ay < A} < A; on
the case where n — k is even, then, by Proposition the eigenfunctions related
to A1 and A| are of constant sign and this is not possible for an strongly inverse
positive (negative) operator (see [25] Corollary 7.27] and [2, Section 1.8]). The
same happens when n — k is odd and 0 > \; > \| > As.
Similarly, if either n — k is even and 0 < Ay < A} < A§ or n — k is odd and
0> A1 > M| > MY, then, by Proposition the eigenfunctions related to A; and
A} are of constant sign. Thus, the result is proved. 0

Example 6.13. Let us return to Example[6.6] where we have obtained the different
eigenvalues for the operator T{[0]. Let us see that the Assumptions of Proposition
[6.12] are fulfilled.

o\ =mf~2.36502* < \) =7t

o )\ < \f =mi = 3.9266%.

Moreover, we have seen in Example that the eigenvalues of T[0] on X fé 22}]: are

given as A\ = m*, where m is a positive solution of (6.2). So \j & 5.497* > \; and
AL > AfL

7. STUDY OF THE EIGENVALUES OF THE ADJOINT OPERATOR Tf[M] AND OF
T,[(—=1)"M] IN DIFFERENT SPACES

This section is devoted to the study of the eigenvalues of the adjoint opera-

tor T*[M] in the different spaces xlevenel - prlenenopoa} - ypeder e en—klf}

{o1,..,01} 7 “Hor,oklal 0 ook}
*{Elyuwgn—k} and X*{glyuwen—k—llﬂ}

{o1,..,oh_1]|a} {01,101}
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In Section [f] we have proved that the boundary conditions satisfied for every
veX ;ifloi’i’k } are given by (4.1)—(4.6)). Proceeding analogously in the different
spaces, taking into account that n =n—1—o0g, y=n—1—¢c_p,a=n—1—7,_%
and 8 =n — 1 — J, we have the following assertions:

e Ifve Xziflg‘z’:’]flﬂ}, then it satisfies (4.1)—(4.3) and (4.4)—(4.5)) coupled
with v (a) = 0.

o Ifv € Xj{kiflaiifj}’ then it satisfies (4.1)—(4.2]) and (4.4)—(4.6) coupled
with v (a) = 0.

e lfveX Iiflai’f;}’f’l} , then it satisfies (4.1)—(4.2)) and (4.4)—(4.6) coupled
with v(")(b) = 0.

o Ifv e Xfiil.’.'.";i?”"lm}, then it satisfies (4.1)—(4.3)) and (4.4)—(4.5)) coupled
with v(")(b) = 0.

Example 7.1. Arguing in an analogous way to Example we obtain

*{1

X{(‘J{’ﬁz} ={ve (I : v(a) = v(b) = v'(b) = v (b) — pi(b)v" (b) = 0},
#{0,1,2 0

X = {v e ct(1) v(a) = v/(a) = v"(a) = v(b) =0} = X[}, ,

X{$9 = {ve (1) v(a) = v"(a) — pr(a)v'(a) = v(b) = ' (b) = 0},

Xishth = {v e O s (B) = pa()” () + (pa(b) — 265 (4)0'(6) = 0,

v(a) =v'(a) =v(b) =0} .

Next, we prove analogous results to those of the previous section referring to
functions defined in these spaces.

Remark 7.2. In this case, taking into account that the eigenvalues of one operator
and those of its adjoint are the same, we do not need to prove the existence of the

eigenvalues. Such existence follows from the one of the eigenvalues of T,,[M] in the
correspondent spaces,

First, we prove two results which refer to the operator T*[M] and then we will
be able to extrapolate them for T,,[(—1)"M].

Proposition 7.3. Let M € R be such that T,,[M] satisfies property (Ty) on the set

X}jiik?‘} and {o1,...,01} —{€1,...,en—r} satisfy (Ng). Then every solution

of TX[M]u(t) = 0, for t € (a,b), satisfying the boundary conditions (4.1])—(4.3)
and (4.4)—(4.5) does not have any zero on (a,b) provided that one of the following
assertions is fulfilled:

o Letn —k be even:
—Ifk>1,epp#n—k—1and M € [M — Ny, M — \,], where:
x Ny > 0 is the least positive eigenvalue of T,[M] on the set
X{El,m,ﬁn—k—l\ﬁ}'

{o1non} i
x A, < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elwwgan—k‘ﬁ}'

{o1,.. 001} _
—Ifk=1,enh_1#n—2and M € [M — Nj, +00), where:

x Ny > 0 is the least positive eigenvalue of T,,[M] on X{El’}'"’an’zlﬁ}.

{o1
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—Ifk>1, e p=n—k—1and M € [M — Xy, M — \,], where:
{0,....n—k—1}
on X{thgk_} .

* A1 > 0 is the least positive eigenvalue of T,,[M]
x A, < 0 is the largest negative eigenvalue of T,[M] on the set

{01,501} ’

—Ifk=1,e,1=n—2and M € [M — \;,+00), where:

x A1 > 0 is the least positive eigenvalue of T,[M] on X}L{gl}
e Letn —k be odd:
—Ifl<k<n—1,e4,k#n—k—1and M € [M — Ny, M — \j], where:
x A < 0 is the largest negative eigenvalue of T,[M] on the set
oy
* Xy > 0 is the least positive eigenvalue of T,,[M] on X{{jiik:il}ﬁ}
—Ifl<k=n—-1,e1#0and M € [M — Xy, M — \}], where:
x Ay < 0 is the least largest negative eigenvalue of T,[M] on
x5 where 3 = 0.

{o1,es0n-1}’

x Ny > 0 1is the least positive eigenvalue of T,[M] on X[t

- {01"“1071*2}'
Ifk=1<n—1,e,1#n—2and M € (oo, M — X3}, where:
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{El"“ian*ZIﬁ}
{o1} ) _
Ifk=1,n=2e#0 and M € (—oo, M — \{], where:

* Ny < 0 is the largest negative eigenvalue of Ty, [M] on X}L{fl}} =

{0}
X{o}'

—Ifl<k,enp=n—k—1and M € [M — \o, M — )], where:
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set
X{O,‘..,nfkfl}
{o1,....,01} : _
x Ay > 0 is the least positive eigenvalue of T,[M] on the set
X{O,..A,n—k—l,n—k}
{0‘1,...,0}671} : _
—Ifk=1,ep-1=n—2and M € (—oo, M — \1], where:
* A1 < 0 is the largest negative eigenvalue of T),[M] on X{{SI

.,n—2}
} .

Proof. The proof of the above proposition follows the same steps as Proposition
Since working with the adjoint operator is slightly different, for convenience of
the reader, we describe the steps below.

Let us denote by vy € C™(I) a solution of

T [MJo(t) =0, te(ab), (7.1)

satisfying the boundary conditions (4.1)-(4£.3) and ([4.4)-(4.5). At the beginning,
let us see that v;; does not have any zero on (a,b). In order to see that, we consider
the decomposition whose existence is guaranteed by Lemma
Analogously to the proof of Lemma [3.8] since wy, ..., w, > 0, we can conclude
that, without taking into account the boundary conditions, a solution of
for M = M can have at most n — 1 zeros. However, as we have said before,
each time that either T;var(a) = 0 or Tjvar(b) = 0, a possible oscillation is lost.
From the boundary conditions and Lemmas and taking into account that
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Trom(t) = (=1)“Tyvps(t), we can affirm that for every M € R:

Troy(a)=---=T; wy(a) =0, (7.2)
Tgl’l)M(b) = :Tgk71UM(b) =0. (73)

Thus, every nontrivial solution of (7.1]) for M = M does not have zeros on (a,b).
Nov&i7 let us move vy, continuously as a function of M on a neighborhood of
M = M. We have that vy is a solution of (7.1), hence:

T (Mo (t) = (M — M)vy, t€ (ab). (7.4)

Analogously to the proof of Proposition[6.7], we will see that, while v, is of constant
sign, it cannot have any double zero on (a,b).
We can assume that vy; > 0 on I (if vy < 0, then the arguments are valid by
multiplying by —1). So, in equation (|7.4) we have:
- >0,tel, fM<M
T M H— ’ Z 7.5
nl ]UM(){SO,tEI, if M > M. (7.5)

In both cases, since ;—1 < 0, T _jvp is a monotone function, with at most one

zero. Studying the maximal oscillation of Tr v for £ = 2,...,n, we conclude
that T)*_,vpr has at most ¢ zeros.

In particular, Tivys has no more than n zeros. Since wy > 0, we can affirm that
vy has at most n zeros. However, vy, satisfies -, hence n — 1 possible
oscillation are lost. Thus, vy, can have at most a simple zero on (a, b) which is not
possible if it is of constant sign.

Let us assume that & # 1 and that 6 # k — 1 (this is equivalent to e,_p #
n —k —1). Under these assumptions, we can affirm that vy, is of constant sign up
to one of the following boundary conditions is fulfilled:

vj(\Z)(a) =0 or vg\})(b) =0.
Let us study what happens by moving M. Since we are considering vy, > 0, we
have
>0, if~yiseven,

o (7.6)
<0, if-yisodd.

vj(\z)(a) >0, and vg\})(b) {
Now, let us see how vg\:’[)(a) and vg\})(b) are with maximal oscillation. As before,
with maximal oscillation only one zero on the boundary is allowed. If T} vas(a) = 0
for £ ¢ {m,...,Tn—k,n} or Tfuop(b) = 0 for £ ¢ {61,...,0k_1,7}, we have that
Tyvm(a) # 0 and Tyvp(b) # 0. Because, otherwise, vpy = 0 on I and we are
looking for nontrivial solutions.
From (£.24), taking into account that T; v (t) = (—1)£fg’l)M(t), we obtain

Trvn(a) = (—1)"1(a) ... vp—y(a)v'™ (a),
Troar(b) = (—1)7v1(b) ... vn—ry (D) (b),
where vy ...,v, > 0 are given in (3.1). Hence, if Tyvr(a) # 0 and T5vr (b) #

0, then vg\z)(a) # 0 and vg\})(b) # 0, thus the function vps remains of constant
sign. Thus, we can assume that the unique zero, which is allowed with maximal
oscillation, is found either in T;yvps(a) or T5var (D).

(7.7)

In this case, since Tjvyr = ;—i% (T,;f_lvM) with wg > 0, to allow the maximal
oscillation, T*_,vas(a) remains of constant sign, each time that it does not vanish
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and, if it vanishes, then it changes its sign the number of times that it has vanished
on the next ¢ where it is non null. And T} _,va(b) changes its sign each time that
it is non null.

At first, let us focus on the case M < M, we have that T [M]vas = T var > 0
on I. In particular, Tva(a) > 0 and Tjvar(b) > 0. Using (7.2)-(7.3), from £ =0
to n —n, we have that T,,_svps(a) vanishes n — k — 7 times and from ¢ = 0 to n—~,
Tn—evp(b) =0 k — 1 — ~ times. Hence, to allow the maximal oscillation:

>0, ifn—k—mniseven
Tr - ’ 7.8
"”M(G){go, ifn—k—n is odd, (7.8)
and
>0, ifn—y—(k—1—v)=n—k+11is even,
Top (b 7.9
7M(){go, if n—k+1is odd. (7.9)
Using (7.7) and (7.8)-(7.9)), we can affirm that to set maximal oscillation:
() >0, ifn—kis even, 10
UM(a){SO, if n — k is odd, (7.10)
and
e If n — k is even
>0, if~isodd
Y OR S (7.11)
<0, if~iseven.
e If n —k is odd
<0, if~isodd
(R (7.12)
>0, if~iseven.

Hence, taking into account ([7.6]), we arrive at the following conclusions:

o If n—k is even, the maximal oscillation is not allowed for vy, if U](\}Y)(b) #0
for all N between M and M; which implies that va; > 0 on (a,b) for
M € [M —\;", M], where 3" > 0 is the least positive eigenvalue of T:*[M]
on X*{el,...,sn,k,lﬁ}.

{o1,..., ok}
e If n — k is odd, the maximal oscillation is not allowed for vy if vg\?) (a) #0
for all N between M and M; which implies that vy > 0 on (a,b) for

M € [M — X\5', M], where \3" > 0 is the least positive eigenvalue of T:*[M]
on X*{Elg‘-wgn—kﬁ}.

{0'1,...70'19,1}
Moreover, since the eigenvalues of an operator and its adjoint are the same, we can
affirm that A = \3” and N\, = \3'.
Consider now the other case, i.e. M > M. From , we have that T¥vyr < 0.
Thus, to obtain the maximal oscillation, the inequalities (7.8)-(7.9) must be re-
versed. So, taking into account , we can affirm that to get maximal oscillation:

(7.13)

(n)(a) <0, ifn—kiseven,
>0, ifn—kis odd,

and
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e If n — k is even

vj(\})(b) <0, if~visodd, (7.14)
>0, if~iseven.

o If n—k is odd

(7.15)

(W)(b) >0, if~yisodd,
<0, if~iseven.

Hence, we arrive at the following conclusions, taking into account (7.6]):

e If n—k is even, the maximal oscillation is not allowed for v,; if 05\7) (a) £ 0
for all N between M and M; which implies that va; > 0 on (a,b) for
M € [M,M —X\3') = [M,M — \j].

e If n — k is odd, the maximal oscillation is not allowed for vy, if U](\}Y)(b) #0
for all N between M and M; which implies that va; > 0 on (a,b) for
M € [N, 8 — \y"] = [M, 3 — X,

Now, we realize that if k = 1, ’UI(\Z)(G) # 0 for all M € R, since the contrary
implies that a nontrivial solution of the homogeneous linear differential equation
has a zero at t = a of multiplicity n, which is not possible.

Finally, if €, = n — k — 1 or, which is the same, d; = k — 1, we consider
vj(\;_l)(b) instead of vg})(b) = v](\?(b) and, taking into account that, from ¢ = 0
ton — (k—1), T,_evp(b) # 0, we obtain that to allow maximal oscillation the
following properties hold:

o If M <M
>0, ifn—Fkisodd
T b~ ’ 7.16
koron( ){§ 0, ifn—kiseven. ( )
o If M >M
<0, ifn—Fkisodd
Ty H— ’ 7.17
koron( ){Z 0, ifn—kiseven. ( )
From (4.24), since T,/ v (t) = (—1)éfgvM(t), we have that
T oar(B) = (=1)For(B) -+ vp -1 (B)vy " (0)
So, we obtain
o If M <M
— If n — k is even
(k—1) b >0, if k—1is odd, 718
U (){<0, if K —1is even. (7.18)
— If n—kis odd
(k—1) b <0, if k—1is odd, 719
Unm (){207 if Kk —1 is even. (7.19)
o If M > M
— If n — k is even
(k—1) b <0, if k—1is odd, 790
UM (){20, if K —1 is even. (7.20)
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— If n—k is odd

(k=1) p >0, if k—11is odd, 791
vy (){SO, if K —1 is even. (7.21)

From (7.6)) we are able to complete the proof:

o If n —kis even and M < M, the maximal oscillation is not allowed for vy,
if v " (b) # 0 for all N between M and M; which implies that vy > 0 on
(a,b) for M € [M — Aj, M], where A} > 0 is the least positive eigenvalue of

T;[M] on X7
o If n —kis odd and M > M, the maximal oscillation is not allowed for v,
if vj((;_k_l)(a) # 0 for all N between M and M; which implies that vy, > 0

on (a,b) for M € [M, M — \;].

Because of the coincidence of the eigenvalues of an operator and the ones of its
adjoint, we can affirm that A\; = A} and the proof is complete. O

Now, we obtain an analogous result for different boundary conditions.

Proposition 7.4. Let M € R be such that T,,[M] satisfies property (T;) on the set
and {o1,...,01} —{€1,...,En—r} satisfy (Ng). Then every solution

of T [M]v(t) =0 fort € (a,b), satisfying the boundary conditions (4.1)-(4.2)) and
(4.4)—(4.6), does not have any zero on (a,b) provided that one of the following
assertions is fulfilled:

o Letn — k be even: ~ ~
—Ifk>1,0p,#k—1and M € [M — N5, M — \jJ], where:

x Ny > 0 is the least positive eigenvalue of T,[M] on the set
{817...,E”,k}
{o1,..c,on-1]a}" _
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elv---ysn—k—l}
{o1,...,0k|} .

— Ifk=1,01#0 and M € [M — Ny, M — \jj], where: B
x Ny > 0 is the least positive eigenvalue of T,[M] on the set

X%il}"”’s"_l}, where a = 0.
* A < 0 is the largest negative eigenvalue of T,,[M] on the set
X{{;i;}’a"”}, where o = 0.

—Ifor=k—1and M € [M — X\, M — )\Y], where:
* A1 > 0 is the least positive eigenvalue of T, [M] on xlevEnid

AL, k—1}
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{El’ En—k—1}
{0,....k—1,k}

o Letn—k be odd: B -
—Ifl<k<n—1,0p,#k—1and M € [M — X, M — )], where:

* Ap < 0 is the largest negative eigenvalue of T,,[M] on the set
X{El,...,a”,k}
{0’1,...,0’]&»71‘0&}' _
x XY > 0 is the least positive eigenvalue of T, [M] on the set
X{El,...,sn,kfl}
{o1,...,0k]la} ~

—Ifl=k<n—1,01#0and M € [M — \J, M — \;], where:
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* Ap < 0 is the largest negative eigenvalue of T,[M] on the set

X}L{Zl}"”’a"’l}, where o = 0.

x AJ > 0 is the least positive eigenvalue of T,[M] on the set

X{{;i;}’gn’z}, where o = 0.

Ifl<k=n—1,0,#n—2and M € (—oo, M — \j], where:

x Ay < 0 is the largest negative eigenvalue of T,[M] on the set
X{El}
{01, on—2|a}"

Ifk=1,n=201#0 and M € (—oo, M — \;], where:

x Ay < 0 is the largest negative eigenvalue of T,,[M] on Xi{zl}} =
{0}
X{O}. ) )
Ifk<n-—1,00,=k—1and M € [M — Nj, M — )\1], where:
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set
X{El ..... E»,,,,)C}
{0, k—1} - -
x XY > 0 is the least positive eigenvalue of T, [M] on the set
X{El,...,sn,kfl}
{0,....k—1,k} -
—Ifk=n—-1and op_1 =n—2 and M € (—oo, M — 1], where:

x A1 < 0 is the largest negative eigenvalue of T,[M] on the set

{e:}
X{g,l...,n72}’

The proof of the above proposition is analogous to Proposition|7.3} and is omitted
here.

Example 7.5. Returning to our problem, introduced in Example we have that
operator T" [M]v(t) = v (t) + Mu(t) = T)[M]v(t) is defined on

X457 = {v e c((0,1]) 1 v(0) = v"(0) = v(1) = v (1) = 0},
as it is proved in because, in this case, p1(t) = p2(t) = p3(t) = pa(t) = 0 for
all t € [0,1].

From Proposition we conclude that each solution of v (¢) + Muv(t) = 0 on
[0,1] satisfying the boundary conditions v(0) = v”(0) = v(1) = 0 does not have
any zero on (0,1) for M € [~m3, m3], where ma and m3 have been introduced in

Example

We note that such functions have the expressions:

K (sin(mt) sinh(m) — sinh(mt)sin(m)) , M =-m* <0,

P M=0,
Vim  amt) m(t+1) =m'
+(6 e )Sm( V2 ))’ Heme
where K € R.

Moreover, from Proposition we can affirm that any solution of v(*)(t) +
Mu(t) = 0 on [0, 1], satisfying the boundary conditions v(0) = v(1) = v®) (1) = 0,
does not have any zero on (0,1) for M € [—7* 47%]. One can show that such
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solutions are given as multiples of:

cos(m — mt)(sin(m) + sinh(m)) + sin(m — mt)(cosh(m) — cos(m))

+ sinh(m — mt)(cosh(m) — cos(m)) — cosh(m — mt)(sin(m) + sinh(m)),
if M =-m*<0,

t—t2, ifM=0,

e Vs (= (eV2m(t=1) _ oVamt +evV2m _ 1) sin %)
+ (e\/imt — 1) cos <7m(\t/%2)) — (eﬁmt — 1) cos (%) ) ,

it M=m*>0,

Taking into account that if v,/ is a solution of ([7.1)), then (—1)™wvy, is a solution
of T,,[(—1)"M]uv(t) = 0 for all ¢ € I, we obtain the analogous results for T,,.

Proposition 7.6. Let M € R be such that T,,[M] satisfies property (T;) on the set
X{{;Z;’“} and {o1,...,01} —{€1,...,En—r} satisfy (Ng). Then every solution
of To[(—1)"M]u(t) = 0 for t € (a,b), satisfying the boundary conditions (1) ~(E.3)
and (4.4)—(4.5), does not have any zero on (a,b) provided that one of the following

assertions is fulfilled:

o Let k be even: B -
—Ifk<l,enr#n—k—1and M € [M — N, M — Xy}, where:
* Ny > 0 is the least positive eigenvalue of T,[M] on the set
X{Elw--;fn—kfl‘ﬂ}
{o1,....01} . _
x A, < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elwnxfnfk‘ﬁ}
{o1,0e,06-1} ~ B
—Ifk=1,en1#n—2and M € [M — X3, +00), where:
x Ny > 0 is the least positive eigenvalue of T,[M] on the set
X{El,...,sn_2|ﬁ}
{01} . _ _
—If1<k,enpr=n—k—1and M € [M — A\, M — Xy}, where:
x A\ > 0 is the least positive eigenvalue of T,[M] on the set
{0,..,n—k—1}
{o1,0k} B
x A, < 0 is the largest negative eigenvalue of T, [M] on the set
{0,....,n—k—1,n—k}
{0’1 ..... Gk—l} :

—Ifk=1ande, 1 =n—2and M € [M — \{,+0c0), where:

* A1 > 0 is the least positive eigenvalue of T,,[M] on X{{g’l'};"”_z}.
o Let k be odd: - -
—Ifl<k<n—1l,epr#n—k—1and M € [M — Xy, M — 5], where:

* A < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elv---ysn—k—l‘ﬁ}.

{o1,...,01}
* Ny > 0 is the least positive eigenvalue of T,,[M] on X%{jii’;jl}’g}

—Ifl<k=n—1e#0and M € [M— Xy, M — \j], where:
x A < 0 is the least largest negative eigenvalue of T,[M] on
x4 where § = 0.

{01, s0n-1}’

x Ay > 0 is the least positive eigenvalue of T,,[M] on xles

{o1,..c,0n_2}"
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—Ifk=1<n—-1,e,1#n—2 and M € (—oo, M — \j], where:

* A < 0 is the largest negative eigenvalue of T,[M] on the set

—Ifk=1,n=2,e;#0 and M € (—oo, M — \j], where:

* ,\g{ﬁ<} 0 is szh}e largest negative eigenvalue of T,[M] on the set
{0
Xio = KXoy i i
If1<k,enr=n—k—1and M € [M — Xy, M — \1], where:
x A1 < 0 is the largest negative eigenvalue of T, [M] on the set
{0,...,n—k—1}
{o1,....0n} _
x Ny > 0 is the least positive eigenvalue of T,[M] on the set
{0,....n—k—1,n—k}
{o1,ok-1} :

Ifk=1ande,_1 =n—2 and M € (—oco, M — )], where:

* A1 < 0 is the largest negative eigenvalue of T,,[M] on X}L{g’l‘}f’nfz}.

Proposition 7.7. Let M € R be such that T,,[M] satisfies property (T;) on the set
{e1,vEn—k}
X

{0'1,..470';@}
of Tp[(=1)"M]v(t) = 0 fort € (a,b), satisfying the boundary conditions (4.1])—(4.2)
and (4.4)—(4.6), does not have any zero on (a,b) provided that one of the following
assertions is fulfilled:

and {o1,...,05} —{€1,...,en—r} satisfy (N,). Then every solution

e Let k be even: - -
—Ifk>1,0p,#k—1and M € [M — N5, M — )], where:

x Ny > 0 is the least positive eigenvalue of T,[M] on the set
X{€17'~~;5n—k}
{o1,..c,0—1]|a}" B
* A < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elw--;anfk,fl}
{o1,....,0k|} . B B
—Ifk=1,01#0and M € [M — X5, M — \y], where:
x Ay > 0 is the least positive eigenvalue of T,[M] on the set
Xg;l}""’g"’l}, where a = 0.

x A < 0 is the largest negative eigenvalue of T,[M] on the set
X%;i;"}’s"q}, where o = 0.

— Ifor=k—1and M € [M — X\, M — Y], where:
* A1 > 0 is the least positive eigenvalue of T,,[M] on X lermEnor),

AL, k—1}
x A < 0 is the largest negative eigenvalue of T,[M] on the set
X{Elv"-vsn—k—l}
{0, k—1,k}

o Let k be odd: B -
—Ifl<k<n—-1,0p,#k—1and M € [M — XJ, M — )], where:

x A < 0 is the largest negative eigenvalue of T,[M] on the set
{817...,En,k}
{01,...,Uk_1‘a}' _
x Ay > 0 is the least positive eigenvalue of T,[M] on the set
{e1,v€n—k-1}
{o1,....,0k|} B B
—Ifl=k<n—1,01#0and M € [M — Xy, M — X3], where:

x Ny < 0 is the largest negative eigenvalue of T,,[M] on the set

X%{ii""’s"’_l}, where oo = 0.
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* Ny > 0 is the least positive eigenvalue of T, [M] on szhé}venfzh
where o = 0. -
Ifl<k=n—1,0p1#n—2and M € (—oo, M — \j|, where:

x Ay < 0 is the largest negative eigenvalue of T,[M] on the set
X{El}
{o1,,0n_2la}" _
Ifk=1,n=2,01#0 and M € (—oo, M — X\j], where:
* Ny < 0 is the largest negative eigenvalue of T,[M] on Xf{{zl}} =
{0}
X{o}' . )
Ifk<n—1,0,=k—1and M € [M — Xy, M — \i], where:
x A1 < 0 is the largest negative eigenvalue of T,[M] on the set
X{alwqfn—k}
{0, k—1} -
x N > 0 is the least positive eigenvalue of T,[M] on the set

{1, sEn—k—1}
Xoo il

—Ifk=n—1ando,_1 =n—2 and M € (—oo, M — )], where:

x A1 < 0 is the largest negative eigenvalue of T,,[M] on X‘rfg’lﬁyn_Q}.

Remark 7.8. In this example, we have n = 4 which is even, so Ty[(—=1)*M] =
T;[M]. Then, Example is also valid to illustrate Propositions and

8. CHARACTERIZATION OF THE STRONGLY INVERSE POSITIVE (NEGATIVE)

CHARACTER OF Tj,[M] oN X (Etrenil
{o1,-0n}

This section is devoted to obtaining the main result of this work, such a result

gives the characterization of the parameter’s set where T,,[M] is either strongly in-
i{il"”’s"”“}. Such a characterization
1,~~~7gk}

is obtained under the hypotheses that there exists M € R such that the operator

T, [M] satisfies property (T;) and, moreover, {o1,...,0k} — {€1,...,6n—k} satisfy
(Ng). In such a case, from Theorem 5.1} it is known that if n — k is even, then
T,.[M] is strongly inverse positive on X cvgnskl and, if n— k is odd, then T}, [M]

{o1,..,01}
En—k}

verse positive or strongly inverse negative on X

. . . E1,..
is strongly inverse negative on X (e

{o1,00k} -~
The characterization here obtained is related to the parameter’s set which con-
tains M. That is, if n — k is even we characterize the parameter’s set where T;,[M]|
{51 7~~-75n7k}
{o1,--0k}

the parameter’s set where T,,[M] is strongly inverse negative on X

is strongly inverse positive on X and, if n — k is odd we characterize

{e1,s€n—x}
_ {0’1,...70')9} ° In
particular, M belongs to those intervals.

Theorem 8.1. Let M € R be such that T,,[M] satisfies property (Ty) on the set

X{{jiiki"} and {o1,...,0} —{e1,...,en—i} satisfy (N,). The following proper-

ties are fulfilled:
o Ifn—Fk is even and 2 < k <n — 1, then T,,[M] is strongly inverse positive
on X Eren-kl if and only if M € (M — Xy, M — X3, where

{010}

* A1 > 0 is the least positive eigenvalue of T, [M] on Xgii;k}

* Ao < 0 is the maximum between: B
A, < 0, the largest negative eigenvalue of T,[M] on the set
xlenen—klB}

{01,050k —1}
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Ay < 0 is the largest negative eigenvalue of T, [M] on the set
{e1,-en—k-1}
{o1,....,0k|}
o Ifk =1 andn is odd, then T, [M] is strongly inverse positive on X}L{ji’}'”’g"’l}
if and only if M € (M — X\, M — o], where
* X1 > 0 is the least positive eigenvalue of T,,[M] on Xiji;"’s"’l}.

»»»»» €n—2}

* Ao < 0 is the largest negative eigenvalue of T,,[M] on Xi{ji‘a}
o Ifn—Fkisodd and 2 < k <n—2, then T,[M] is strongly inverse negative
on X [ermenkl if and only if M € [M — Xy, M — \;), where

{010k}

* A1 <0 is the largest negative eigenvalue of T,[M] on x[erenonh

{0’1,...,O'k}

* Xg > 0 is the minimum between:

- Ay > 0, the least positive eigenvalue of T,,[M] on the set
X{El,...,an,k\ﬁ}
{o1,-s0-1} ° _
- M) > 0 s the least positive eigenvalue of T,[M] on the set
X{517---75n—k71}
{o1,...,06|a} ~
o If k=1 and n > 2 is even, then T,[M] is strongly inverse negative on
xlenenaad if and only if M € [M — Ao, M — A1), where

{o1}

* A1 < 0 is the largest negative eigenvalue of T,,[M] on X%ji’}'”’an’l}.

* Ao > 0 is the least positive eigenvalue of T,[M] on Xijii;;a"’Z}.

e Ifk =n—1and n > 2, then T,[M] is strongly inverse negative on
X}ji’]:"’e"’l} if and only if M € [M — Xg, M — \1), where

* A1 <0 is the largest negative eigenvalue of T,[M] on xlen

{o1,es0n-1}"

* Ao > 0 is the least positive eigenvalue of T, [M] on x[eo

{0’1 ..... G’nfg}'
e If n =2, then T,[M] is strongly inverse negative on X{jﬁ if and only if
M € (=00, M — Ay), where
* A1 <0 is the largest negative eigenvalue of T,[M] on Xf;ﬁ

Proof. From Lemma we know that operator T,[M] satisfies property (A2.1)

. . o . ElyeeesEn— . . . .
and is strongly inverse positive on X %{61 ’UT;}’“} if n—k is even. Moreover, it satisfies

(A2.2) and is strongly inverse negative on Xgi:;’k} if n — k is odd.
Then, using Theorems [2.10} R.14], 2.16] and R.17] we conclude that

e If n — k is even and M < M, then T,,[M] is strongly inverse positive on

x{ereentd it and only if M € (M — Ay, M].

e If n — k is odd and M > M, then T,[M] is strongly inverse negative on
X ErEnord it and only if M € [M, M — ;).

{o1,..,01}
To obtain the other extreme of the interval we use the characterization of the
strongly inverse positive (negative) character given in Theorems and
The proof follows several steps. To make the paper more readable, we indicate
the different steps for the case with n — k even. For the case with n — k odd the
proof is analogous.

Step 1. Study of the related Green’s function at s = a.
Step 2. Study of the related Green’s function at s = b.
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Step 3. Study of the related Green’s function at ¢ = a.
Step 4. Study of the related Green’s function at ¢ = b.
Step 5. Study of the related Green’s function on (a,b) x (a,b).

Let us denote

1
gu(t,s), a<s<t<b,
gy(t,s), a<t<s<b,
as the related Green’s function of T, [M] on X}L{jl """ En i)
150k}
Step 1. Study of the related Green’s function at s = a. Let us consider wys(t) =

%911\4 (t, 8)|S:a, where 7 has been defined in (4.7). Using (2.13) and the boundary
conditions of the adjoint operator given in (4.1)—(4.6)), if n > 0, we obtain

0 o1
gu(ta) = %ghf(t,é’){s:a == nglw(t, s)],_, = 0.

Note that a necessary condition to ensure the inverse positive character is that
wps > 0. Indeed, if there exists t* € [a, b], such that wys(t*) < 0, then there exists
p(t*) > 0 such that gar(t*,s) < 0 for all s € (0, p(t*)), which contradicts the inverse
positive character. Hence from Lemma we have wy; > 0 if n — k is even.

Moreover, since gz (t, s) is the related Green’s function of T;,[M] on Xf; Z:}’“},
we have that T,,[M]ga (¢, a) = 0 for all ¢ € (a,b]. Hence
U
dsn
Now, let us see which boundary conditions are satisfied by wj;. To this end, we
use the Green’s matrix for the vectorial problem (2.3)-(2.4)), introduced in (2.5,
where the expression of g,_;(t,s) is given in (2.6 for j =1,...,n — 1. If & > 1,
considering the first row of (2.4]), we have

o
0%t

(To[Mgni(t,s)) | _, =Ta[M]wn(t) =0, t€ (ab].

s=a

otot gM(t’ S)|t:a =0,
801+1 oot
R 05) L+ 0l (6) 19, = 0.

§or1tn ) n-1 Hitoi
(_1)n3t”185WgM(t’s)|t:a + Zoozn( )815‘718819]\4 ‘t a = 0.

This system is satisfied in particular for s = a. Since n + 07 < n — 1 we do not
reach any diagonal element of G(t, s), hence we obtain by continuity:

iy
atal ‘(t s)=(a,a)
801—1-1 1 o1 1
T Ot 0s gM( )‘(t,s):(a,a) + agp(a) Jtor am(t, 5)}(@5):(@70‘)

=0,
:0’

gor+n n—1 gito
e n _—
(=1) atmasngM ’(t 5)= (aa>+§%a (a )6t”18319M ’(t s)=(a,a)

1=

=0.
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Taking into account that o € C(I), we have

(01) 0° 1+n
wy' (@) = 917195 gu(t |(t s)=(aa) = 0~
Proceeding analogously for oo, ...,0r_1, we obtain
wg\?)(a) =...= wg\j’“’l)(a) =0.
Now, let us choose the row oy, of G(¢,s). From (2.4), we have
0%k
Otox 912\4(t’ S)’t:a =0,
80‘k+1 aOk
ato'kang ’t a+aé(s)atakg]2\/[(t’s)‘t:a =0,
ooktn 8 i+oy 9
( 1) atakanthS‘t a+z to’kangts‘t a_O'

This system is satisfied in particular for s = a. However, since o +1n =n — 1,
we reach a diagonal element of G(t,s). Hence, to express the previous system by
means of g},(t,s), we have to take into account Remark to obtain

ao’k 1 t =0
%QM( 75)|(t,s):(a,a) o
oorx+1 1 97" 1
C Otords gM (t,s) | (t,5)=(a,a) +ap (a)%gM (t;5) | (t:s)=(a,a) — 0,
n—1 i
akoﬂ] i

1 yl 1 _
(_1)77 Dtk O Im (t? S)’(t,s):(a,a) + Zg @ (Cl) Otk Ost Im (t’ 8)|(t,s):(a,a) =1

So, since a € C(I), we have

(Uk) g7kt n
Whs (a) 8t0kasﬁgM(t 5)|(t s)=(a,a) (*1) = (*1

Analogously, if k = 1, then w(al)( )= (1)t
Now, let us see what happens at t = b. If we consider the (k + 1) row of (2.4 .,
we have
£1
aatsl gjl\/l(ta S) |t:b =0,
10 07 4
8t518 g]\/f |t b+a0(3)at61 gM(t?5)|t:b

a€1+1

=0,

gertn n-1 giter
(_l)natflasﬂgM( )’t:b+zan( >8t513 ’gM |t =0
0

Since b # a, this system is satisfied in particular at s = a. Thus, using that
a] € C(I), we conclude:

(61) 861+77

wy, (b) = 8t6185779M(t )|(t7s):(b,a):0'
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Proceeding analogously we obtain:
wg\ff)(b) =...= wg\ff"”“)(b) =0.

Hence, wy; satisfies the boundary conditions —, so we can apply Proposi-
tion [6.7] to affirm that

e If n—kis even and k > 1, then wy; > 0 on (a,b) for all M € [M, M — Xy].
o If k=1 and n is odd, then wys > 0 on (a,b) for all M > M.

To complete this Step, let us see that if n—k is even and k > 1, then T}, [M] cannot
be inverse positive for M > M — M.

Suppose that there exists M > M- A, such that Tn[]/w\ ] is inverse positive
on X{El""’e”’k}, thus from Theorems and we can affirm that for every

{Ul,n-ﬁk}
M € [M —\,, M] operator T,,[M] is inverse positive on X%{;Z;’“} and, moreover,
Whz— X, > wy > Wy

In particular, 0 = wg\—'gl)\, (b) < wg\g) (b) < wgé)(b) if Biseven and 0 = wg\gl)\, (b) >
2 2

wi? (b) > w2 (0) if B is odd.
If w%?(b) # 0, then there exists p > 0 such that w;(t) < 0 for all t € (b— p,b),
which contradicts our assumption. So

0=, (0)=w () =wv), VM e [N - X, M),

and this fact contradicts the discrete character of the spectrum of the operator

T,[M] on X{{;Z’Zj‘f} From this Step we obtain the following conclusions:

o Ifn—kiseven, k> 1and M € [M, M — \}]: for each t € (a,b) there exists
p(t) > 0 such that

gu(t,s) > 0Vs € (a,a+ p(t)) .

Moreover, if M > M —\,; then T;,[M] is not inverse positive on Xi;i:;"}

e If k=1,nisodd and M > M: for each t € (a,b) there exists p(t) > 0 such
that

gu(t,s) > 0Vs € (a,a+ p(t)) .

Step 2. Study of the related Green’s function at s = b. Analogously to Step 1, we
consider the function

7
ym(t) = @9}2\4@»3”3:;,'
In this case, from ([2.13)) and the boundary conditions (4.1)—(4.6]), we obtain that if
~v > 0, then

2 9 -t
gu(t,b) = %gM(tvs)‘S:b == WQM(@S)}S:b =0.

We have the following assertions:

e If v is even and there exist t* € (a,b) such that yas(t*) < 0, then T;,[M]

. o . ElyeesEm—
cannot be inverse positive on xlevenond,
{o1,.,0%}

e If v is odd and there exist t* € (a,b) such that yy (¢t*) > 0, then T,,[M]
{61,...,6ﬂ,_k}

cannot be inverse positive on X
{o1,-0n}
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The proof of these assertions is analogous to the proof in Step 1 for wj,.
From Lemma/[5.1] we obtain that if y is even, then y;; > 0 and if 7 is odd, then
yir < 0. As in Step 1, it can be shown that

T, [M)ynm(t) =0, Vte]a,b).

Moreover, we can obtain the boundary conditions which y,s satisfies. Studying the
Green’s function related to the first order vectorial problem given in (2.5) and the
boundary conditions (2.4]), we obtain that y, satisfies:

yir (@) = =97 (@) =0,
v (0) = = w0 =0,

yar ™ (0) = (~1) )

So, yar satisfies the boundary conditions (6.17)-(6.18]), then we can apply Propo-
sition [6.9] to conclude that

e Ifn—Fkiseven and k <n—1, then yps > 0 if v is even and ypr < 0 if 7 is
odd on (a,b) for all M € [M,M — \j].
Analogously to Step 1, it can be seen that if n — k is even, then T,,[M] cannot be
inverse positive for M > M — \j.
So from Step 2, we obtain the following conclusions:

e If n—kis even and M € [M,M — \j]: for each t € (a,b) there exists
p(t) > 0 such that

gu(t,s) >0 Vse (b—p(t),b).

Moreover, if M > M — Xj; then T,,[M] is not inverse positive on the set
{517---757171@}
{o1,..,06}

From the two steps above we can conclude that the intervals where T,,[M] is
strongly inverse positive cannot be increased.
The rest of the proof is focused into see that these intervals are the optimal ones.

Step 3. Study of the related Green’s function at t = a. Let us denote

G yru(ts), a<s<t<b,

/g\(fl)nM(tv 3) = {AQ

g(fl)nM(t,s), a<t<s<b,

as the related Green’s function of T,,[(—1)"M] on Xfiflgi’i"“} To study the
behavior at ¢t = a, we consider the function

-~ n o~ ~1

’IUM(t) = (*1) ﬁg(_l)"M(t’s)L‘:a’ tel.
From ([2.15)), it is satisfied that

. o
U)M(S) - %912\4(@5”,5:(1, s € Ia (81)

moreover, from the boundary conditions (1.5))-(1.6)), if « > 0 we obtain

o 30‘71
gu(a, s) = %gM(t,s)Lt:a == WgM(t’snt:a =0, Vsée/((a,b).
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Using the arguments of Step 1, we can affirm that if there exists t* € (a,b) such
X{t’:‘l,...,E",k}

. Moreover,
{o1,--,0k}

that @y (t*) < 0, then T,[M] is not inverse positive on
from Lemma [5.1] if n — k is even, then wy; > 0.

From the expression of T,,[(—1)" M| given in (2.14)) and (2.11)), we construct the
associated vectorial problem ([2.3) tacking, in this case

Pa—j(t) = (=1)"puj(t) + (1) "I+ 1) ply g (1) + -+

-1 i
(nj )pgn] 1)(t)’ j:17"'7n717

alt) = (-1)"a(0) + (1)1 0) + (1" (D)ol

e

Now, the related Green’s function is

/g\l(t7s) e /g\nfl(tﬂs) /g\(—l)"M(tas)
é(t S) _ % §1 (t, S) e % gn—l(t, s) % g(_l)n M(t, S) ) (82)
on=1 ~ ) n—1 __ on=1 ~
ng(t75) Wgn—l(tas) Wg(—l)nM(tS)

Repeating the arguments done with T,,[M], we obtain
i

st

R 9 =t
Gn—j(t,s) = (*UJ@!J(—U”M(@S) + ) ai(s)
i=0

g(—l)"M(ta 3) s (83)

where ag(s) follow the recurrence formula (2.7)—(2.10) for this problem with the
obvious notation. R

The correspondent boundary conditions (2.4)) are given by the matrices B, C €
M xn, defined as follows:

(E)m+1:1, i=n—k+1,...,n,
(E)ij:(), ni+l<j<n, i=n—k+1,...,n,
(E)”iih:ﬁ;ﬁl(a), h=0,...m—1, i=n—-k+1,...,n,
(E)ijzo, j=0,...,n,i=n—k+1,...n
(é)ijzo, j=0,....,n,i=0,...,n—k,
(C)MH”?MH:I, i=n—k+1,...,n,
(é)ij:O, Oictn—k)y +1<j<n, i=n—-k+1,...,n,
(C)iéi,(n,mfh =pupy1(b), h= 0;-~-6i7(nfk) —1,i=n—-k+1,...,n;
that is, for every v € C™(I), we have
v(a) v(b) W1

vV (a) v~ (b) W,
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where,

n—1
Wi =0 @)+ Y (=1)" (payo) (),

j=n—T1

n

Wik = v (a) + Z

“Tn—k

(=)™ (pa—j0) T (a)
_1)

n—

-1
j=n-—r
1
Wi =0 (0) + >
j=n—§

(=1)" 7 (pay0) (D),

n—1

W =00 (b)+ Y (1) (pp_jv) T (b).
j=n—0k
As in Steps 1 and 2, we can conclude that

To[(-1)"M]@p(t) =0, te(ab].

Next, we obtain the boundary conditions for wy;. The used arguments are
similar to the two previous steps. By definition, G(t, s) satisfies:

BG(a,s)+CG(b,s) =0, Vse (ab). (8.4)

If kK <n —1, we consider the first row of (8.4) to deduce:

o aTl‘i‘j n o
atﬁm e (t9)] o, + Z W(”” Gyt s ) —_—
j n—r7i1
n—1 j
. griti—n+l 9
7( Z (71) jm(pn—j“)Q(-lWM@’S))}t:a
Jj=n—T71
8T1+1 A R o™ .
) .
a‘l'lJrj n R
+ Z " g (Pe-sOF 1 (t9)],,) =0,
] =Nn—T1
n—1 j
. oriti—nta R
07 3 U g (s i) e
j=n—T1
N grita o I ot -
—|—(—1) (81&"18 a 1)71M(t7s)‘t_a> Za ( Ot Hst g( l)nM t s ’t a
n—1 ) 67—1+j7n+i

+ Z (—1)nﬂm (Pn—j(t)/g\?_nnz\/f(tvs)) |t:a> =0.

j=n—71
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Since 71 + a < n — 1, we do not reach any diagonal element, hence the previous
system is satisfied for s = a, and we obtain

o™ il
8tn 1)"M(t S>‘(t,s):(a,a)
n—j 8Tl+j_n ~
* Z (=1) ]W (p”‘j(t)g(l—l)"M(t’s)) ‘(t,s):(a,a) =0,
Jj=n—m1
n—1 .
. 8T1+J—n+1 .
P IRCR ] CRVOC BIVICD) | P
J=n—T71
an-i—l 1 . om .
— rtnasg(fl)nM(t, s)|(t,s)=(a,a) + ao(a) <8t7—1 g( 1)nM |(t $)=(a,a)
n—1 .
. 67-1+J—n 4
+ Z (_l)n jatrl+j—n (pn*j(t)g(fl)”M@ﬂg)) ‘(t,s):(a,a)) =0,

Jj=n—71

n—1 ;
o e a‘rlJrgfn«koz 4
(=1) Z (=1) jm (p"—j(t)g(—l)"M(tv 5)) |(t,s):(a,a)

Jj=n—m1

71+
Fene (g, (t,5)|
ot gsa (1" M (t,5)=(a,a)

a‘rl—i-z
+Z ( tnaszg< e (9] 0= 0.0

871 +j—n+i

+ Z S M (pn i(t )9( 1)nM (ts ) |(t s)= (aa)) 0.

Jj=n—71

Since a7 € C(I), we conclude that

n—1
55 (@) + Y (1" (pyan) T () =0
j=n—71
Proceeding analogously with 7o, ..., 7,_x_1, we can ensure that wj,; satisfies the

boundary conditions (4.1)—(4.2)).
Now, let us see what happens for 7,,_. From (8.4), we obtain that for all
s € (a,b) the following equalities hold:

OTn—k
O )]
atrn_kg( 1)nM t=a

S L ) .
b 0 g (s (08 (9)) |, =0,

J=N—Tn_k
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X 8Tn—k+j_n+1

n—1
= X D g (s OF e t9)) Lo

J=n—Tn_k
aTnkarl 2 ~1 QTn—k
B m 1)”M |t a+a ( )(at"—n kg( nrM (t’ S)|t:a
n— . OTn—kti—n
tOY 0 G (P (0 (89)) |ica) =0

J=N—Tn_—k

. 8Tnfk+j_n+o‘

C0° X 0 g (P 08 59) |

J=N—Tn_—k
O™n— kto N
P T )+ S

n—1

o™ PR o
) (Grregar -0

. QTn—kti—nti

+ 4 Z (—l)nﬂm (pn—j(t)@\?—l)"M(tas)) |t:a> =0.
In this case, since 7, +a = n—1, we reach a diagonal element of @(t, s), hence
by Remark we obtain the following system for s = a:

aTn k /\1
G ynar (ts S)‘(t,s):(a,a)

L QTn—ktIn
-+ Z (—1)” jW (pn ](t) - 1)"M(t § ) ’(ts =(a,a) =0,

J=n—Tn—k

n—1 i aT1+j*n+1 e}
D D el (L0 VI CAS)
j=n—Tp_k
orn—ktl 1 O™k __
= gm0t 69wy B (G T 69 o
n—1 _a—;—n,,ﬁ»jfn

+ - Z (—1)”7]W (pn—j(t)@\(l—l)"M(t? 5)) |(t,s):(a,a)> =0,

. 9Tn—kti—nta

@ n— o
(=D% e e (Po—s T 120 )) [y
J=Nn—Tn_k
aTrL kta e
(=1 5 gaa dvmam (9 o —aa)
a—1
o 67—71 ki e
+ Z (s )(W 1)”’M(t7s)‘(t,s):(a,a)
=0
n—1

37" k+ji—n+i
T > o m(p" 509 1>'LM“)|<ts> <aa>) =

J=n—Tn_k
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Since &) € C(I), from the definition of @y, we deduce that

n—1

B @+ D DM s @an) T (0) = (1) = ()T

J=N—Tn_k

Now, let us study the behavior of @Wys at t = b. Studying the (n — k + 1) row of
(8.4)), we have for all s € (a,b):

o — L Qi .
%g(l—l)"M(tVS)Lt:b + Z (1) JW (p"_j(t)g(l—l)"M(t’S)> —_—
j=n—4;
n—1 . 651+j7n+1 e
B ( Z (-1)" ]m <pn—j(t)g(—1)"M(t’5)) iz
j=n—6;

851+1 1 851 .
+ Sasd-nmm(68)| b) +ag(s )(ﬁgm)w(ﬂs)hzb

n-l 9N ti-n

+ 'Zé (" Gz (Poes O yena (6:9)) |,,) =0,
J=n—01
n—1 :
[eY n—j 851+]7n+oc ~1
o jnzsl(” G (P O vear(t:9) |,y
851+D¢ a—1 . 861+Z
(=1 81551880‘9( nn o (t, S)|t b+20‘ (s )(8155168“(]( nm mlts |t b
i=0
RN S e A1
+J Zé (=1)" j8t51+j*nasi (p"*j(t)g(*l)"M(t’ S)) ’t:b) =0.
j=n—01

Since b # a, this system is satisfied for s = a. Taking into account that ag' e C(I),
we conclude that

n—1

(8 iy N i
@y )+ D (1" (pamyian) T () = 0.
j=n—0a1
Proceeding analogously with ds, ..., 0k, we can affirm that wy, satisfies the bound-

ary conditions (4.4)—(4.6).

We have proved that wy; satisfies the boundary conditions (4.1)—(4.2)) and (4.4)—
(4.6), thus we can apply Proposition to conclude that

e If n —kiseven and kK <n — 1, then wy; > 0 on
From (8.1)), we obtain the following conclusion:
o If n — kis even and M € [M,M — )\j]: for each s € (a,b) there exists
p(s) > 0 such that gas(¢,s) > 0 for all ¢ € (a,a + p(s)).

Step 4. Study of the related Green’s function at ¢ = b. To study the behavior at
t = b, we consider the function

~ . 0P
Tu(®) = (1" 5o (49)]
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From (2.15)), it is satisfied that

~ ol
yM(S) = W‘g}w (ta S) |t=b ) (85)
moreover, from the boundary conditions (1.5)-(1.6}), if 5 > 0 we obtain
0 o
gum (b, t) = %QM(tv S)|t:b == WQM(L S)|t:b =0.

As in the previous Steps, we can affirm that if there exists t* € (a,b) such that
either s (t*) < 0 and S8 even or Fas(t*) > 0 and (§ odd, then T,,[M] is not inverse
o {e1, s€n—k}
positive on X{U1 on}
From Lemma [5.1] if n — k is even, then §;; > 0 if 3 is even and gy < 0 if 8 is
odd. Furthermore, we have

T(-1)"M]Ga(t) =0, ¢ € [a,b).

Now, using similar arguments as before, we obtain that 7/, satisfies the boundary

conditions (4.1)—(4.3) and (4.4)—(4.5)). Moreover, it satisfies:

n—1
G )+ D (1" (s Ban) T (0) = ()" = (1)
Jj=n—0og

Thus, we can apply Proposition [7.3] to conclude that

e If n —kis even and k > 1, then yps > 0 on (a,b) if 8 is even and ypr < 0
on (a,b) if B is odd for all M € [M, M — X,].
e If k =1 and n is odd, then yas > 0 on (a,b) if 3 is even and yp;y < 0 on
(a,b) if 8 is odd for all M > M.
So, from this Step, we obtain the following conclusions:

e Ifn—Fkiseven, k> 1and M € [M, M — \,]: for each s € (a, b) there exists
p(s) > 0 such that gps(t,s) > 0Vt € (b— p(s),b).

o If k =1, nis odd and M > M: for each s € (a,b) there exists p(s) > 0
such that gas(t,s) > 0 for all t € (b — p(s),b).

Step 5 Study of the related Green’s function on (a, b) X (a, b). To finish the proof we
only need to verify that (—1)" gy (t,s) > 0 for a.e. (¢,s) € I x I if M belongs to
the given intervals. In fact, we will prove that (—1)""*gas(¢,s) > 0 on (a,b) x (a, b)
for those M. To this end, for all s € (a,b), let us denote u$,(t) = g (t, s).

By the definition of a Green’s function it is known that for all s € (a,b):

T [Mus, () = (M — M) uiy(t), Vt#s, tel. (8.6)

Moreover, u3, € C"~2(I) and it satisfies the boundary conditions —.

From Lemma it is known that (—=1)""*u%, >0 on I. Now, moving continu-
ously with M, we will verify that while u3, is of constant sign on I, it cannot have
a double zero on (a, b), which implies that the sign change must be either at ¢t = a
or t = b and then the result is proved. We study separately the cases where n — k
is even or odd.

First, let us assume that n — k is even. In this case, from Theorem [2.16, we only
need to study the behavior for M > M and uy; = 0. From , we have that

T, [M]u$,; < 0; hence, since v1 ...v, >0 iTn_lufw is a decreasing function, with

7 vp

two continuous components. Then, it has at most two zeros on I (see Figure [L1]).
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VN
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FIGURE 1. ﬁ(t) T —1ub,(t), maximal oscillation with ¢ € I = [0, 1]

Although we cannot know the increasing or decreasing intervals of T;,_quj,; since
v, > 0, it has the same sign as iTn,lufW. Thus, T,,—1u3; has at most two zeros

Un

on I. So #Tn_guf\/l is a continuous function, with at most four zeros on I (see

7 Up-—1
Figure .

A
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/ \

/’\ / \\
/ N\
7 N -
FIGURE 2. vn%l(t) T,,—ou$,(t), maximal oscillation with ¢t € I = [0, 1]

Again, since v,,—1 > 0, it follows that T,,_su?}, has the same sign as ﬁ Th—ouy,.
So, T,,—ouj; has at most fourth zeros on I. Hence
zeros on I, the same as T;,_suj,.

By recurrence, we conclude that T;,_,uj, has, with maximal oscillation, at most
£+ 2 zeros on I. However, each time that either T,_,u5,(a) = 0 or T,,_su’,(b) = 0,
a possible oscillation on (a,b) is lost. From the boundary conditions —,
coupled with Lemmas [3.6] and 3.7} we can affirm that n possible oscillations are
lost. Hence, u%, can have at most two zeros on (a, b).

Let us see that, despite this fact does not inhibit that, with maximal oscillation,
u%, has a double zero on (a,b), this double zero is not possible. If Tyu(a) = 0 for
L ¢ {o1,...,0}, then us can have only a simple zero and this is not possible while
it is of constant sign.

Now, to allow this possible double zero, let us study which should be the sign of
u(® (a). We have already said that T}, _,u$,(a) changes its sign for two consecutive

—— T,,_3uj,; has at most five

? Up—2
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¢ €{0,...,n} if it does not vanish. Moreover, at every time that T, _,u%,;(a) =0
the sign change comes on the next ¢ for which T, _;uis(a) # 0. Since, from £ =0
to n — « there are k — o zeros of T,,_yu$,(a), to allow the maximal oscillation it is
necessary to have

Tauil(a) {

<0, ifn—a—(k—a)=n—Fkis even,
>0, ifn—kisodd.

As a direct consequence of (6.1), we can affirm that with maximal oscillation it
must be verified
<0, ifn—kiseven
ul, @)= ’ 8.7
(@) >0, ifn—kis odd. (87)
On the other hand, since uj, > 0, it must be satisfied that ufw(o‘)(a) > 0. We
can assume that u3,(®)(a) > 0. Because, in other case, ie. if u3,(®(a) = 0,
then Tou$,(a) = 0 and another possible oscillation is lost, so it only remains the
possibility of having a simple zero on (a,b), which is not possible when u3, is of
constant sign.
If u3, () (a) > 0, from (8.7) the maximal oscillation is not allowed. So, we have
again only the possibility of a simple zero on (a,b). Hence we conclude:
o If n —k even and M > M, if uy,; > 0, then u5, > 0 on (a,b).
Thus, combining these assertions with the previous Steps the result is proved. [

Example 8.2. In Example 6.6/ the eigenvalues related to operator T9[0] the differ-
ent sets, x12 xO0 and X2 have been obtained. They are denoted by Aq,

{0,237 “*{0,2} {0,1}°
X, and MY, respectively. We have that A\; = m{ and
Ao = max{\y, Ay } = max{—mj, —47'} = —4x*,

where m; & 2.36502 and ms & 5.550305 have been introduced in Example [6.6] as
the least positive solutions of (6.2) and (6.3, respectively.

So, we can affirm that 7§ [M] is a strongly inverse positive operator on X 322}% if
and only if M € (—m7, 47

Remark 8.3. In Steps 1 and 2, to obtain that wp; and yps satisfy the boundary

conditions lb and ((6.17)-(6.18)), respectively, we do not need to impose that
the operator T,,[M] satisfies property (7).

Taking into account the previous Remark, we obtain the following result.

Theorem 8.4. If either o, =k —1 ore,_p = n—k — 1, we have the following
properties:
o Ifn—k is even, then there is no M € R such that T,,[M] is inverse negative
{e1,-sen—k}
on X{U .
Lyeees ok}

o Ifn—k is odd, then there is no M € R such that T,,[M] is inverse positive
{e1,ven—r}
on X .

{10}

Proof. If oy, = k — 1, then {o1,...,01} ={0,...,k —1}. We consider

an
wM(t) = @gll\/l(u S) ’s:a )

defined in Step 1 of the proof of Theorem
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By the calculations done in the proof of the mentioned result, we conclude that
for all M € R, wy; satisfies the following boundary conditions:

wy(a) = =wly 2@ =0, wi V)= (1)t =~

Hence, if n — k is even, then there exists p > 0, such that wys(¢) > 0 for all
t € (a,a+ p). So, T,[M] cannot be inverse negative for any real M.

Now, if n — k is odd, then there exists p > 0, such that wp(t) < 0 for all
t € (a,a+p). Thus, T,,[M] cannot be inverse positive for any M € R. Analogously,
ife,_p =n—k—1,then{ey,...,ep—} ={0,...,n—k—1}andy=n—¢e,_—1 =k.
We consider now

07 5
Ym (t) = %QM (t7 5) |S:b ’

defined in Step 2 of the proof of Theorem
By the previous calculations, we conclude that for all M € R, y;; satisfies the
following boundary conditions:

yu(0) ==y 0 =0,y TV 0) = (~1)neer = (<R

Hence, if n — k and k are even, then there exists p > 0, such that ys(t) > 0 for
all t € (b — p,b). So, T,,[M] cannot be inverse negative for any real M. Moreover,
if n — k is even and k odd, then there exists p > 0, such that ya;(¢t) < 0 for all
t € (b—p,b). So, T,[M] cannot be inverse negative for any real M.

Now, if n — k and k are odd, then there exists p > 0, such that yas(¢) > 0 for all
t € (b—p,b). So, T,,[M] cannot be inverse positive for any real M. Finally, if n — k
is odd and k even, then there exists p > 0, such that yps(t) < 0 for all t € (b— p, b).
As consequence, T,,[M] cannot be inverse positive for any real M. (I

9. PARTICULAR CASES

This Section is devoted to show the applicability of Theorem to particular
situations. Let us consider I = [0, 1]. We have showed every result for the particular
case where n = 4, {01,072} = {0,2}, {e1,e2} = {1,2} and TY[M]u(t) = v (t) +
Mu(t), which satisfies the hypotheses of Theorem [8.1] for M = 0.

If we wanted to study the strongly inverse positive character of T{[M] on X j{{é;}]:
without taking into account Theorem [8.1] we would have to study the related
Green’s function, which is given by the following expression for M = m* > 0,
obtained by means of the Mathematica program developed in [7]:

If 0 < s <t <1, then we have

e—\/ﬁm(s—i-t—?) (2€m<s+‘/23’4) sin (M) _ 6% sin (

V2

m(s—t)

—5 )

mest3t=6)  m(s—t) m@s43t=4) (s —t)
+e V2 sin(————=)—2e 2 sin (—————=
(=) (=)
m(3stt—4) —t4+2 m(s+3t—4) —t4+2
T smm(Sﬁ)H)e i sm<m<sﬁ+>)
m(s+t—4) t_2 m(3s+3t—4) t_2
+e s sin(im(s—i— ))—e Y] 4sin(7m(s+ ))

V2 V2

m(s+t—2) 3m(s+t—2) m(3s+t—4) m(s+3t—4) . m(s + t
+<—e VE te V2 42 V2 -2 V2 )s ((ﬁ))
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m(s—t)) —e%cos(m(s—kt_%)
V2 V2

m(3s+t—4) m(s+3t—4) —t 2 m(s+t—4) t—2
—l—(e vz 4e V2 )cos(m(s\f;) —e V2 cos(m(si—ﬁ))

m(stt—2) _ m(s+t)
—e V2 (eﬁm(sﬁ 2) 4 1) cos (———= )
)

- (4\/§m3 (sin(\/ﬁm) + sinh(\@m)))

If 0 <t < s <1, then we have

m(3s+t—2) m(s+3t—6)
+ (e V2 +e V2 ) Cos(

e*w (e2ﬂm(sl) sin (m(s —t— 2)) o 6\/§m(5+t72) sin (m(s —t— 2)

2 z )
oy . —t) a3y . m(s—1t) /3 _
+ Qeﬁm(s 2) gin (m(s ) _ e\/im(zs 3) sm( ) +e 2m(s+t—1)
V2 V2
m(s —t) Vam(2sti-2) o (s — 1) Vam(s—2) . (M(s +t—2)
——7) — 2eVEmss sin (—————=) + eV ¥ gin (——————=
=) ey (et
V2m(2s54+t—2) sin (m(s ;F/;i 2)) + (eﬁm(erth) + e2\/§m(sfl))
m(s —t—2) V2 t—2 V2m(2s+t—3 V2m(s—1
Hle — b4/ +(—2€ m(s+ )+e m(2s+ )—6 m(s—1)
&)

2v2m(s—1)\ o m(s + t) V2m(s+t—1) V2m(25—3)
+ 2e )sm(T)Jr(e +e )
m(s — t)) _ pVEm(2s+t-2) (oo (m(s +1- 2))

V2 V2
_ (e\/ﬁm(2s+t—3) + e\/ﬁm(s—l)) cos (m(f/%_ t))

xsin(
— €

X COS(
X COS(

— €

Vam(s=2) ooq (m(S f/;* 2) )>

+ (2\/§m3 (ez‘/im +2¢V2m sin(v2m) — 1)) .

With this example we can see the applicability of Theorem to characterize the
Green’s function constant sign. The usefulness of the result increases in much more
complicated problems, where its expression may be inapproachable. Moreover, in
some cases, for instance in problems with non constant coefficients, we cannot even
obtain its expression. So, Theorem [8.1] is very useful because it allows us to see
which is the sign of the related Green’s function without knowing its expression.
We point out that to calculate the corresponding eigenvalues is very simple in the
constant coefficient case and can be numerically approached in the non constant
case.

Next, we see examples, where the applicability of Theorem is shown.

In [12], there are studied the operators T;,[M] in the spaces X 0,...n—h=1}

the hypothesis that there exists M € R such that T, [M]u(t) = 0 is a disconjugate
equation on I.

In fact, it is proved there that in such a case T}, [M] satisfies the property (T}).
The result there obtained is a particular case of Theorem when o, = k — 1 and

under
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€n_r = n—k—1. Moreover, since in such a case both o, = k—1lande,_p =n—k—1,
it is proved the correspondent to Theorem

In [12], there are several examples, some of them with operators of non constant
coefficients, such as

Ta[Mu(t) = u™® () + 2/ (t) + Mu(t), te]0,1],

{0,1} {0} {0,1,2}
on X{O)l}, X{0,1,2} and X{o} .

In [I4], there is a particular type of fourth-order operators
Tu(p1, p2) [M]u(t) = u' () + pr (£)u® (t) + p2(t)u® (t) + Mu(t)

on X%g:;; under the hypothesis that the second-order equation u” (t) + p1 (t)u’(¢) +
p2(t)u(t) = 0 is disconjugate on I.

This allows us to prove that the operator Ty (p1, p2)[0] satisfies property (T4) on
X fg;f . Hence, the result there obtained for the strongly inverse positive character
is a particular case of Theorem

In [14], there are also several examples of this type of operators coupled with
the well-known simply supported beam boundary conditions. Again, some of the

examples have non-constant coefficients, such as
Ty[Mu(t) = u™® (t) + 2tu® (t) + 20D () + Mu(t), te[0,1].

Before giving some results for this type of operator, we take into account the
following remarks:

Remark 9.1. If we choose {01, ...,0%} —{€1,...,en_1} satisfying (NV,), then the
hypotheses of Theorem are fulfilled for M = 0 for the operator TO[M] by
choosing v1(t) =--- =wv,(t) =1 for all t € I.

{U 7"'7Uk}
X{E;,...,En,k}

. This is so because the eigenvalues are

Remark 9.2. For this type of operators the behavior on can be known

by studying the behavior on X{{EZ’;?}

the same if n is even or the opposed if n is odd.
Indeed, if u is a nontrivial solution of u(™ () + Mu(t) = 0 on xlorort | then

{617...@”,]‘3}’
y(t) = u(1 —t) is a solution of u(™ (t) + (—1)" Mu(t) = 0 on Xgii’;;’“}
So, we do not need to study all the cases to obtain conclusions about the strongly

inverse positive (negative) character.

Next, we show different examples of this type of operators.
Second order. The only possibility in second order is to consider £k = 1. However,
there are three options for the choice of {01} — {e1}. First of them is 01 =¢; =0
which correspond to the Dirichlet case, that is the boundary conditions (1,1). This
case has been considered in [I2], where it is obtained that the operator T9[M] is
strongly inverse negative on X%{gi if, and only if M € (—oo,72). The other two
choices correspond to the mixed boundary conditions and are equivalent, oy = 0
and ey =1lor oy =1ande; =0.
2
The largest negative eigenvalue of T9[0] on X i{é}} is Ay = —7. So, using Theorem

we can affirm that T9[M] is a strongly inverse negative operator on X E(é}} or on

X{{lof if, and only if M € (—oo, %2) Moreover, from Theorem [8.4] we can conclude
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that there is no M € R such that TY[M] is strongly inverse positive either on X {{é;
{0}
or X (1

Third order. In this case the number of possible cases increases to twelve, which
can be reduced to six. The cases {01,092} = {0,1}, {e1} = {0} and {01} = {0},
{€1,e2} = {0,1} have been considered in [I2]. Let us see some of the rest.

First, let us consider {01,092} = {1,2} and {e1} = {0}. The largest negative
eigenvalue of T9[0] on Xfl }2} is \; = —m3, where my = 1.85 is the least positive
solution of

3
e™™ +2e™/? cos (%m) =0. (9.1)

To apply Theorem we need to obtain the least positive eigenvalue of T9[0]
on {1} , which is Ay = mg, where ms = 3.017 is the least positive solution of

e — em/g(cos (?m) +V/3sin (?m)) =0. (9.2)

Since, k =2=n—1, We can apply Theorem 8.1] . to affirm that T9[M] is strongly
inverse negative on X{1 oy if and only if M € [-m3,m3) = [-3.0173,1.85%).

From Theorem we can conclude that there is no M € R such that T9[M] is
strongly inverse positive on X{{?,}z}' Now, from Remark we can affirm that
T9[M] is strongly inverse positive in Xf{%f} if and only if M € (—m3,md] =
(—1.85%,3.0173]. Moreover, we can conclude that there is no M € R such that
T9[M] is strongly inverse negative in X f[{é 2},

Now, let us consider {o1,02} = {0,2} and {e1} = {1}. The largest negative
eigenvalue of T¥[0] on X‘i{é;} is \; = —mj, where my has been defined as the
least positive solution of . Moreover, the least positive eigenvalue on X }8}1}
Ao = mg, where mg = 4.223 is the least positive solution of

e ™ — em/g(cos (?m) —V/3sin (?m)) =0. (9.3)

Thus, from Theorem we conclude that T9[M] is strongly inverse negative on
Xfé}z} if and only if M € [-m3, m3) = [-4.223%,1.853). We note that in this case
oy =2>1lande; =1 > 0, thus we cannot apply Theorem[8:4]to obtain conclusions

about the strongly inverse positive character of T9[M] on X {{0}2} However, from

Remark we can affirm that T9[M] is strongly inverse positive on X §1}2} if and
only if M € (—m3, m3] = (—1.853,4.2233].

Fourth order. There are forty possibilities, which can be decreased, by using
Remark to twenty one. There are three possibilities which have been studied

n [12], they are represented on the sets X§87}1,2}, Xj({g}”m} nd XES 11}} The charac-

terization on X %{8 22}} has been obtained in [I4]. Moreover, along the paper we have
studied the case Xi{é 22}]: From Remark the obtained characterization remains

valid for the set Xg) 22]%
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Next we see a pair of different cases. For instance, X {0}

{1,2,3}
characterization on XféiQ’S}) and X{{fg (X{{ég}})
{0}

(12,3} First, we obtain the necessary eigenvalues in
order to apply Theoremto this case: The largest negative eigenvalue of T} [0] on

Xffé gy I8 A1 = —7#/4. The least positive eigenvalue of T [0] on Xg);}]: is Ay = 7.

Then, T§[M] is strongly inverse negative on x!% . if and only if M € [-n* x ).

(which also gives the

Let us work on the space X

{1,2,3} )4
Since €; = 0, we can apply Theorem to conclude that there is no M € R such
{0}

that T)[M] is strongly inverse positive on X

{1,2,3}'
Concerning to the space X i{é 23; , we have the following eigenvalues: The least

positive eigenvalue of T[0] on X :{{é 23]% is \; = 74/16. The largest negative eigenvalue

of TY[0] on Xfé}l o) 18 N, = —4r*. The largest negative eigenvalue of TJ[0] on
ngil’B} is \j = —4r%. So, Ay = max{—4n?*, —47*} = —47*. Hence, we conclude,

{0,2}
M € (—m*/16,47%]. Since 0o = 2 > 1 and €5 = 3 > 1, we cannot apply Theorem

to affirm that it cannot be strongly inverse negative for any M € R.

from Theorem that T [M] is strongly inverse positive on X {135 3¢ and only if

Higher order. If we increase the order of the problem, because the related Green’s
function gets more complex, the usefulness of Theorem also increases. Even if
we cannot obtain the eigenvalues analytically, we can obtain them numerically,
using different methods.

Let us show an example of sixth order, where we can obtain the eigenvalues

analytically. The largest negative eigenvalue of T3[0] on Xjfg 22 ’g is \; = —m%. The
least positive eigenvalue of T{[0] on Xi{g’lz}Q 4y and X§8’5i2’4} is Ay = Ay, = A\ = mS$,

where my & 5.47916 is the least positive solution of

3

cos (v/3m) — cosh(m) + 8 cos (\fm) sinh? (%) cosh (%) =0.
Hence, from Theorem [8.1} we conclude that TQ[M] is a strongly inverse negative
operator on X}L{g’g’ﬁ if and only if M € [-mI, %) = [-5.47916%, 7). Since o3 =
4> 2and e3 = 4 > 2, we cannot apply Theorem [8.4] to obtain any conclusion about
the strongly inverse positive character.

Now we consider the operator

1,2
TN [MJu(t) = u™® () + Nu/(t) + Mu(t) on X{33}.

When N = n3. the fourth order operator is T3 [M]u(t) = u® (£) +n®u/ (t) + Mu(t)
on X {{01 22; . Note that for n = 0 this operator coincides with the example that we
have been considering in the different examples in this article.

Let us see that for n € (— 2%, 2%) T7"[0] satisfies property (Ty) on x2 1o

3v3’ 3V3 {0,2}"
show that, we consider the fundamental system of solutions

, 3 3
yrt) =1, yi(t) =3e™? cos (%nt) + e™/2sin (gnt) ,

3
() = i (Lnt) g0 =,
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and the correspondent Wronskians:

Wiit)y=1, W) = %e”t/z n2(cos (?nt) —sin (?nt)) ,

3 9nb
Wh(t) = Zndent, Wi(t) = — .
2 2
If, n # 0, then W, Wi and W}* are non null in [0, 1]. Moreover, it can be seen

that if n € (—-7=, - , then 4 or all ¢ € |0,1]. So, we can obtain the
hat if 3%32”3 hen W2 0 for all 0,1]. S btain th

representation given in (3.1)-(3.2).
We construct vq,...,vs following the proof of Theorem (5, Theorem 2,
Chapter 3]):

v(t) =1, ob(t)=W3(t) = %e”t/z n2<cos (?nt) — sin (?nt)) ,
b WEQ) L WROWE)
0= 1O )

In Example we have proved that a fourth-order operator satisfies property

(Ty) on X}S;{ if and only if there exists the decomposition (3.1)-(3.2)) and (4.20])-
(4.21) are fulfilled. Let us check it. Obviously, (4.21) is satisfied. Now, since
v'(0) = 0 and vZ(0) # 0, we have to verify that v5'(0) = 0. But, from the fact

that
V3

vy (t) = —2e™/? sin (Tnt) ,

we deduce that it is trivially satisfied that v5’(0) = 0. So, as a consequence, (4.20)) is
fulfilled and we conclude that if n € (— 22, 27} then ng [0] satisfies the property

3v/37 3V3
1,2
(Ty) on X~§0,2]%'
Remark 9.3. The interval (—%, %) is not necessarily optimal. If we study

the disconjugacy set of 77" [0]u(t) = 0 on [0,1], we obtain that such equation is
disconjugate if and only if n € (—n1,n1), where n; & 5.55 is the least positive
solution of

V3n

—34e "4 2"/ COS(?) =0.

Then, it is possible that we may find different values of n € (—n1,n1) such that
v [0] satisfies property (T;) on Xfég}} with a suitable choice of the fundamental
system of solutions.

For instance, repeating the previous arguments for the fundamental system of
solutions

2
y?(t) =1, y;l(t) -~ ent/2 sin (?nt) - e—nt )

V3
3
B = () = e sin (L)

we obtain a decomposition to ensure that Tfs [0] verify property (Ty) for n €
(—%, %) Thus, we can say that for

4T 2w T T 47
I 7):(,

RN U SV AV Vs

ne ( ) C (—n1,n1),

Sl
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then T7°[0] satisfies property (). However, we cannot even affirm that such an
interval is the optimal one.

Let us choose, for instance, n = — 7= € (f%, %) C (—n1,n1) and we obtain

the different eigenvalues numerically, by using Mathematica.
3

The least positive eigenvalue of T;m [0] on X{{ég}} is \; & 2.21152%. The largest
3

negative eigenvalue of T, *¥® [0] on X i{é }1 o) 1 Ny & —4.53073%. The largest negative
=3

eigenvalue of T, *¥?[0] on X {012} 4 Ny & —5.5014%. So, A2 = max{\y, \j} =\, =

{0
3
—4.53073%. From Theorem H we conclude that T, ®V®[M] is strongly inverse
positive on X {2} if and only if M € (=A1, —Xs] & (—2.21152%,4.530734). Since
09 = €2 = 2 > 1, we cannot obtain any conclusion about the strongly inverse
positive character from Theorem [8.4]

10. NECESSARY CONDITION FOR THE STRONGLY INVERSE NEGATIVE (POSITIVE)
CHARACTER OF T),[M] ON X {Etn k)

{o1,...,01}

In the previous section we have obtained a characterization of the parameter’s
set where the operator T,[M] is either strongly inverse positive or negative on
ijii;’“} if n — k is even or odd, respectively.

In some cases, we can ensure that if n — k is even, then there is no M € R such

that T,,[M] is strongly inverse negative on xlevenkt and if o — k is odd, then

{0'1,...,0'k}
there is no M € R such that T,,[M] is strongly inverse positive on X{;Z’;;k}
However, on the cases which do not fulfill the hypotheses of Theorem we have

not said anything about the strongly inverse negative character if n — k is even or
about the strongly inverse positive character if n — k is odd.

From Theorems and if n — k is even and there exists M € R such that
T,,[M] is strongly inverse negative on X%;Z:;’“}, then the parameter’s set, for
which such a property is fulfilled, is given by an interval whose supremum is given
by M — A\;. Moreover, from Theorems and if n — k is odd and there

exists M € R such that T),[M] is strongly inverse positive on X§§1§Z;k}’ then
the parameter’s set, for which such a property is fulfilled, is given by an interval
whose infimum is given by M — \;.

This section is devoted to obtain a bound of the other extreme of the interval.
Furthermore, we will see that, in such an interval, the Green’s function satisfies a
suitable property which allows to prove that the obtained interval is optimal if we

prove that the Green’s function cannot have any zero on (a,b) x (a,b).

Theorem 10.1. Let M € R be such that T, [M] satisfies property (T;) on the set
Xi{;i’;g’“} and {o1,...,0} — {e1,.- ., en—k} fulfill (N,). Then, the following
properties are satisfied:

o Ifn—k is even and T,[M] is inverse negative on X{{:’:ﬁk}, then M €
[M — X3, M — \1), where
* A1 > 0 is the least positive eigenvalue of T, [M] on X lerenond

{o1,-.,0k}
* A3 > 0 is the minimum between:
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- Ny > 0, the least positive eigenvalue of T,[M] on X {erenaid

“{o1,.ok—1]a}”
- A > 0 is the least positive eigenvalue of T, [M] on the set
{e1,s€n—k—118}
{o1,..,01} ’
o Ifn—k is odd and T,[M] is inverse positive on Xé;z:;k}’ then M €
(M — A1, M — \3], where
* A1 <0 is the largest negative eigenvalue of T,,[M] on X%jiif;ik}
* A3 < 0 is the mazimum between: B
- Ay < 0, the largest negative eigenvalue of T,[M] on the set
X{ﬁlwuxfn—k}
{o1,...) op—1la}’
- A{ < 0 is the largest negative eigenvalue of T,,[M] on the set
X{Elw--;an—k—l‘ﬁ}.

{o1,-s01}
Proof. From Theore we can affirm that o, # k —1and g,,_, #n — k — 1.

Hence, by Corollary [6.5| the existence of A5 and Aj is ensured.
First, let us focus on the case where n—k is even. Let us assume that there exists

M* ¢ [M —\3, M —)\y), such that T,,[M*] is inverse negative on X%ZZ;’“} From

Theorem we know that M* < M — A3. Moreover, using Theorem we
can affirm that for all M € [M*, M — A1) the operator T},[M] is inverse negative on

x{etenkd and, by Theorem 2.10|, that 0 > gas-(t,8) > gn(t,8) > grr_a, (L, 5).

{o1,..., ok}
So, in particular

0> wpr(t) > wa(t) > wyg_y,(t),
and

(t), if v is even,

> YRr—xs
< Yni—x,(t), if v is odd.

yum-(t) > ya(t) >
yu+(t) <ym(t) <

If A3 = A}, then wg\%lM(a) = 0. So, we conclude that, for all M € [M*, M — \3),

wg\?)(a) = 0, which contradicts the discrete character of the spectrum of T},[M] on
{e1,-en—r}
{o1,....00-1]a}"

If A3 =AY, then y](\;ﬂl)_/\3 (b) = 0. So, we conclude that, for all M € [M*, M — \3),
yg\g)(b) = 0, which contradicts the discrete character of the spectrum of T},[M] on

{e1,--en—r-1|8}
Koo

Analogously, if n — k is odd and we assume that there exists M* ¢ (M — \;, M —
As], such that T,,[M*] is inverse positive on XE(;ZE’“} From Theorem we
know that M™* > M — As.

Using Theorem we can affirm that for all M € (M —\;, M*] T,,[M] is inverse
positive on X ="~} and, by Theorem that gy, (t,5) > gm(t,s) >

0
0

{01,008}

gn+(t, s) > 0. So, in particular
Wyr— g (1) > wpr(t) > wa-(t) >0,
and
Yir—x3(t) = yam(t) > yu-(t) >0, if 7 is even,
Yir—x3(t) <ym(t) <ym-(t) <0, if yis odd.
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If A3 = A%, then w(’ | (a) = 0. So, we conclude that, for all M € (M — A, M*],

wg\(j)(a) = 0, which contradicts the discrete character of the spectrum of T,,[M] on
{61,..»,€n7k}
{o1,.;0—1]|a}"

If A3 =AY, then yj(\—g)_ks (b) = 0. So, we conclude that, for all M € (M — X3, M*],
yj(\g)(b) = 0, which contradicts the discrete character of the spectrum of T},[M] on
X{El »»»»» Sn—k—lm}'

{0'1,..470';@}
In all cases we arrive to a contradiction, thus the result is proved. [

Example 10.2. Now, let us focus again on our recurrent example T [M]u(t) =
u®(t) + Mu(t). In Example the different eigenvalues of T[0] on the sets

X}é’g, X}éf{ and X}g’;}% are obtained. In particular, \; = m{ and

A3 = min{mj3, 7*} = 7*,
where m; & 2.36502 and m3 & 3.9266 have been introduced in Example [6.6] as
the least positive solutions of (6.2)) and (6.4), respectively. So, using Theorem

10.1, we can affirm that if T{[M] is strongly inverse negative on X{{éﬁ;, then M €
1

[_ﬂ- 7_m411)'

In Theorem [10.1} we have established a necessary condition on operator T,,[M]
to be either inverse positive or inverse negative on X {{iiiﬂi}k} Next result shows
that this condition also ensures that the related Green’s function satisfies a suitable

condition on the boundary of I x I.

Theorem 10.3. Let M € R be such that T,[M] satisfies property (T;) on the set
xlerenkd g {o1,..you} —{e1,- .-, en—r} fulfill (N,). Moreover, o, # k —1

{01,101}

and en_ #n —k — 1. Then, the following properties are satisfied:
o Ifn—Fk is even and M € [M — A3, M — A1), where A1 and A3 are given in
Theorem[10.4] Then: for each t € (a,b) there exists p1(t) > 0 such that

gu(t,s) <0 Vse (a,a+pi(t)U(b—pi(t),b),
and for each s € (a,b) there exists pa(s) > 0 such that
gu(t,s) <0 VYt e (a,a+ pa(s)) U (b— pa(s),b).

o Ifn—kis odd and M € (M — X\i, M — 3], where Ay and A3 are given in
Theorem [10.1] Then: for eacht € (a,b) there exists p1(t) > 0 such that

gum(t,s) >0 Vs e (a,a+pi(t)U(b—pi(t),b),
and for each s € (a,b), there exists pa(s) > 0 such that
gu(t,s) >0 Vi€ (a,a+ p2(s)) U (b— pa2(s),b).

Proof. To prove this result we consider the following functions introduced in the
proof of Theorem [8.1

on

wi(t) = @QM(E 8)|yu s
oY

Ym (t) = %QM (t7 5) |s:b s

L0
(-1) @QM(@ )i s

S

S

=
I
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o8
Gar(s) = (=1)" 55 Gm (t:5) ., -

For these functions we obtained the following conclusions:

. T [M] wM( ) = 0 for all ¢ € (a,b] and wy, satisfies boundary conditions

. = 0 for all ¢ € [a,b) and yas satisfies boundary conditions

o )"M] wM( ) =0 for all s € (a,b] and Wy, satisfies boundary condi-

tows (1) (i3 o (1) (35

o T,[(=1)"M]yp(s) = 0 for all s € [a,b) and 7y satisfies boundary condi-
tons (D)~ (1) and ()5

Thus, by applying Propositions [6.7] [6.9] [7.6] and [7 . we know that war, yur, W
and 7y do not have any zero in (a,b) for all M € [M — A3, M — \1) if n — k is even

and for all M € (M — Ay, M — \3] when n — k is odd. B
Moreover, by Proposition since we do not reach any eigenvalue of T,,[M]

on X Eii’;}k} we have that the related Green’s function is well-defined for every
M in those intervals. So, since we are moving continuously on M, we conclude that
its sign is the same in all the interval.

Let us, now, study the sign of these functions at a given M. We consider wyy
and Wy at M = M — X and yys and §ps at M = M — \y. As we have proved
before, at this values of the real parameter the functions are of constant sign and
satisfy the maximal oscillation, which means that verify the conditions at ¢ = a and
t = b to give the maximum number of zeros with the related boundary conditions,
otherwise the function would be equivalent to zero and this is not true. Moreover,
we know that they satisfy for all M € R the following properties:

wi (a) = (~1) "1 (10.1)
yg\;n_k)(b) — (71)(ﬂ*€n—k), (102)

n—1

f&g\;"*"')(a) + Z (=1)" 9 (pp_jiing) T+ () = (=1) Tk (10.3)

J=n—Tn_k

n—1
~(& n—j ~ j—n
G O+ Y (D" sy ia) T 0) = (<1 (104)
j=n—0oy
e Study of Wiy - Let us consider ay € {0,...,n — 1}, previously introduced

in Notation [6.11]
Let us study the sign of w; )x (a) to obtain the sign of wy;_y,. From Lemma

coupled with -, we conclude that

>0, ifn— o isodd,
15, Whrr -2 (a) . .

<0, ifn— oy is even.
As we said before, to allow the maximal oscillation, T}, —sw;_ x, must change its
sign each time that it is different from zero. Thus, since from «; to o we have
k — «y zeros, with maximal oscillation the following inequalities are fulfilled:
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If n — oy, is odd:

T (a) >0, ifor—ar1—(k—a1) =0 —kis even,
W v s la
o1 M= <0, if o, —kis odd.

If n — oy, is even:

T we (a) <0, if o —kis even,
@ TMEAEY S0, ifog, — K is odd.

From (3.3)), we conclude that
1 ()
To, wig—x,(a) = mwl\zi,\/ (a),
hence, we can affirm that

W -~

a >0, ifn—kisodd,
;;’Ag(a){

<0, ifn—kiseven.
Thus, we have proved that

o If n — kis even and M € [M — Xy, M — \;), then for each t € (a,b) there
exists p11(t) > 0 such that

gu(t,8) <0 Vs € (a,a+ p11(t)).

o If n — kis odd and M € (M — \;, M — \}], then for each ¢ € (a,b) there
exists p1,(t) > 0 such that

gm(t,s) >0 Vs e (a,a+ p11(t)).
e Study of Yir—xy- Now, let us consider 8; € {0,...,n — 1}, introduced in

Notation [6.11} To obtain the sign of Yir—xy let us study the sign of yj(\gi)A,, (d).
3
From Lemma [3.7 coupled with (10.2]), we conclude that

>0, ifn—e,_g is even,
<0, ifn—e,_gis odd.

Te,,ﬁkyz\zf,\g (b) {

In this case, as we said on the proof of Theorem[5.1] to allow the maximal oscillation,
Th—ewpgr—, (b) must change its sign each time that it vanishes. Thus, since from [,
to £,k we have, with maximal oscillation, n — k — 3, zeros, we deduce de following
properties:

If n—e,_k is even:

To ve ) >0, ifn—k— B iseven,
PN 20 it —k — By is odd.

If n —e,_; is odd:

To ue ) <0, ifn—k— B iseven,
BTN S0, ik — By is odd.

From ([3.3)), we conclude that

T 1 (B1)
VI o - v " )
B YM -2y (b) v (b) g, (b) y]\/j_,\3 (b)



EJDE-2017/146 CONSTANT SIGN GREEN’S FUNCTION 71

hence, we can affirm that

B ®) >0, ife,—p—k— [ is even,
M=) <0, if epeg — k — By is odd.

Thus, we have proved that
) ) >0,tel, ife,_y—kiseven,
I <0 e, e, g —kis odd.

Hence, since v = n — e, — 1, taking into account that y;;_ Ay cannot have any
zero on (a,b), we conclude

o If n —kiseven and M € [M — \J, M — )\;), then for each t € (a,b) there
exists p1,(t) > 0 such that

g (t,s) <0 Vs e (b— p1o(t),d).

o If n —kis odd and M € (M — A\, M — \J], then for each t € (a,b) there
exists p1,(t) > 0 such that

gM(tas) >0 Vse (b_ plZ(t)vb) :
e Study of Wy;_y,-
Notation 10.4. Let us define n; € {0,...,n—1} such that n; & {71,..., Tn—k—1,7}
and {0,...,m — 1} C{m,..., Th——1,7}

To obtain the sign of @y;_y,, let us study the sign of @5\31_) N
3

and ((10.3)), we conclude that
Tr, wiz—x(a) {

(a). From Lemma

>0, if7,_x is odd,
<0, if m,_p is even.
Analogously to T}, to allow the maximal oscillation we conclude that fn,g@ M-,
must change its sign each time that it is non null. Thus, since from 7; to 7,k
we have n — k — n; zeros, with maximal oscillation, the following inequalities are

fulfilled.
If 7,,_p is odd:

~ >0, ifrp—m—(M—k—m)="Tnk —n-+kis even,
meM,)\/ (CL) . .
3 <0, ifr_r—n+kisodd.
If 7, is even:

T oo (a) <0, if71,_r—n+kiseven,
MM S0, if 7o — n+ ks odd.
From (4.24)), we conclude that

Ty Bsrxy (@) = v1(a) .. v, (@), (),

hence, we can affirm that

Wir_y, (@

(1) (a) >0, ifn—kisodd,
<0, ifn—kiseven.
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Thus, we have proved that

Whg—xy

N >0, on[ifn—kisodd,
<0, onl[lifn—kiseven.

Hence, we conclude:
o If n — kiseven and M € [M — \;, M — \;), then for each s € (a,b) there
exists p2q(s) > 0 such that
gr(t,s) <0 Vit € (a,a+ p2,(s)).
e If n— kisodd and M € (M — A\, M — \}], then for each s € (a,b) there
exists p2q(t) > 0 such that
gr(t,s) >0 Vit e (a,a+ p2(s)).
e Study of Yy;_»y-
Notation 10.5. Let us denote 1 € {0,...,n—1}, such that v; ¢ {01,...,0k-1,7}
and {0,...,’}/1 — 1} - {51,...,5k_1,’y}.

To obtain the sign of yy;_yy, we study the sign of @\551_)/\,,(19). From Lemma
3
coupled with (10.4]), we conclude that

>0, if dg is even,

T A7 1 b
o YR - (b) {< 0, if oy is odd.

In this case, analogously to T}, to allow the maximal oscillation fn_gwM7 \ (b)
changes its sign each time that it vanishes and it remains of constant sign if it does
not vanish. Thus, with maximal oscillation, since from ~; to d; we have k — v,
ZEeros

If 0y is even:

o~

~ >0, if k— iseven,
T’Yl yzv‘f—,\g(b> {

<0, if k— - is odd.
If 65, is odd:

~ <0, if k— iseven,
T \ /] //b
”1yM‘A3(){>0, it k — ~, is odd.

From (4.24)), we conclude that

~

T Gty (0) = 01(0) - vy (0)T7, (0)
hence, we can affirm that

ﬂ(:“) ) >0, if k— 9 — 7 is even,
M=X3 <0, if k— 6 — 7 is odd.

Thus, we have proved that

~ ) >0, if k— g is even,
Y= <0 i k= 6y is odd,

Hence, since 8 = n — §; — 1, we conclude
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o If n — kiseven and M € [M — \{, M — \;), then for each s € (a,b) there
exists p2,(s) > 0 such that

gr(t,8) <0Vt € (b— pay(s),d).

o If n — kis odd and M € (M — Ay, M — )\4], then for each s € (a,b) there
exists p24(s) > 0 such that

gum(t,8) >0 VYt e (b— pay(s),b).

By taking p1(t) = min{py, (£), p1(t)} and ps(s) = min{pa, (s), pay(s)}, we com-
plete the proof. O

Remark 10.6. From Theorems and if we are able to prove that the sign
change of the related Green’s function must begin on the boundary of I x I, then
the intervals obtained in Theorem [L0.1] are optimal.

Example 10.7. Now, we apply the Remark [I0.6] to our recurrent example, the op-
erator T[M]. Let us assume that there exists M* € [—7%, m{) such that gy« (¢, s)
changes its sign. Then, from Theorem it must exist s* € (0,1) such that
u*(t) = g~ (t,s*) has at least two zeros, 0 < ¢; < ¢g < 1.

By the definition of the Green’s function u* € C?([0,1]). So, there exists c* €
(c1,c2) such that u*'(c*) = 0. There are two possibilities:

e ¢* < s*. In this case, u* is a solution of T[M*]u*(t) = 0 on [0, c*] satisfying
the boundary conditions u*(0) = u*”(0) = u*'(c*) = 0. Moreover, it satisfies
u*(c1) = 0.

The function y*(t) = u*(c*t) satisfies y*(0) = y*”(0) = y*'(1) =0 and y* (L) =
0. Moreover, it is a solution of T[c**M*]y*(t) = 0 on [0,1], with 0 > ¢** M* >
M* > —m* > —m}, where mj has been introduced in Example But, this is is
a contradiction with Proposition [6.9]

e ¢* > s*. In this case, u* is a solution of T [M*]u*(t) = 0 on [c*, 1] satisfying
the boundary conditions u*'(¢*) = w*'(1) = u*”(1) = 0. Moreover, it satisfies

u*(cg) = 0.
The function y*(t) = u*((1 — ¢*)t + ¢*) satisfies
y'(0)=y*"(1)=y*"(1)=0. (10.5)
Moreover, it is a solution of T{[(1 — ¢*)*M*]y*(t) = 0 on [0,1] and y*(cf:c‘i*) =0,

with 0 > (1 — ¢*)2M* > M* > —x%. It can be seen that 7* is the least positive
eigenvalue of T[0] on X f{{éﬁ :

Now, let us see that every solution of u(® (t) + Mu(t) = 0, satisfying the given
boundary conditions 7 cannot have any zero on (0, 1) whenever M € (—7%,0).
Which is a contradiction of supposing that there is a sign change on the Green’s
function.

First, let us choose M = —(71'/ 2)4, the solution is given as a multiple of

u(t) = fi(1 —t) + fo(1 - 1),

where, for ¢t € [0,1],

fi(t) = (1 — sinh g)) (sinh (%t) — sin (%t)> > f1(1) = —(sinh (g) - 1)2,
mt
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So, u(t) > — (sinh (%) — 1)2 +2cosh (3) > 0 for all t € [0, 1].

Now, let us move continuously on M to obtain the different solutions of of the
equation T [M]u(t) = 0, coupled with the boundary conditions . Let us see
that it is not possible that these solutions begin to change sign on (07 ) If this was
the case, we would have that there exist M € (—=7*,0) and ¢ € (0,1) such that @
is a solution of TO[M] (t) = 0 on [t, 1], verifying @(t) = @'(t) = @(1) = a"(1) = 0.
Then, the function 7(t) = @((1—)t+1) is an eigenfunction related to the eigenvalue

—(1 =1)* M € (0,7%) of the operator T2[0] o Xfé 12}} which is a contradiction.

Analogously, if there exists M € (—m4,0), for which there is a nontrivial solu-
tion of Tf[l\?]u(t) = 0 on [0, 1], satisfying «(0) = 0, coupled with the boundary
conditions , then there is an eigenvalue ~-M € (0,7%) of the operator T} [0]
on X ;{{0 1}]: , which is again a contradiction.

Finally, since there is no positive eigenvalue of T3[0] on , we can affirm

X{O,L?}
{1}
that it is not possible that the sign change begins at t = 1. So, we have proved that
every solution of u(¥)(¢) + Mu(t) = 0 coupled with the boundary conditions (T0.5)
does not not have any zero on (0,1) for M € (—n*,0). Thus, we also have arrived

to a contradiction if ¢* > s.

So, from Remark [10.6) Theorems and we can affirm that TJ[M] is a

strongly inverse negative operator on X {é 22]% if and only if M € [-7*, —m}), where

my has been introduced in Example

Example 10.8. Using a similar argument to Example in [I4] it is studied
the strongly inverse negative character of the operator Ty(p1,p2)[M] previously
introduced in Section [0} There, a characterization of the parameter’s set where
T4(p1,p2) is strongly inverse negative on X {{322; is obtained and several particular

examples are given.

11. CHARACTERIZATION OF STRONGLY INVERSE POSITIVE (NEGATIVE)
CHARACTER FOR NON HOMOGENEOUS BOUNDARY CONDITIONS

This section is devoted to the study of the operator T;,[M], coupled with different
non homogeneous boundary conditions. First, let us consider the set

Xizreen < fue (D) u(a) = -+ = V(a) =0,
(_1)n—ok—1u(ak)(a) >0, u(al)(b) — ... (11.1)
- U(Eﬂ,—k—l)(b) =0, u(gn—k)(b) < O} .

That is, we consider a set where some of the boundary conditions do not have to
be necessarily homogeneous. This information is very useful in order to apply the
lower and upper solutions method and monotone iterative techniques for nonlinear
boundary-value problems, see for instance [§].

So, we are interested in characterizing the parameter’s set for which the operator

T,[M] is strongly inverse positive or negative on X}L{frl’...iZ}k} We introduce the

Xlevenoit st satisfy:

{01,050k}
u(a) = =u"V(a) =0, u(a)=c, (11.2)
wE(B) = =) () =0, uwEnH(b) = ¢y, (11.3)

boundary conditions that a function u €
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where (—1)"7*71¢; > 0 and c¢; < 0. We can relate problem (1.4), (11.2)-(11.3)
with the homogeneous problem ([1.4)—(1.6) by means of the following result.

Lemma 11.1. If problem (1.4)—(1.6) has only the trivial solution. Then problem

T.[Mu(t) = h(t), t € I, coupled with boundary conditions (11.2))-(11.3) has a
unique solution, which is given by

b
u(t):/ gr(t, s)h(s)ds + c1xp(t) + co 2z (t), (11.4)

where g (t, s) is the related Green’s function of T,,[M] on xlerenkd g .

{01,101}

e ) is defined as the unique solution of
T.[Mu(t)=0, tel,
W (q) = = w1 () =0, ¥ (a)=1, (11.5)
U(El)(b) - .= u(E’”*")(b) =0.
e 2z, is defined as the unique solution of
T, [Mu(t)=0, tel
w(a) = =ul"(a) =0, (11.6)
U/(El)<b) - ... = u(E"*’“*l)(b) =0, u("fnfk)(b> -1

Using this Lemma we can obtain the following result which characterizes the

strongly inverse positive (negative) character of T),[M] on X gii:;"}

{15 sEn—k} Zf

{0’1,...,O'k}

Theorem 11.2. T,[M] is strongly inverse positive (negative) on X

{e1,€n—n}

and only if it is strongly inverse positive (negative) on X{l71 o

Proof. Since X{{;Z;k} C X}L{;Z;k} the necessary condition is obvious.

Now, let us see the sufficiency part. From the strongly inverse positive (negative)
character of T,,[M] on Xietenck} using Theorem , we conclude that gps > 0

{o1,-- .01}
(< 0) a.e. on I xI. Then, from Lemma we only need to study the sign of x
and zp;. To do that, we establish a relationship between these functions and some
derivatives of gas(t, s).

Taking into account the boundary conditions, it is clear that
o (t) = (=1)" 1% (8) and  zpg(t) = (1) Ry (t),
where wys and yp have been defined in the proof of Theorem [8:1] as follows:
o o,
wi () = @QM(RS)L:W ym(t) = @QM(ES)L:;,-

If T,,[M] is strongly inverse positive (negative) on X{El"”’sn”“}7 then wps () >0 (

<

{0'1,...7o'k} -
0) and (—1)Y yas(t) > 0. Since v = n—1—ep_y, it follows that (—1)" "=+ yp (1) <
0 in both cases. Thus, the result is proved. (I
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12. STUDY OF PARTICULAR TYPE OF OPERATORS

In this section we consider a particular type of operators which satisfy property
(Ty) on X%{Zl’ ’Z’;}’“ b thus we can apply previous results to these operators. After
that, we obtain some results which characterize either the strongly inverse positive
character or the strongly inverse negative character of T,,[M] if n — k is even or
odd, respectively, in different sets where more general non homogeneous boundary

conditions are considered. First, we introduce the following notation.

Notation 12.1. First, let us denote as € {—1,0,1,...,n — 2}, such that as ¢
{o1,... 01} and {ag+1,a2+2,...,01} C {01,...,0k}; and By € {-1,0,1,...,n—
2}, such that B2 & {e1,...,en—r} and {Bo+ 1,024+ 2,...,6n—k} C{e1,---,En—k} -
We denote 1 = max{ag, f2}.

Remark 12.2. If o, = k — 1 then as = —1. Otherwise, as > a > 0. Moreover, if
€n_r =n —k —1then B3 = —1. Otherwise, G2 > ( > 0.

Now, we introduce the following sufficient condition for an operator to satisfy
property (Ty).

Proposition 12.3. If the linear differential equation of (n — u — 1) -order:
Loy at(6) = ™D 0) £ pr (™D (0) 4 p e a(Bu(t) =0, (12.1)

with p; € C"I(1), is dzsconjugate on I, then the operator:

T [0]u(t) = ul™(t) + pr ()u" =D (t) + -+ + pu_pa (OuF (1),

satisfies property (Ty) on yleten—k}

{017 10k}

Proof. From Theorems and since the linear differential equation (12.1)) is
disconjugate on I, there exist positive functions vy, ... ,v,—,—1 such that v, €
cn=r=k(I) for k=1,...,n—pu—1, and

b= (L ).

Step 1. Let us see that, in fact, vy € C™(I) for k = 1,...,n — u — 1. Since,
p; € C"I(I) for j € {u+1,...,n— 1}, every solution of belongs to C™(I).
If we look at the proof of Theorem given in [I5 Chapter 3, Theorem 2|, we
observe that vy is given by the recurrence formula
_ _ W(yh yQ)
U1 =Y, V2=—" 5
Yi
W(yla s 7yk?)W(y1a s 7yk72)
Wyt ye — 1)? 7

where {y1,...,Yn—pu—1} is a Markov fundamental system of solutions of and
W the correspondent Wronskians. Thus, taking into account that y1,...,y,—,—1 €
C™(I), we conclude that vy € C™(I), vo € C"(I),... ,vp_p_1 € CF2(I).

Now, let us consider the expression , with £ =n —p—1 and py; = p; €
Cn=i(I), j € {u+1,...,n — 1} given by expressions (3.4)-(3.7). First, let us see
that v1 € C"(I), v2 € C"(I), v3 € C" (1) ,...,vp—p—1 € CHF3(I).

v = for k> 2,
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If u =n—2 then n—pu—1 =1 and the result is proved. Otherwise, p; €

C"=1(I) c C*F2(I), since vy, ... ,Up—py—2 € CHF3(I) and vy,—,—1 € CH+2(I), from
(3.4) we obtain that v, , ;, € C**3(I), then v,_,_1 € C**3(I).
Let us assume that vi41 € C"*(I), vp42 € C*F 1), ... Jvp_ 1 € CFF3(D),

then since v, € C"~*(I) considering the expression of p,_,_, given in for
¢y = n—pu—Fk, we obtain that v(n nk) ¢ CHHY(I), hence vy, € C*~*+1(T). Thus, we
have proved by induction that vy € C"(I), v2 € C"(I),v3 € C"Y(I),...,vp_p—1 €
CHT3. If = n — 3, then the result is proved, since vy, vo € C™(I).

Now, let us assume that ;4 < n — 3. Considering the expression of p,_,_3 €
CHrH3(I), given in for ¢, = n — p — k. Since vo € C™(I), we conclude that
véni#ig) € OP3(I); so, v3 € C™(I). If we suppose that vy, ...,vx_1 € C™(I), then
by considering the expression of p,_,_, € CFTk(I), we conclude that v(" nok) ¢
CHFR(I), thus vy € C™(I). Then, we have proved that vq,...,v,—,—1 € C (I).

Step 2. Construction of the decomposition satisfying property (Ty). Now, we
consider the decomposition of T'[0] as follows:

Tl0ju = vr.cvy 1 (T

Up—p—1 dt dt* v
Hence, if we denote 91 = -+ = Uy41 = 1 and Vpyq0 = v1,...,0p = Up—pu—1, We can
decompose T,,[0] in the following sense:
~ ~ d (Th_1u
Tou=u, Tyu= —( k~1 ), k=1,...,n.
dt Vi

Trivially T, [0lu = 01 . .. O, Tpu.

Now, let us see that this decomposition satisfies the property (7). We have that
Tou = u, Thyu = T,Hlu = w1 Hence, if 0; < ag < p then T, Ju(a) =
ul)(a) = 0. )

Analogously, if &; < 82 < p, then T.,u(b) = u®)(b) = 0. If h > p + 1, then

T u® N e T (u41)
U= —-" U e U ,
h V1...Up Pr phhiﬂil

where py,; is given by equations (3.4)—(3.7).

If 0; > p, then by definition of p, w1 (a) = u*2)(a) = --- = ul?)(a) =
Hence T,,u(a) = 0. Analogously, if &; > p, then u(*™1)(b) = u(““)(b) = ... =
u(®9)(b) = 0. Hence T.,u(b) = 0. Thus, the result is proved. O

As consequence of this result, we can apply Theorems [10.1], [10.3] and [I1.2]
to operator T, [M]. Moreover, for this particular case, we will be able to obtain a
characterization of strongly inverse positive (negative) character in different spaces
with inhomogeneous boundary conditions.

Definition 12.4. Let us consider {o¢,,...,0¢,} C {01,...,0} such that o, <
Oy < +++ < O¢, = Ok, With 0¢,_, < p. And {ex,,...,€s,} C {€1,--.,En—r} such
that €., < €x, < -+ < €, = En—k, With €., |, < p. Let us define the set of
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ferenblien e,

{01,350k Hoey vovoe, }
o 0 j¢{€13"'765}
u( J)(a) = n—o;—(k—j)+1 :
(—1) J i € {61,...,65}
for some ¢; >0, j=1,...,k;and
) 0 i¢{l€17...,1€h}
u(el)(b) — ki1 '
(—1) P ZG{Kl,...,Iih}

for some ¥; >0,i=1,...,n—k.

functions X as the set of functions u € C™(I) such that

(12.2)

Now, we enunciate a similar result to Lemma, for this more general case

Lemma 12.5. If problem (1.4)—(1.6) has only the trivial solution. Then problem
T [Mu(t) = h(t), t € I, coupled with the boundary conditions

u(gj)(a): 0, j¢{€1,...,€e},j:1,...,k7 (123)
Cj, j€{€1,...,64}, jZl,...,k;

u(el)(b): 0, Z.g{nla"'alih}a Z.:]-w"?n*k7 (124)
di, i€{Kk1,...,kn},i=1,....,n—k

has a unique solution, which is given by
b 4 h
u(t) = / gar(t ) h(s)ds+ 3 eoany () + 3 duzii (6, (12.5)
a j=1 i=1

where gur(t, s) is the related Green’s function of T,[M] on Xk} ang

{01,001}

° x;}’ 1s the unique solution of
T, [Mu(t)=0, tel
U(ij)(a) — 1’
12.6
u(ol)(a) —- .= u(Uej—l)(a) — u(ffej+1)(a) = u(ak)(a) =0, ( )
uED(b) = = uEnr)(p) = 0.
) z;/; 1s the unique solution of
T.[Mu(t)=0, tel,
u (@) = - = ul) =0,
(12.7)
u=)(b) =1,
U(El)(b) —_ .= u(s”“i‘l)(b) — u(s“’“i“)(b) — .= u(snf’ﬂ)(b) =0.

We have the following results, which ensures the existence of the different eigen-
values.

Lemma 12.6.
o Ifo., > a, then T,,[0] satisfies property (Ty) on X [eren-il

{01,010, -1,0¢; 41,0k}

e Operator T,[0] satisfies property (Ty) on X [eren-klB}

{01,,0¢;-1,0¢;41,--,0k}

o Ife., > f3, then T, [0] satisfies property (Ty) on X (e S e klB)

{01, 0n}
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{€151Eh;—15Em; 415 sEn—k }
{o1,..,0k|a} ’

e Operator T,[0] satisfies the property (Ty) on X

Proof. Let us see the different cases:

If 0; < p, then T, u(a) = ul?)(a) = 0.

If 0; = oy, then T, u(a) = 0, by the definition of .

If &; < p, then T.,u(b) = u®)(b) = 0.

If e; = ep—i, then T _, u(b) = 0, by the definition of u.

If u € XEen-rlB or u € X {Ermeni} and o, >

{01,.0¢;-1,0¢;41,--,0k} {01,030, -1,0¢;41,.,0k|a}

a, then Tu(a) = mu(a)(a) =0.

{e1s8m;— 1,80 415 En—k }
{o1,...,ok|a}

xEren et e kB s Thu(b) =

{o1,..,01}

e Analogously, if either u € X or g,, > [ and u €

Y O) }.va(b)“(ﬁ) (b) = 0.

O

Remark 12.7. If we can prove that either 7, u(a) = u(?)(a) or T.,u(b) = u(=) (b),
we do not need the assumption that o; < p or £; < p given by the choice of
{€1,...,€} and {k1,...,Kx} on Definition

This is true, in particular, if we can choose on decomposition —, v =

"=, =lorwv =+ =v, =1. We note that such a choice is valid for the
operator TO[M] = u(™ (t) + Mu(t), where we can choose v; = --- = v, = 1.

The following results are also true under the hypothesis of this remark.

Lemma 12.8.

e Let n— k be even, then the following assertions are satisfied: ~
— Ifoe; > «, then there is )x},p > 0, the least positive eigenvalue of T,,[0]
-7
{61,...,€n,)€}
on X{<717---a<75_7»71,05_7-+1,~~7<7k|04}.
— There s )\ZE_ < 0 the largest negative eigenvalue of T,[0] on the set
J
nglxu'ﬁnfklﬁ} )
O1yeney O'Ej_1,0'5j+1 ..... crk} B
— Ifey, > 3, then there is Xl > 0, the least positive eigenvalue of T,,[0]

on X{El7---75ni—175ni+17~--75n7k:|ﬂ}.
{0'1,...,0'k} B
— There exists A?N, < 0 the largest negative eigenvalue of T,[0] on the
set X{Elv'--asni—1vémi+1a-~~75n7k}.
U1;~~7<77c|01}
e Let n— k be odd, then the following assertions are satisfied:

— If oc; > «, then there exists >\[1;5, < 0, the largest negative etgenvalue
J
7 {e1,sen—k}
Oan[O} on X{Ui,m,tfsjf1’05j+1,m,0k\04}'

— There exists A2 > 0, the least positive eigenvalue of operator T,,[0]

on X}L{Elv--wsn—k‘ﬁj} .
(717'--;0'5j7170'5j+1a“~70'k:}
— Ife., > B, then there exists /\;nv < 0, the largest negative eigenvalue
' {e sees€h;—15€k,; +150-3En— .18}
of T,,[0] on X{Ui,‘..,ok} Lrowitd RIPT )
— There exists \2_ > 0, the least positive eigenvalue of operator T[0] on
{511“'76&1’7178Ni+17"'7€717k:}
X{Ul,..‘,ak|a} .
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Proof. Since {o1,...,01} — {€1,...,6n—k} satisfy property (N,), this property is
satisfied in all the spaces involved in the result. Moreover, from Lemma [12.6] the

property (T,) is also satisfied. Then, by applying Theorems and the
result is proved. [

Now, let us see two results which allow us to ensure that functions x?\;j and 2}3\2
are of constant sign for suitable values of M.

Proposition 12.9. Let u € C™(I) be a solution of T[M]u(t) = 0 for t € (a,b),
which satisfies the boundary conditions

u(a) = - =ul7(a) = w74 (a) = - = ul"(a) = 0,

u(El)(b) e U(En—k)(b) —0. (12.8)

Then, the function u does not have any zeros on (a,b) provided that one of the
following assertions are fulfilled:
o Ifn—kiseven, k>1, 0., >a and M € [-\] ,—X\2_ ], where
J J

* AL >0 is the least positive eigenvalue of T,[0] in
J

{0'1,..470'6].,1705j+1,...,0'k-‘0¢}’
* )\[Q,Ej < 0 is the largest negative eigenvalue of T,[0] on
X{51w~75n7k|ﬂ}

{01,0¢;-1,0¢; 415,00}

If n—k is even, k > 1, oo, < o and M € [=A1, —A2_], where

* A1 > 0 is the least positive eigenvalue of Ty,[0] on X{El"”’s"_’“},

_ {0‘1,...,0k}
* )\gsj < 0 is the largest negative eigenvalue of T,[0] on
stlguwgn—klﬁ} ]
O1yenny aﬁj_l,crej_'_l,...,o‘k}

o Ifk=1,n odd, o, > and M € [-\}_,+00), where

* AL >0 is the least positive eigenvalue of T, [0] on the set
J
{e1,en—k}
{01,130 -1,0¢; 41,0k |}

Ifk=1,n odd, o, < a and M € [~Ay,+00), where
* A\p > 0 is the least positive eigenvalue of T,,[0] on xferennt,

{o1,...,0n}
Ifn—kisodd, k>1, 0., > and M € [-)2_,—\L ], where
* X2 >0 is the least positive eigenvalue of T,,[0] on the set
J
x tenen—klB}

{Ulyn-yo'ej7170'5j+17'~~;0'k:}’

* AL <0 is the largest negative eigenvalue of Ty, [0] on the set
J

Oe

{01,..470'6].,1706j+1,...,0'k-‘0¢} .

Ifn—kis odd, k > 1, 0., <a and M € [_/\ie.v_)‘lL where

* X2 >0 is the least positive eigenvalue of T,,[0] on the set

X{él,‘..,en_kw}

{0‘1 ..... 05j—1305j+1 ..... Jk}’
* A1 < 0 is the largest negative eigenvalue of Ty, [0] on Xgi”i’;;k}
Ifk=1,n odd, o, > and M € (—oo,—)\(lfsv], where
J
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* AL <0 is the largest negative eigenvalue of Ty,[0] on the set

Oc;
{e1,s8n—k}
{017--<7U€j7170'6]'4»17"')0-/6‘&}.

o Ifk=1,n odd, o, < a and M € (=00, —A1], where

* A1 <0 is the largest negative eigenvalue of T,,[0] on Xi{ji?;;k}

Proof. Firstly, let us see what happens for M = 0. As we have seen in the previous
results, without taking into account the boundary conditions, if u is a solution of
T,,[0]u(t) = 0 on (a, b), then u has at most n—1 zeros. However, from the boundary
conditions (12.8)), we conclude that Tyu(a) = 0 or Tyu(b) = 0 at least n — 1 times
from £ = 0 to n — 1. Thus, we lose the n — 1 possible oscillations and u does not
have any zero on (a,b).

Now, let us consider uy; € C™(I) a solution of T}, [0]uas(t) = 0 on (a,b). Assume
that up > 0 on (a,b) (if up < 0 on (a,b) the arguments are valid by multiplying by
—1) and we move continuously on M to obtain uy;. We will see that while up; > 0,
it cannot have any double zero, which implies that it is positive on (a, b).

It is known that T[0]uas(t) = —Muy(t), on (a,b), hence T, _juys is a monotone
function on I, with at most one zero. Then, arguing as before, we conclude, without
taking into account the boundary conditions, that uy; can have at most n zeros.
But, if we consider the boundary conditions , we lose n— 1 possible oscillation
and wuys is only allowed to have a simple zero on (a,b), which is not possible if it
is of constant sign. Hence, we can affirm that up; > 0 on (a,b) up to one of the
following assertions is satisfied:

® 0., >aand ug\?)(a) =0.

e 0., <aand ux;j)(a) =0.

o w2 ) =0.

Now, let us study separately the cases where M > 0 or M < 0 to see with which
of the previous assertions the sign change begins in each case.

If M >0, then T[0Jua(t) = —Mup(t) < 0 for t € (a,b). Thus, Thup(a) <0
and T),u (b) < 0. With maximal oscillation T stins (a) changes its sign each time
that it is not null and T, n—eupr (D) changes its sign as many times as it vanishes.

o If o, > o, from £ = 0 to n — a, Tn,guM(a) vanishes k£ — 1 — « times. If
Tn_guM(a) =0forf<n—aandn—L&{o1,...,0¢,-1,0¢;41,--.,0k|a},
then Thups(a) # 0 and uy; remains positive on (a,b). So, we can assume
that this situation cannot be fulfilled.

Hence, with maximal oscillation, we have:

N >0, ifn—a—-(k—1-a)=n—k+1isodd,
TauM(a’) . .
<0, ifn—k+1iseven.
Since o, > a, from (3.3), we have that

TauM(a) = m

b
so, with maximal oscillation:

u(a)(a) >0, ifn—Fkiseven,
M <0, ifn—kisodd.
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e If o, <a, from £ =0ton—o, Tn_guM(a) vanishes k — 1 — o, times.
Again, let us assume that Tn_guM(a) #O0for{ <n—-oifn—-1¢
{o1,...,0,}. Then, with maximal oscillation, we have

- {20 ifn—-o, —(k—1-0,)=n—k+1is odd,

J

T, unm(a
o U (@) <0 ifn—k+1iseven.
Since o¢, < a, from (3.3), we have
- w7 (a)
J vi(a)... Vs, (a)
In particular, if oc;, < p, then vy(¢).. Vo, (t) = 1. Thus, with maximal
oscillation:
(o0c;) >0, ifn—Fkiseven,
uy’ (a) . .
<0, ifn—kisodd.

On the other hand, from ¢ = 0 to n — 3, T,,_sups(b) vanishes n — k — 3 times.

We can also assume that Ty, _gups(b) # 0 if n — £ ¢ {e1,...,6,_1|8}. Then, with
maximal oscillation:

- >0, ifn—k—pisodd,
Truns)§ =0 .
<0, ifn—Fk—piseven.
From (3.3, we have that
- (6)(@)
u
Tsupr(b) = ——————.
puar (b) v1(b) - .- vz(b)
Thus:
e if n — k is even, to set maximal oscillation, we need
<0, ifJiseven,
uyy (0) o
>0, ifgisodd.
e if n — k is odd, to ensure maximal oscillation is necessary:
>0, if 3is even,
uy (0) o
<0, iff3isodd.
Since, we are considering uy; > 0, it is known that
() >0, if Oc; > @ 1
2.9
i (a){ZO, if oo, <a, ( )

and

N e o
u(g)(b){o, if G is even, (12.10)

M <0, ifBisodd,

Taking into account that if k = 1, then ug\g)(b) # 0 for all M € R, we obtain the
following conclusions for M > 0:

e If n —kis odd and o¢, > «, then ups > 0 if ug\‘;‘)(a) # 0 for all N between

0 and M:; i.e., up to an eigenvalue of T},[0] on X [erenailt

{010, -1,0¢;41,....0k|a}
found.
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o If n—kis odd and o, < @, then up > 0 if uly (b) # 0 for all N between

0 and M:; i.e., up to an eigenvalue of T, [0] on ijizz;"} is found.

e If n —kiseven and k > 1, then up; > 0 up to ug\g)(b) = 0; i.e., up to an

eigenvalue of T, [0] on X{{;Z"’fl‘ﬁjﬂgk} is found.
J J o

e If k=1 and n is odd, then up; > 0 for all M > 0.

Now, let us see what happens for M < 0. In this case, we have that T}, [0]ua (t) =
—Mup(t) > 0 for t € (a,b). Then, Tupr(a) > 0 and T,up(b) > 0. Hence, we
conclude that with maximal oscillation, the inequalities are reversed from the case
M > 0. So, we obtain that:

e If 0., > «, with maximal oscillation

u(a)(a) <0, ifn—kiseven,
M >0, ifn—kisodd.

o If 0., < a, with maximal oscillation

u(aej)(a> <0, ifn—Fkiseven,
M >0, ifn—kisodd,

and

e if n — k is even, with maximal oscillation:

>0, if 3is even,
uj (b) o
<0, iff3isodd.

e If n — k is odd, with maximal oscillation:

<0, ifJiseven,
uiy () o
>0, ifgisodd.

Then, taking into account that ups > 0, (12.9) and (12.10) are also satisfied.

Hence, using that if & = 1, then ug\g)(b) # 0 for all M € R, we obtain the
following conclusions for M < 0:

o If n — k is even and o, > a, then up > 0 if ug\?) (a) # 0 for all N between

L . 7 {e1,€n—k} .
0 and M; i.e., up to an eigenvalue of T,,[0] on X{0'17---,0'5j—1,O'Ej+17~--70'k|a} is

found.
o If n—Fkis even and o, < a, then up; > 0 if uggéj)(a) # 0 for all N between

0 and M; i.e., up to an eigenvalue of 7},[0] on Xf;i’;;"} is found.

o If n — k is odd and k > 1, then up; > 0 if us\?)(b) # 0 for all N between
0 and M; i.e., up to an eigenvalue of T,L[O] on Xgi;’s”fl‘gjeﬂ on} is
found. ' '

e If k=1 and n is even, then uy; > 0 for all M < 0.

The result is proved. (Il
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Proposition 12.10. Let u € C™(I) be a solution of T[M]u(t) = 0 for t € (a,b),
which satisfies the boundary conditions

u("l)(a) S u(”’“)(a) =0,

12.11
WEB) = - = D) =) = m @) =0 D
Then, u does not have any zeros on (a,b) provided that one of the following asser-
tions is fulfilled:

o Ifn—kis even, e,, > and M € [=A!_, =2 ], where
* AL >0 is the least positive eigenvalue of T,,[0] on the set
{;1,...76,&1._175,{1-4.1 ----- En,—k‘ﬁ}
{0'1,..470']“} 7 5
* )\gm_ < 0 is the largest negative eigenvalue of T,,[0] on the set
X{gl ..... 6,%_1,5,{1.4_1 ..... En—k}

{o1,..,ok]a}

o Ifn—kis even, e, < o and M € [—\y,—A2_], where
* Ap > 0 is the least positive eigenvalue of T,,[0] on X{El""’s"”‘},

~ {o1,,0%}
* X2 <0 is the largest negative eigenvalue of T,[0] on the set
{81,~~76~,;71,Emi+1,---75n7k}
Xiorrmorla} :
o Ifn—kisodd, k<n—1,¢e, >0 and M € [f)\ii,f)\;m], where
* X2 >0 is the least positive eigenvalue of T,,[0] on the set
{81,~~76~,;71,Emi+1,---75n7k}
X{orronla} ; )
* AL <0 is the largest negative eigenvalue of T,[0] on the set
{él;<~~75;17;71;Eni+17---75n7k‘ﬁ}
{o1,--s0k} ’
o Ifn—Fkisodd, k<n—1,e, <aand M € [*)‘gmp*)‘l]’ where
* X2 >0 is the least positive eigenvalue of T,[0] on the set
{51,~~75;1,;71,Eni+1»---7€n7k}
{o1,....0k|a} )

* A1 < 0 is the largest negative eigenvalue of Ty, [0] on Xi{ji”f,z;k} .
o Ifk=n—1,¢e, >a and M € (oo, =\, ], where
J

* AL <0 is the largest negative eigenvalue of T,[0] on the set
{e1) 180y~ 1,k 415 ,En—k | B}
X{al,...,ak}
e Ifk=n—1,¢, <aand M € (—o0, —\1], where
* A1 <0 is the largest negative eigenvalue of T,,[0] on xie

{01,001}

The proof of the above proposition is analogous to the proof of Proposition
12.9) and is omitted here. Now, we are in a position to prove a result which gives a

relationship on the eigenvalues of the different spaces X %{51 o€} with
Tyeeny Uej_1,06j+1 ,,,,, O'k|04}

the closest to zero eigenvalue of T},[0] on X J‘[{;x;k} The result is the following.

Proposition 12.11. Let j1 € {e1,..., €} be such that o < oj,, then the following
assertions are true:

o Ifn—k is even, then 0 < A\ < )\cl,jl, where
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* )xll,h > 0 is the least positive eigenvalue of Ty,[0] on the set
X{Elxuwﬁn—k}

{o1,..,05; —1,05, 41,...,0k]a}
* A1 > 0 is the least positive eigenvalue of T,,[0] on Xi;iz;k}
o [fn—k is odd, then )“171‘1 < A1 <0, where

* >“177’1 < 0 is the largest negative eigenvalue of T,[0] on the set
X.{Ela“wsnfk}

{01,051 -1,051 +1,--,0k |} "

* A1 <0 is the largest negative eigenvalue of T,,[0] on Xi{;?;ik}

Proof. To prove this result, let us denote vy, € C™(I) as a solution of T[M]vp (t) =
0 on (a,b), coupled with the following boundary conditions

@) =0, =0,k i#

(12.12)
v%}i)(b) =0, i=0,....,n—k.

Let us study vg, with the arguments used before. We know that, without taking
into account the boundary conditions, vy has at most n—1 zeros. However, from the
boundary conditions , we conclude that n — 1 possible oscillations are lost.
Hence, since vy is a nontrivial function, the boundary conditions for the maximal
oscillation are verified.

Let us choose vy > 0 (if vg < 0, the arguments are valid by multiplying by —1),

then véa) (a) > 0. From (3.3) Tovo(a) also satisfies this inequality.

Let us study the sign of v ]\? 1)(a). Realize, that, to achieve the maximal oscilla-
tion, Tyvps(a) must change its sign each time that it is non null.

From ¢ = a to o, Tyvo(a) vanishes j; — 1 — « times, then, with maximal
oscillation:

T, vo(a) >0, ifo;, —a—(j1i —1—a)=o0j, —j1+1is even,
71 <0, if oy, — g1+ 1 s odd.
From the choice of j; € {e1,..., e}, we can affirm that

v(gh)(a) {< 0, if oy —j1is even, (12.13)

0 >0, ifoj, — 1 is odd.
Now, let us move with continuity on M up to —A,; and study the sign of

v(_a;:(}r) (a).
J1

From Proposition [12.9, v_x, > 0 on (a,b). Moreover, v(_a)\) (a) = 0. Thus,
J1 7j

with the calculations done before, we conclude that the maximal oscillation is sat-
isfied too. So, we can study in this case the sign of v(_gﬁr) (a). Let us consider
a1 € {0,...,n — 1}, previously introduced in the proof of Jl%’roposition 6.5. Since
vy, =0on 1, we can affirm that v(_og\l:jl (a) > 0.

From ¢ = a3 to oj,, there are j; — «; zeros for Tgv,)\}rjl (a), then, with maximal

oscillation:

T

> 0 'f T - 1 — — . 44 Q
05, 0-x; (@) { y ifog, —ar = (i —a1) =05, —ju is even,
J1

<0, ifO'jlfjl is odd.
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From the choice of j; € {e1,..., e}, we can affirm that

e ) o (12.14)
j <0, ifoj —j1is odd.

71

(031) (a) {> 0, ifo; — 71 is even,
Hence, in this case, since we have been moving continuously on M, we can affirm
that there exist —\; between 0 and 7)‘}77’1 such that v(”){l)
N —Al
proved the existence on an eigenvalue of T;,[0] on X ek hetween 0 and —)\}le )

{01,008}

and the result is proved. ([l

(a) = 0, i.e. we have

In an analogous way, we can prove the following result for the eigenvalues of T [0]
on X{Ehuw’fn,;—l,Eni+1,---7€n7}c\ﬁ}
{o1,--0k}

€1y--€n—k
on X 28

{10}

, comparing them with the closest to zero eigenvalue

Proposition 12.12. Leti; € {k1,..., kp} be such that ;, > (3, then the following
assertions are true:

o Ifn—Fk is even, then 0 < A\ < )‘;n’ where

* )\iil > 0 is the least positive eigenvalue of T, [0] on the set

{€1,+-8i1— 1,801 +15--En—k B}
{01,108} :

* X1 > 0 is the least positive eigenvalue of T,,[0] on X{j
e Ifn—Fk is odd, then 0 > A\ > )\;1, where

* )\;il < 0 is the largest negative eigenvalue of T,[0] on the set

17---7571—16}
1,0k}

X{El7~~»751',1—17511+1»--~75n—k‘6}
{o1,...0k} ’

* A1 <0 is the largest negative eigenvalue of T,,[0] on xlerennt,

{01,501}

The proof of the above proposition is analogous to the one of Proposition [[2:11]

and is omitted here. Now, let us establish a comparison between the eigenvalues in
{e1,-en—x|B}

{1717~~-7‘7€j—17‘75j+17--~7f7k}.

the different spaces X

Proposition 12.13. Let 0j,,0;, € {oc,,...,0,} be such that j1 < jo. Then the
following assertions are fulfilled:

o Ifn—k is even and k > 1, then 0 > )x?,h > )\gjz, where

* )x%,h < 0 is the largest negative eigenvalue of T,[0] on the set
X{el,‘.-,enfklﬁ}

{01,105, —1,05, 41,0k} _
* )\37,2 < 0 is the largest negative eigenvalue of T,,[0] on the set
x tenen—klf}

{015043055—1,055 41,0k }*
o Ifn—Fk is odd and k > 1, then 0 < )“27j1 < A§j2, where
* )\ijl > 0 is the least positive eigenvalue of T, [0] on the set
X{Ela“wev%fklﬁ}. .
{01,050 1,05, +1,--,0k } ~
* )\(2,j2 > 0 is the least positive eigenvalue of T,,[0] on the set
x tenen—klf}

{01,3055-1,0 554150k }
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Proof. To prove this result, we denote by vy 5, € C™(I) a solution of T[M] vy 5, (t) =
0 on (a,b), coupled with the following boundary conditions:

mg\i")(a):07j=0,.-~,kv it j7# g1, J2,
wl () =0, ifi=0,....n—k, (12.15)
n'Pb)=0.

Again, from the boundary conditions , to ensure that is is a nontrivial solu-
tion, w1 satisfies the conditions of maximal oscillation at t = a and ¢ = b.

First, let us see what happens if o;, > a. Let us choose v1¢y > 0 (if v1¢ < 0, then
the arguments are valid by multiplying by —1), then vl(()a)(a) > 0. From we
have Ty v19(a) > 0.

To study the sign of v(()%)(a), realize that, to achieve the maximal oscillation,
Tyvpr(a) changes its sign each time that it is non null.

From ¢ = a to 0j,, there are jo — 2 — «v zeros for Tyv1g(a), then, with maximal
oscillation:

>0, ifoj, —a—(j2—2—a)=o0j, —js+2is even,

T,. vigla
iz V10( ){<0, if 05, — j2 + 2 is odd.

From the choice of j; € {e1,..., €}, we can affirm that

(ajZ)(a) {> 0, if oj, —jo is even, (12.16)

V19 . ..
<0, if o, —jo is odd.
Now, let us move with continuity on M up to —,\3,],2 and analyze the sign of

0,73 (a). Let us denote Ay = —\?

—A2 o
%2

" from Proposition [12.9} it is known that

v1y, > 0 on (a,b). Moreover, vlf\zh)(a) = 0. Thus, since another possible zero on
the boundary will imply that v;y, = 0, we conclude that the maximal oscillation is
satisfied too.

So, we can study, in this case, the sign of v;y,(a). Since v15, > 0 on I, we can
affirm that, as for M = 0, vlgg)(a) > 0.

From ¢ = a to 0,, there are jo — 1 — a zeros for Tyv;y, (a), then, with maximal
oscillation:

>0, ifo, —a—(jo—1—a)=0,, —j2 + 1 is even,
T0j2 U1 Xz (a’) . 7 - (] ia ) ” J
<0, ifoj, —j2+11is odd.

From the choice of j; € {€1,..., €}, we can affirm that

(0)s) (a) {< 0, if o, —j2is even, (12.17)
2

1_ . .
& >0, ifoj, —jo is odd.

Now, let us see what happens if 0;, < o < 0j,. In this case, 0;, = j1 — L.
For M = 0, since vy > 0, we have that vl(()a“)(a) > 0. From (3.3) we have that

(Ujg )

T,, vip(a) > 0. Let us study the sign of vy, *"(a) in this case.
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From ¢ = ¢;, to 0j,, there are jo —2 — (j1 — 1) = jo — j1 — 1 zeros of Tyvig(a).
Then, with maximal oscillation:

>0, ifoj,—j1—1—(jo—j1—1)=0j, —jo is even,
<0, ifO'j2 7‘]'2 is odd.

T0j2 UlO(a) {

From the choice of js € {e1,..., €}, we can affirm that (12.16]) holds.
Now, we study the sign of v; y, (a) if the conditions to allow the maximal oscilla-

tion hold. Since v1_y2 > 0 on I, we can affirm that vl(_ag (a) > 0. From ¢ = «
iz 7341
to oj,, there are jo — 1 — a zeros for Tyv1 2 (a), then, with maximal oscillation
iz
and repeating the previous arguments, we obtain that (12.17) is satisfied.

Finally, let us study the case where o;, < . In this situation, o;, = j1 — 1 and
0j, = j2 — 1. For M =0, since vy > 0, we have that vléajl)(a) > 0 and from (3.3
Tyv1o(a) > 0.

Let us study the sign of vl(()ajz)(a) in this situation. Since a > o;,, for all
=0y ,...,,0j,, we have that Tyv19(a) = 0. So, to allow the maximal oscillation,

it must be satisfied that 75, v1¢(a) < 0. And this inequality also holds for vlé% ) (a).
In this case, for M = —/\3,],2, since v1_y , > 0 on (a,b) and vl(_gili (a) = 0, we
J2 %i2

have that vl(_a)’é) (a) > 0.

J2
Hence, in all the cases, since we have been moving continuously on M, we can

affirm that there exists —\; lying between 0 and —A§j2, such that vl(af)(a)

—Al

0. As consequence, we have proved the existence on an eigenvalue of T,[0] on

X%{EI""’ETf”‘“} _ between 0 and —A2 , and the result is proved. O
01,3051 1,04 41,0k } Tjy

Before introducing the final result which characterizes the strongly inverse posi-

{e1ssen—benyveny, }

{01,320k Kooy voovoe, b

a result which gives an order on the eigenvalues associated to different spaces
{517~~~75ni—175Ni+17---75nfk}

X{ol,.“,ak|a} .

tive (negative) character in the different spaces X , we show

Proposition 12.14. Let i1,is € {K1,...,kn} be such that if iy < ia, then the
following assertions hold:

o Ifn—k is even, then 0 > )\gil > )\gl_2 , where

* )\gil < 0 is the largest negative eigenvalue of T,[0] on the set
{517~~»757‘,1—175i1+1»--~,5n—k}
{o1,.s0k|a} ’ .

* )\iiz < 0 is the largest negative eigenvalue of T,[0] on the set
{517~~»751',2—175i2+1a--~75n7k}
{o1,.,0k]a} ’

o Ifn—kisoddandk <n—1, then 0 < /\gi1 < )\giz, where

* )\gil > 0 is the least positive eigenvalue of T,,[0] on the set

{e1,) 080 1,851 +1,--sEn—k }
Xovionla) : )
* /\gi2 > 0 is the least positive eigenvalue of T,,[0] on the set

X{Els-~-’5i271a5i2+17~-75n—k}
{o1,...,0k|a} :
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The proof of the above proposition follows the same structure and arguments

as Proposition [12.13] and is omitted here. Once we have obtained the previous
Oc.

results, which allow us to characterize the constant sign of the functions x,,/ and
z;? forj=1,...,£and i =0,...,h, respectively, we can obtain a characterization
of the strongly inverse positive (negative) character of operator T,,[M] in the spaces
xlEren it e e follows.
{01,320k Hoey vovoe, b
Theorem 12.15. If n — k is even, then the operator T[M] is strongly inverse
{ersen—k}{eny ..., B

{01100s01 ey ey ) if and only if one of the following assertions is

positive on X
satisfied:

o Ifk>1 and M € (—\1, —Xo], where:
* X1 > 0 is the least positive eigenvalue of T,,[0] on X lerenond

{0'17---70'k}
* Xy < 0 is the mazimum between, }
)\(2,61 < 0, the largest negative eigenvalue of T, [0] on the set
X{517---75n—k‘ﬁ}
{01,,0e1 —1,0¢1 +1,--,0k } .
/\gﬁ1 < 0, the largest negative eigenvalue of T,[0] on the set
{€1, 1801 —1:ER  +150sEn—k }
{o1,...,0k|} :
o Ifk=1 and M € (—\1,—X2], where:
* A1 > 0 is the least positive eigenvalue of T,,[0] on in{jiv}--.ﬁn—l}'

* Ao = /\gm < 0, the largest negative eigenvalue of Tn[()} on the set
{€1,s€k1 —1,Ery+15-En—1}
Koy :
If n — k is odd, then the operator T[M] is strongly inverse negative on the set
L I R T
{Ulwuvok}{ael ..... 062}

o Ifl<k<n—1and M € [—Xg,—)\1), where:
* Ay <0 is the largest negative eigenvalue of T,,[0] on x[erenonh

{0’1,‘.‘,0'16}

if and only if one of the following assertions is satisfied:

* Xy > 0 is the minimum between, .
)\361 > 0, the least positive eigenvalue of T,,[0] on the set
X{Eh---;anfk‘ﬁ}

{01,30e1—1,0¢1 415,08} B
)\gm > 0, the least positive eigenvalue of T,,[0] on the set
{51 ..... €1 —1€ky+1s0 571,71&‘}
{o1,....,0k|} :
o Ifk=1<n—1and M € [-Xa,—)\1), where:
* A1 <0 is the largest negative eigenvalue of T,,[0] on X“{{ji’}'"’s""l}.

* o = )\QM > 0 is the least positive eigenvalue of T,[0] on the set

X{El ,,,,, €rq—1:Ery+1ssEn—1}

) .
o Ifl<k=n—1and M € [-Xa,—)\1), where:
* A1 <0 is the largest negative eigenvalue of T,,[0] on xlen

~ {o1,-so0n-1}"
* g = )\(2,51 > 0, the least positive eigenvalue of T,,[0] on the set

X{Elg‘-wgn—klﬁ}
{015,061 —1,0¢1 +1,--,0k }

e Ifn=2and M € (—oo,—\1), where:
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* A1 < 0 is the largest negative eigenvalue of Ty, [0] on X{{jﬁ

Proof. From Lemma we only have to study the sign of gps(t,s), x;;j for
j=0,...,¢ and zi} fori=0,...,h.

First, let us see that if M belongs to the given intervals, then the operator is
strongly inverse positive or negative in each case. And, finally, we will see that this
interval cannot be increased. Taking into account Theorem (=) Fgpr(t,s) >
0 on the given intervals. Moreover, if either n — k is even and M < 0 or n — k is
odd and M > 0, the intervals cannot be increased.

Now, let us study the sign of 2y~ and zJ".

It is known that x?\/ satisfies the boundary conditions introduced in the
proof of Proposition [12.11} Then, for M = 0, the maximal oscillation is satisfied.
So, we can study the sign of xg” (@) taking into account that mgﬁj (Géj)(a) =1.

If o, < a, then mgej > 0.

If oc; > a, from £ = a to o, there are ¢; — 1 — « zeros for Tgxgej (a).

From the choice of ¢;, we have that T, xgej (a) > 0. So, to have maximal
oscillation, we need

Tozg” (a) {

>0, ifo, —a—(¢—1-a)=o0, —¢ +1is even,
<0, ifo, —€ +1isodd.

These inequalities are also satisfied by xgej © (a), thus

(12.18)

o, | >0o0n I, ifoe, —e;+1iseven,
T
 l<0onl, ifo,, —e;+1isodd.

Note that if o.; < «, then o, = ¢; — 1. Hence, o, —€; +1 = 0 is an even number.
Thus, equation is satisfied for all o, with j = 1,... /.

Moreover, from Propositions [12.9] [12.11] and [12.13} inequalities are sat-
isfied on the whole intervals given in the result. Thus, for those M, we have

(_1)n_06j_(k_j)+1waej {> Oon I, ifn—kiseven, (12.19)

<0onlI, ifn—kisodd.

In an analogous way, we can study zf\? to conclude that for all M on the intervals
given on the result, it is satisfied:

ki1 _Ery {> 0, ifn—Fkiseven, (12.20)

-1
(=1) %o <0, ifn—kisodd.

So, we have proved that if M belongs to those intervals, operator Tn[M] is
strongly inverse negative (positive). Moreover, we have also seen that if either
n —kis even and M < 0 or n — k is odd and M > 0 the intervals cannot be
increased, since gjs is not of constant sign. So, we only need to prove that if n — k
is even and M > 0 or n — k is odd and M < 0 the intervals cannot be increased
too. To this end, we study the functions x?\ffl and 2]5\;1 . In particular, we will verify
that if either £ # 1 or kK # n — 1, one of them must necessarily change its sign for
M > —)Xgif n —kis even or for M < —Xg if n — k is odd.

If o, = o) and €,, = e, the result follows from Theorem [IT.2} Otherwise,
either Ay = )‘061 or g = \

€ry*
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First, let us assume that n — k is even. Suppose that there exists M* > —M\g
{err ek} en, oeny, }

. We will arrive to a
{01550k Hoey iooe, )

such that T,,[M] is inverse positive on X
contradiction.

If Ay = A5, , let us consider the function x},(t) = (—1)n e~ e gy,
fermmenmiten cvemd g T[M*]x}.(t) = 0. Then, we have that

. 1
Trivially, z3, € X{al,-..,ak}{gel yyyyy )
xh;. > 0on 1.

Let us see that necessarily 5 > ', > x},. on I. Indeed, let us construct the

sequence
Qg = 3, Tn[M*}a,H_l =(M*"+ X)), n>0,

where agff")(a) =0,if j#e forj=1,...,k, aﬁfﬁl)(a) = (—1)noa~(k=a)tl and
{ersen—k}en, oeny, }

{01530k Hoe) o oey )

agfi)(b) =0fori=1,...,n— k. In particular, a,, € X
n=0,1,...

Let us see that this sequence is non-increasing and bounded from below by zero
clearly.

TIM*Jay = (M* 4 Xg) x5 > 0.

{517---7571—k}{5,41 ..... erp }
{01, 50k Hoey e, )
T[M*] is inverse positive in such set, we have that a3 > 0. Now, T,,[M*](ao —
a1) = —Agxd > 0. In this case %(ao - a1)|t=a =0for j =1,...,k and
%(ao—al)h:b =0fori=1,....,n—k, then ag —a; € X

Since a; € X and we are working under the assumption that

{e1,en—ken oeny, b
{o15 50k Hoe) oo,y
So, ag > ajy.

Proceeding analogously for n > 1, we obtain that {a,,} is a non-increasing and
nonnegative sequence.

Now, let us consider the sequence
Bo=hpe s Tu[M*] Bugr = (M* + A2)B, n 20,

where 61(101)(@ =0,if j#e forj=1,...,k, 5,(;761)(a) = (—1)n~oa—(k=a)tl and

(e1) _ . B {e1sstn—kteny ven,
Brn (b)) =0fori=1,...,n—k. As consequence, 3, € X{Uhm’gk}{aqngee}
n=0,1,....

Let us check that this sequence is nondecreasing. By definition, T, [M*](8; —
Bo) = (M* + Xa)x},. > 0. In this case, %(ﬁl — B0)|t:a =0forj=1,...,k and

A9 (B — o),y = 0 for i = 1,...,n— k, then By — fy € X5 em e

{0-17"'70-k}{0€1 ..... oep}
So, 1 = Bo-

Analogously, for n > 1, we conclude that {8,} is a nondecreasing sequence.
Moreover, by properties of the related Green’s function, which is continuous on
I x I, it is bounded from above. . ,

ElseesEn—k {epy ..., e .
{‘Tla-~~vf’k}{ae{1,..14,05,4} " by, is the
unique solution of T},[—z]u(t) = 0, coupled with the boundary conditions imposed
to a,, and (3,,. Thus, we can affirm that

Since T, [— )] is strongly inverse positive on X

. T 1
lim a, = lim 8, =2, ,
n—oo n—oo

andagzméle_/\zZx}\/[*:ﬂoz()onf.
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Repeating the previous arguments, we can conclude that for all M € [—Aq, M*],
we have:

xl_/\Q >ah, > i >0 onl. (12.21)

On the other hand, it is known that xlﬂ\Q(’B)(b) = 0. From inequality (12.21]), we
have x}w(ﬂ)(b) =0 for all M € [—X2, M*], which contradicts the discrete character

of the spectrum T}, [0] on ngl""’s"’k 15} . Thus, we arrive to a contradiction
LyeesTeq —150eq 415000k b

by supposing that there exists M* > —\y such that T, [M*] is inverse positive on
fersen—k}en, . eny,}

{01, 0k ooy o, oepb

Analogously, if A2 = A, , it can be proved that there does not exist any M~ >
ferr ek} en en,}
(CSTIRIC) S E R
Finally, we can proceed analogously when n — k is odd to conclude that there is
{ersen—k}en o iineny } 0
{01""1‘7’€}{051 11111 vep}

—\o such that T,,[M*] is inverse positive on X
no M* < —\y such that T, [M*] is inverse negative on X

12.1. Particular cases. This section is devoted to show the applicability of the
previous results to some examples. Note that most of the examples given in Section
[] follow the structure given on this section. So, we will be able to obtain the char-
acterization of the strongly inverse positive (negative) character for those operators
in different spaces with non homogeneous boundary conditions.

e n'f-order operators with (k,n — k) boundary conditions. In this case u =

max{as, 2} = —1. So, since the largest set where we can apply Theorem [12.15|is

X%{g’:::’::f}_{i]jl:_k_”, Theorem [12.15| is equivalent to Theorem [11.2l However, in

many cases, we can be under the conditions of Remark [12.7] which allows us to apply
Theorem [12.15] in bigger sets with more non homogeneous boundary conditions.

e Operator Ty (p1, p2)[M]u(t) = u® (&) + p1()u® (t) + pa(t)u (t) + Mu(t) on

{2}

X}g’g}}:. The study of this type of operators on X‘i{g’;}%{z}

Theorem m But, in such a case, since u = max{as, 32} = 1, by studying the

different eigenvalues, we can characterize the strongly inverse positive character of

T4(p1,p2)[M] in the different subsets of ng 22;{{222}} Let us consider, for instance,

can be deduced from

the operator
Tulp, Mlu(t) = u™(t) — pu” (t) + Mu(t), tel=]a,b],

where p > 0. In [I4], there are obtained some of the related eigenvalues:

e The least positive eigenvalue of Ty[p, 0] on nggg; is \ = (ﬁf—}-p (ﬁ)%

e The largest negative eigenvalue of Ty[p, 0] on X {{8572} and on X )

{0.1,2) “OHF

cide and are —\5, where A} is the least positive solution of

tan (%\/Zﬁfp) B tanh (677“\/2ﬁ+p) .

Now, let us obtain the missing eigenvalues:



EJDE-2017/146 CONSTANT SIGN GREEN’S FUNCTION 93

e The largest negative eigenvalues of Ty[p,0] on X f{{gil’z} and on X{{g }1 9y CO-

incide and are given by —\5 , where A§ is the least positive solution of

tan (b_%\/m) . tanh (1’_7’1 m)

Thus, we obtain the following conclusions:

e Ty[p, M| is strongly inverse positive on x102H2 i ang only if M € (—A}, AB].

{0,2} {2y
e Ty[p, M] is strongly inverse positive on ng;i{{;’;} if and only if M €
(_)‘lea)‘go]'

e Operator TO[M]u(t) = u™(t) + Mu(t). Now we treat some of this types of
problems which have been introduced in Section [9}

Second order. The only possibility in this case is to consider k£ = 1. Then, the
characterization is obtained by applying Theorem [11.2] and the parameters set for
the strongly inverse positive character is the same as in the homogeneous case which
has been obtained in Section [0

Third order. Let us consider, for instance, {o1,02} = {1,2} and {1} = {0}. In
such a case, u = max{as, 82} = max{—1,0} = 0. Then, we obtain the characteri-

zation on X{{? }2{}0{}2 from Theorem |11.2| or Theorem [12.15|equivalently.

{0}{0}
X{1,2}{1,2}

if and only if

From Remark [12.7, we are able to obtain the characterization on
{o}tod
X{1a2}{1,2}
M € [-)A2,—\1) where \; = —mj, with m4 = 1.85 the least positive solution

of (9.1)), is the largest negative eigenvalue of T9[0] on X ff }2} and Ay = my, with

given as follows: T9[M] is strongly inverse negative on

my = 1.84981 the least positive solution of

V3m
2

263"‘/2005( )+1=0,

is the least positive eigenvalue of T9[0] on X {{3}”1}.

Fourth order. Let us consider again fourth-order problems introduced in Section
@ X‘,féf’s} and X{{ég’; . In the first case we cannot apply directly Theorem [12.15
since u = 0. However, with the same argument as in Remark [[2.7, Theorem [12.15
is still true for o, , > poreg,, , > p.

e The largest negative eigenvalue of T [0] on X{{é}”z’g} is A\ = _z

.
e The least positive eigenvalue of 7§ [0] on Xi{g f]}: is A3 =t

e The least positive eigenvalue of T [0] on Xéé f]}: is A2 = m{, where m; =

2.36502 is the least positive solution of (6.2)).

Thus, we conclude that T [M] is strongly inverse negative on X féf{ihz,s} if and only

{1,2,3}{1,2,3} i

if M € [—m4, %4) Moreover, T{[M] is strongly inverse negative on X{o}m

and only if M € [-mf, ”74)
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For X}é’;’}}, we have p = max{1,2} = 2. Let us study the strongly inverse

{1,3} 1,3y
{0,2} (0,23 °

e The least positive eigenvalue of T[0] on Xi{é ;’}} is A; =

positive character on X

4

‘ 3

16"
e The largest negative eigenvalue of T [0] on X}L{g}”l’S} is \2 = _%4
e The largest negative eigenvalue of T [0] on X%{é }1 oy 18 A = —4xt.
Thus, Ay = 7%4 and we can conclude that T{[M] is strongly inverse positive on
{1,3}{ 3} s . P
X{0,2}{;,§} if and only if M € (—%5, 7).

Higher order. Now, let us analyze the sixth order operator given in Subsection [9]
That is, the operator T9[M] defined on Xig:;”ﬁ. In this case, © = max{3,3} = 3,
so we can apply Theorem [12.15] in different spaces. Let us obtain the different
eigenvalues:

e The largest negative eigenvalue of 79 [0] on X{{g 22 ’fg is \y = =m0,

e The least positive eigenvalue of T§[0] on X {{8 ’ii2’4} is A3 = m$, where mg &
4.14577 is the least positive solution of

V3e™? (€™ 1) — 3(e™ +1)* (e™ — 1) sin (\/gm)

\/gm) — 2/3e3/2 cos (\/gm) =0.

+V3(em+1) (e — 1)2cos(

e The least positive eigenvalue of T¢[0] on X}g’f}Q 4y 18 A3 =mg.

e The least positive eigenvalue of 79 [0] on X g ’i]’?’[l} is A3 = m$, where mg
3.17334 is the least positive solution of

—V3e™/2 (2™ 1) —3(e™ + 1) (e™ — 1) sin (\/Z)m
V3m
2

)
) +2/3e3/2 cos (\/gm) =0.

—V3(em+1) (e — 1)2COS(

e The least positive eigenvalue of T¢[0] on X§§7f}2.4} is A2 = mS.

Thus, we conclude that TQ[M] is strongly inverse negative on X {{822:;({22:}} if

and only if M € [-m$,7%). Moreover, TQ[M] is strongly inverse negative on

{0,2,4}0,2,4} . .
{07274}{(322;}} if and only if M € [-m$, 7).

Operators with non constant coefficients To complete this work we show an
example where a fourth order operator with non constant coefficients is considered.
Let us define the operator

T M) = u™® + et sin(28)u (t) + Mu(t), tel0,1]

defined on Xi{é;}% In such a space, we have p = max{1,0} = 1, and the linear
differential equation

u”(t) +e*tsin(2t)u/(t) =0,
is disconjugate on [0, 1], since it is a composition of two first order linear differential
equations. Thus, we can apply all previous results to characterize the strongly

inverse positive character of T;**[M] on X}L{é 22; .
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First, we obtain numerically, by means of Mathematica software, the different
eigenvalues of T;¢[0].

e The least positive eigenvalue of T;°[0] on X2 s Ay = 2.62355¢.

{0,2}
e The largest negative eigenvalue of T;¢[0] on Xi{é}l o) I8 Ny~ —4.69621%.
e The largest negative eigenvalue of T;[0] on X%g;a} is \;, & —6.18170%.
e The largest negative eigenvalue of T;¢[0] on X§§}1 o) 18 A2 & —3.45041%.
e The largest negative eigenvalue of T;¢[0] on Xi{gim} is \2 &~ —4.20409%.
Thus, by Theorems [8:1] and [T2.15] we conclude:
e T7¢[M] is strongly inverse positive on Xj{{;;;{{;} if and only if

M € (—2.62355%,4.69621%].
e T7¢[M] is strongly inverse positive on
M € (—2.62355%,4.20409*].
e T¢[M] is strongly inverse positive either on X
only if M € (—2.62355%,3.450414).
To use Theorem we can obtain the needed eigenvalues of T;°[0]:

e The least positive eigenvalue of T;°[0] on Xf{{éf]}: is \j = 3.22872%.

e The least positive eigenvalue of T;*[0] on Xég’;]}: is \j &~ 4.33768".

Thus, from Theorem if Tp°[M] is a strongly inverse negative operator on

X3}, then M € [-3.22872, —2.62355%).
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X{LQ}{Z}

(0.2} 10,2y if and only if

{1.2}(1,23 {12} 1,23 ©
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