Electron. J. Differential Equations, Vol. 2017 (2017), No. 14, pp. 1-16.

Existence of solutions to perturbed fractional Nirenberg problems

Wael Abdelhedi, Suad Alhemedan, Hichem Chtioui, Hichem Hajaiej, Peter A. Markowich

Abstract:
In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infinity approach which goes back to Bahri.

Submitted September 20, 2016. Published January 12, 2017.
Math Subject Classifications: 35J60, 35B33, 35B99, 35R11, 58E30.
Key Words: Fractional Laplacian; critical exponent; sigma-curvature; critical points at infinity.

Show me the PDF file (272 KB), TEX file for this article.

  Wael Abdelhedi
Department of mathematics
Faculty of Sciences of Sfax
3018 Sfax, Tunisia
email: wael_hed@yahoo.fr
  Suad Alhemedan
Deapartment of Mathematics
College of Science, King Saud University
Saudi Arabia
email: shemedan@ksu.edu.sa
  Hichem Chtioui
Department of mathematics
Faculty of Sciences of Sfax
3018 Sfax, Tunisia
email: Hichem.Chtioui@fss.rnu.tn
Hichem Hajaiej
New York University Shanghai
1555 Century Avenue
Pudong New Area Shanghai, China
email: hichem.hajaiej@nyu.edu
  Peter A Markowich
DAMTP, Cambridge University, UK
email: P.A.Markowich@damtp.cam.ac.uk

Return to the EJDE web page