Wael Abdelhedi, Suad Alhemedan, Hichem Chtioui,
Hichem Hajaiej, Peter A. Markowich
Abstract:
In this article we study a fractional Nirenberg problem with
a small perturbation of a constant. Under a flatness assumption around
the critical points, we prove an existence result in terms of
Euler-Hopf index. Our method hinges on a revisited version of the celebrated
critical points at infinity approach which goes back to Bahri.
Submitted September 20, 2016. Published January 12, 2017.
Math Subject Classifications: 35J60, 35B33, 35B99, 35R11, 58E30.
Key Words: Fractional Laplacian; critical exponent; sigma-curvature;
critical points at infinity.
Show me the PDF file (272 KB), TEX file for this article.
Wael Abdelhedi Department of mathematics Faculty of Sciences of Sfax 3018 Sfax, Tunisia email: wael_hed@yahoo.fr | |
Suad Alhemedan Deapartment of Mathematics College of Science, King Saud University Saudi Arabia email: shemedan@ksu.edu.sa | |
Hichem Chtioui Department of mathematics Faculty of Sciences of Sfax 3018 Sfax, Tunisia email: Hichem.Chtioui@fss.rnu.tn | |
Hichem Hajaiej New York University Shanghai 1555 Century Avenue Pudong New Area Shanghai, China email: hichem.hajaiej@nyu.edu | |
Peter A Markowich DAMTP, Cambridge University, UK email: P.A.Markowich@damtp.cam.ac.uk |
Return to the EJDE web page