
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 135, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

DATA ASSIMILATION AND NULL CONTROLLABILITY OF
DEGENERATE/SINGULAR PARABOLIC PROBLEMS

KHALID ATIFI, EL-HASSAN ESSOUFI

Communicated by Jerome A. Goldstein

Abstract. In this article, we use the variational method in data assimilation

to study numerically the null controllability of degenerate/singular parabolic

problem

∂tψ − ∂x(xα∂xψ(x))−
λ

xβ
ψ = f, (x, t) ∈]0, 1[×]0, T [,

ψ(x, 0) = ψ0, ψ
˛̨
x=0

= ψ
˛̨
x=1

= 0.

To do this, we determine the source term f with the aim of obtaining ψ(·, T ) =
0, for all ψ0 ∈ L2(]0, 1[). This problem can be formulated in a least-squares

framework, which leads to a non-convex minimization problem that is solved

using a regularization approach. Also we present some numerical experiments.

1. Introduction

In this article, we study an inverse problem of identifying the source term in
degenerate/singular parabolic equation. This in the aim to study the null control-
lability, which has important applications in various areas of applied science and
engineering.

Controllability properties of degenerate/singular parabolic equations has been
widely studied (see [1, 4, 13, 12, 26]) using Carleman estimates. Our main con-
tribution is to study numerically the null controllability of problem (1.1), below,
using the variational method in data assimilation.

The problem can be stated as follows: Estimate the source term in the degenerate
parabolic equation with singular potential

∂tψ − ∂x(xα∂xψ(x))− λ

xβ
ψ = f, (x, t) ∈ Ω×]0, T [ (1.1)

where Ω =]0, 1[, α ∈]0, 1[, β ∈]0, 2− α[, λ ≤ 0, and f ∈ L2(Ω×]0, T [).
The mathematical model leads to a non-convex minimization problem

find f̂ ∈ Aad such that

E(f̂) = min
f∈Aad

E(f),
(1.2)
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where the cost function E is

E(f) =
1
2
‖ψ(t = T )‖2L2(Ω), (1.3)

subject to ψ being the weak solution of the parabolic problem (1.1) with source
term f .

Problem (1.2) is ill-posed in the sense of Hadamard, some regularization tech-
nique is needed to guarantee numerical stability of the computational process,
maybe with noisy input data. The problem thus consists in minimizing a func-
tional of the form

J(f) =
1
2
‖ψ(t = T )‖2L2(Ω) +

ε

2
‖f‖2L2(Ω×]0,T [). (1.4)

The last term in (1.4) stands for the so called Tikhonov-type regularization [8, 11], ε
being a small regularizing coefficient that provides extra convexity to the functional
J .

First we prove that the functional J is continuous, and G-derivable. Numerical
experiments are presented later.

2. Problem statement and main result

Consider the problem

∂tψ +A(ψ) = f

ψ(0, t) = ψ(1, t) = 0 ∀t ∈]0, T [

ψ(x, 0) = ψ0(x) ∀x ∈ Ω
(2.1)

where, Ω =]0, 1[, f ∈ L2(Ω×]0, T [), ψ0 ∈ L2(Ω), and A is the operator defined as

A(ψ) = −∂x(a(x)∂xψ(x))− λ

xβ
ψ, a(x) = xα

with α ∈]0, 1[, β ∈]0, 2− α[, and λ ≤ 0.
The minimization problem with regularization associated to this problem is

find f̂ ∈ Aad such that

J(f̂) = min
f∈Aad

J(f),
(2.2)

where the cost function J is defined as

J(f) =
1
2
‖ψ(t = T )‖2L2(Ω) +

ε

2
‖f‖2L2(Ω×]0,T [), (2.3)

subject to ψ being the weak solution of the parabolic problem (2.1) with source
term f ,

Aad = {u ∈ L2(Ω×]0, T [) : ‖u‖L2(Ω×]0,T [) ≤ r}, (2.4)
where r is a real strictly positive constant.

We now specify some notation. Let us introduce the functional spaces (see
[1, 3, 9])

V = {u ∈ L2(Ω) : u absolutely continuous on [0, 1]},
S = {u ∈ L2(Ω) :

√
aux ∈ L2(Ω) and u(0) = u(1) = 0},
H1
a(Ω) = V ∩ S,

H2
a(Ω) = {u ∈ H1

a(Ω) : aux ∈ H1(Ω)},
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H1
α,0 = {u ∈ H1

α : u(0) = u(1) = 0},
H1
α = {u ∈ L2(Ω) ∩H1

loc(]0, 1]) : x
α
2 ux ∈ L2(Ω)},

with

‖u‖2H1
a(Ω) = ‖u‖2L2(Ω) + ‖

√
aux‖2L2(Ω),

‖u‖2H2
a(Ω) = ‖u‖2H1

a(Ω) + ‖(aux)x‖2L2(Ω),

〈u, v〉H1
α

=
∫

Ω

(uv + xαuxvx) dx.

We recall that (see [9]) H1
a is an Hilbert space and it is the closure of C∞c (0, 1) for

the norm ‖ · ‖H1
a
. If 1√

a
∈ L1(Ω) then the following injections

H1
a(Ω) ↪→ L2(Ω),

H2
a(Ω) ↪→ H1

a(Ω),

H1(0, T ;L2(Ω)) ∩ L2(0, T ;D(A)) ↪→ L2(0, T ;H1
a) ∩ C(0, T ;L2(Ω))

are compact.
The weak formulation of problem (2.1) is∫

Ω

∂tψv dx+
∫

Ω

(
a(x)∂xψ∂xv −

λ

xβ
ψv) dx =

∫
Ω

fv dx, ∀v ∈ H1
0 (Ω). (2.5)

Let
B[ψ, v] =

∫
Ω

(
a(x)∂xψ∂xv −

λ

xβ
ψv
)
dx. (2.6)

We discuss the cases non-coercive and subcritical potential cases separately.

Non-coercive case: λ = 0. In this case the bilinear form B becomes

B[ψ, v] =
∫

Ω

(a(x)∂xψ∂xv) dx. (2.7)

We have a(x) = 0 at x = 0, from where the bilinear form B will be non-coercive.
We recall the following theorem.

Theorem 2.1 ([1, 13, 12]). For all f ∈ L2(Ω×]0, T [) and ψ0 ∈ L2(Ω), there exists
a unique weak solution to (2.1) such that

ψ ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
a)

and there is a constant CT such that for any solution of (2.1),

sup
t∈[0,T ]

‖ψ(t)‖2L2(Ω) +
∫ T

0

‖
√
aψx(t)‖2L2(Ω)dt ≤ CT

(
‖ψ0‖2L2(Ω) + ‖f‖2L2(Ω×]0,T [)

)
.

Furthermore, if ψ0 ∈ H1
a(Ω) then

ψ ∈ C([0;T ], H1
a) ∩ L2(0, T ;H2

a) ∩H1(0, T ;L2(Ω))

and there is a constant CT such that

sup
t∈[0,T ]

‖ψ(t)‖2H1
a

+
∫ T

0

(‖ψt‖2L2(Ω) + ‖(aψx)x(t)‖2L2(Ω))dt

≤ CT (‖ψ0‖2H1
a

+ ‖f‖2L2(Ω×]0,T [)).

The continuity of the functional J is deduced from the continuity of the function
ϕ : f → ψ, where ψ is the weak solution of (2.1) with source term f .
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Theorem 2.2. Let ψ be the weak solution of (2.1). In the non-coercive case, if ψ0 ∈
H1
a(Ω), then the functon ϕ : L2(Ω×]0, T [)→ C([0, T ];H1

a(Ω)) ∩ L2(0, T ;H2
a(Ω))

∩H1(0, T ;L2(Ω)), defined by

ϕ(f) = ψ

is continuous.
If ψ0 ∈ L2(Ω), then ϕ : L2(Ω×]0, T [)→ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

a), ϕ(f) =
ψ is continuous.

The differentiability of the functional J is deduced from the differentiability of
the function ϕ : f → ψ.

Theorem 2.3. Let ψ be the weak solution of (2.1). If ψ0 ∈ H1
a(Ω), then the

function ϕ : L2(Ω×]0, T [)→ C([0, T ];H1
a(Ω)) ∩ L2(0, T ;H2

a(Ω)) ∩H1(0, T ;L2(Ω)),
ϕ(f) = ψ is G-derivable.

If ψ0 ∈ L2(Ω), then ϕ : L2(Ω×]0, T [)→ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
a), ϕ(f) =

ψ is G-derivable.

Sub-critical potential case: λ 6= 0. (see[26, 4]) In this case the bilinear form B
becomes

B[ψ, v] =
∫

Ω

(
a(x)∂xψ∂xv −

λ

xβ
ψv) dx. (2.8)

Since a(x) = 0 at x = 0 and limx→0
λ
xβ

= +∞, the bilinear form B is non-coercive
and is non continuous at x = 0.

Consider the unbounded operator (K,D(K)) where

Ku = (xαux)x +
λ

xβ
u, (2.9)

for u in

D(k) = [u ∈ H1
α,0 ∩H2

loc(]0, 1])
∣∣(xαux)x +

λ

xβ
u ∈ L2(Ω)].

Theorem 2.4 ([3, 26]). If f = 0, then for all ψ0 ∈ L2(Ω), problem (2.1) has a
unique weak solution

ψ ∈ C([0, T ];L2(Ω)) ∩ C(]0, T ];D(K)) ∩ C1(]0, T ];L2(Ω)) . (2.10)

If ψ0 ∈ D(K) then

ψ ∈ C([0, T ];D(K)) ∩ C1([0, T ];L2(Ω)) . (2.11)

If f ∈ L2(Ω×]0, T [) then for all ψ0 ∈ L2(Ω), problem (2.1) has a unique solution

ψ ∈ C([0, T ];L2(Ω)). (2.12)

We have the following results.

Theorem 2.5. Let ψ be the weak solution of (2.1). In the sub-critical potential
case, the function ϕ : L2(Ω×]0, T [)→ C([0, T ];L2(Ω)), ϕ(f) = ψ is continuous.

Theorem 2.6. Let ψ be the weak solution of (2.1). Then ϕ : L2(Ω×]0, T [) →
C([0, T ];L2(Ω)), ϕ(f) = ψ is G-derivable.
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3. Proof of main results.

Proof of Theorem 2.2. Let ψ0 ∈ H1
a(Ω), and δf a small variation such that f+δf ∈

Aad.
Consider δψ = ψδ − ψ, with ψ is the weak solution of (2.1) with source term f

and ψδ is the weak solution of (2.1) with source term fδ = f + δf . Consequently,
δψ is solution of the variational problem∫

Ω

∂tδψv dx+
∫

Ω

a(x)∂xδψ(x)∂xv dx =
∫

Ω

δfvdx

δψ(0, t) = δψ(1, t) = 0 ∀t ∈]0, T [

δψ(x, 0) = 0 ∀x ∈ Ω.

(3.1)

Hence, δψ is the weak solution of (2.1) with source term δf . We apply the
estimate in theorem 2.1, to obtain a constant CT such that

sup
t∈[0,T ]

‖δψ(t)‖2H1
a(Ω) +

∫ T

0

(‖∂tδψ‖2L2(Ω) + ‖∂x(a∂xδψ)(t)‖2L2(Ω))dt

≤ CT ‖δf‖2L2(Ω×]0,T [);

(3.2)

therefore,

sup
t∈[0,T ]

‖δψ(t)‖2H1
a(Ω) ≤ CT ‖δf‖

2
L2(Ω×]0,T [), (3.3)

‖δψ‖2C([0,T ];H1
a(Ω)) ≤ CT ‖δf‖

2
L2(Ω×]0,T [). (3.4)

Then from (3.2) we have

‖δψ(t)‖2H1
a(Ω) +

∫ T

0

‖∂x(a∂xδψ)(t)‖2L2(Ω)dt ≤ CT ‖δf‖
2
L2(Ω×]0,T [),∫ T

0

‖δψ(t)‖2H1
a(Ω)dt+ T

∫ T

0

‖∂x(a∂xδψ)(t)‖2L2(Ω)dt ≤ TCT ‖δf‖
2
L2(Ω×]0,T [),

inf(1, T )(
∫ T

0

‖δψ(t)‖2H1
a(Ω)dt+

∫ T

0

‖∂x(a∂xδψ)(t)‖2L2(Ω)dt)

≤ TCT ‖δf‖2L2(Ω×]0,T [),∫ T

0

‖δψ(t)‖2H1
a(Ω)dt+

∫ T

0

‖∂x(a∂xδψ)(t)‖2L2(Ω)dt

≤ TCT
inf(1, T )

‖δf‖2L2(Ω×]0,T [).

Hence,

‖δψ‖2L2(0,T,H2
a(Ω)) ≤

TCT
inf(1, T )

‖δf‖2L2(Ω×]0,T [). (3.5)

In addition, from (3.2) we have

‖δψ(t)‖2H1
a(Ω) +

∫ T

0

‖∂tδψ(t)‖2L2(Ω)dt ≤ CT ‖δf‖
2
L2(Ω×]0,T [), ∀t ∈ [0, T ],

‖δψ(t)‖2L2(Ω) + ‖
√
a∂xδψ(t)‖2L2(Ω) +

∫ T

0

‖∂tδψ(t)‖2L2(Ω)dt

≤ CT ‖δf‖2L2(Ω×]0,T [), ∀t ∈ [0, T ],
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‖δψ(t)‖2L2(Ω) +
∫ T

0

‖∂tδψ(t)‖2L2(Ω)dt ≤ CT ‖δf‖
2
L2(Ω×]0,T [), ∀t ∈ [0, T ],∫ T

0

‖δψ(t)‖2L2(Ω)dt+ T

∫ T

0

‖∂tδψ(t)‖2L2(Ω)dt ≤ TCT ‖δf‖
2
L2(Ω×]0,T [),

‖δψ‖2H1(0,T ;L2(Ω)) ≤
TCT

inf(1, T )
‖δf‖2L2(Ω×]0,T [). (3.6)

Inequalities (3.4), (3.5) and (3.6) imply the continuity of the function
ϕ : L2(Ω×]0, T [) → C([0, T ];H1

a(Ω)) ∩ L2(0, T ;H2
a(Ω)) ∩ H1(0, T ;L2(Ω)), ϕ(f) =

ψ. In the same way we can prove that if ψ0 ∈ L2(Ω), then the function ϕ :
L2(Ω×]0, T [) → C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

a), ϕ(f) = ψ is continuous. Hence,
the cost J is continuous. �

Proof of Theorem 2.3. Let ψ0 ∈ H1
a(Ω), and δf a small variation such that f+δf ∈

Aad, we define the function

ϕ′(f) : δf ∈ Aad → δψ, (3.7)

where δψ is the solution of the variational problem∫
Ω

∂t(δψ)v dx+
∫

Ω

a(x)∂x(δψ)∂xv dx =
∫

Ω

δfvdx ∀v ∈ H1
0 (Ω)

δψ(0, t) = δψ(1, t) = 0 ∀t ∈]0, T [

δψ(x, 0) = 0 ∀x ∈ Ω

(3.8)

and we set
φ(f) = ϕ(f + δf)− ϕ(f)− ϕ′(f)δf. (3.9)

We want to show that
φ(f) = o(δf). (3.10)

We easily verify that the function φ is solution of following variational problem∫
Ω

∂tφv dx+
∫

Ω

a(x)∂xφ∂xv dx =
∫

Ω

(δf − (δf)2)vdx ∀v ∈ H1
0 (Ω)

φ(0, t) = φ(1, t) = 0 ∀t ∈]0, T [

φ(x, 0) = 0 ∀x ∈ Ω.

(3.11)

In the same way as in the proof of continuity, we deduce that

‖φ‖2C([0,T ],H1
a(Ω)) ≤ CT ‖δf − (δf)2‖2L2(Ω×]0,T [), (3.12)

‖φ‖2L2(0,T,H2
a(Ω)) ≤

TCT
inf(1, T )

‖δf − (δf)2‖2L2(Ω×]0,T [), (3.13)

‖φ‖2H1(0,T ;L2(Ω)) ≤
TCT

inf(1, T )
‖δf − (δf)2‖2L2(Ω×]0,T [). (3.14)

Therefore, the function ϕ : L2(Ω×]0, T [) → C([0, T ];H1
a(Ω)) ∩ L2(0, T ;H2

a(Ω)) ∩
H1(0, T ;L2(Ω)) ϕ(f) = ψ is G-derivable.

In the same way we prove that if ψ0 ∈ L2(Ω), then the function ϕ : L2(Ω×]0, T [)→
C([0, T ];L2(Ω))∩L2(0, T ;H1

a), ϕ(f) = ψ is G-derivable. Hence, we deduce the ex-
istence of the gradient of the functional J . �
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Proof of Theorem 2.5. Let δf be a small variation such that f+δf ∈ Aad. Consider
δψ = ψδ−ψ, with ψ a the weak solution of (2.1), with source term f , and consider
ψδ the weak solution of (2.1) with source term fδ = f + δf . Consequently, δψ is
the solution of variational problem∫

Ω

∂tδψv dx+
∫

Ω

(
a(x)∂xδψ∂xv −

λ

xβ
δψv

)
dx =

∫
Ω

δfvdx, ∀v ∈ H1
0 (Ω)

δψ(0, t) = δψ(1, t) = 0 ∀t ∈]0, T [

δψ(x, 0) = 0 ∀x ∈ Ω.

(3.15)

Take v = δψ, this gives∫
Ω

∂tδψδψ dx+
∫

Ω

(
a(x)(∂xδψ)2 − λ

xβ
(δψ)2

)
dx =

∫
Ω

δfδψ dx, (3.16)

Ω is independent of t, which gives

1
2
d

dt

∫
Ω

(δψ)2dt+
∫

Ω

(
a(x)(∂xδψ)2 − λ

xβ
(δψ)2

)
dx =

∫
Ω

δfδψ dx, (3.17)

recall that δψ(t = 0) = 0, by integrating between 0 and t with t ∈ [0, T ] we obtain

1
2
‖δψ(t)‖2L2(Ω) +

∫ t

0

∫
Ω

(a(x)(∂xδψ)2 − λ

xβ
(δψ)2) dx ds

=
∫ t

0

∫
Ω

δfδψ dx ds.

(3.18)

We have 2ab ≤ a2 + b2, for all (a, b) ∈ R, therefore

1
2
‖δψ(t)‖2L2(Ω) +

∫ t

0

∫
Ω

(
a(x)(∂xδψ)2 − λ

xβ
(δψ)2

)
dx ds

≤ 1
2

∫ t

0

‖δf‖2L2(Ω)dt+
1
2

∫ t

0

‖δψ‖2L2(Ω)ds.

(3.19)

Then
1
2
‖δψ(t)‖2L2(Ω) +

∫ t

0

∫
Ω

(a(x)(∂xδψ)2 − λ

xβ
(δψ)2) dx ds

≤ 1
2
‖δf‖2L2(Ω×]0,T [) +

1
2

∫ t

0

‖δψ‖2L2(Ω)ds.

(3.20)

Therefore

‖δψ(t)‖2L2(Ω) ≤ ‖‖δf‖
2
L2(Ω×]0,T [) +

∫ t

0

‖δψ‖2L2(Ω)ds. (3.21)

Gronwall’s Lemma gives

‖δψ(t)‖2L2(Ω) ≤ ‖δf‖
2
L2(Ω×]0,T [) exp(

∫ t

0

ds) ∀t ∈ [0, T ],

‖δψ(t)‖2L2(Ω) ≤ exp(T )‖δf‖2L2(Ω×]0,T [) ∀t ∈ [0, T ],

from where
‖δψ‖2C([0;T ],L2(Ω)) ≤ exp(T )‖δf‖2L2(Ω×]0,T [). (3.22)

Which implies the continuity of the function ϕ : L2(Ω×]0, T [) → C([0, T ];L2(Ω)),
ϕ(f) = ψ. Hence, the cost J is continuous. �
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Proof of Theorem 2.6. Let δf be a small variation such that f + δf ∈ Aad, we
define the function

ϕ′(f) : δf ∈ Aad → δψ, (3.23)
where δψ is the solution of the variational problem∫

Ω

∂t(δψ)v dx+
∫

Ω

(a(x)∂x(δψ)∂xv −
λ

xβ
δψv) dx =

∫
Ω

δfvdx ∀v ∈ H1
0 (Ω)

δψ(0, t) = δψ(1, t) = 0 ∀t ∈]0, T [

δψ(x, 0) = 0 ∀x ∈ Ω.
(3.24)

We set
φ(f) = ϕ(f + δf)− ϕ(f)− ϕ′(f)δf. (3.25)

We want to show that
φ(f) = o(δf). (3.26)

We easily verify that the function φ is the solution of variational problem∫
Ω

∂tφv dx+
∫

Ω

(
a(x)∂xφ∂xv −

λ

xβ
φv
)
dx =

∫
Ω

(δf − (δf)2)vdx ∀v ∈ H1
0 (Ω)

φ(0, t) = φ(1, t) = 0 ∀t ∈]0, T [

φ(x, 0) = 0 ∀x ∈ Ω.
(3.27)

In the same way as that used in the proof of continuity, we deduce

‖φ‖2C([0,T ],L2(Ω)) ≤ exp(T )‖ δf − (δf)2‖2L2(Ω×]0,T [). (3.28)

Hence, in all cases, the function ϕ(f) = ψ is G-derivable and we deduce the existence
of the gradient of the functional J . �

Now, we compute the gradient of J using the adjoint state method.

4. Gradient of J

We define the Gâteaux derivative of ψ at f in the direction h ∈ L2(Ω×]0, T [),
by

ψ̂ = lim
s→0

ψ(f + sh)− ψ(f)
s

, (4.1)

ψ(f + sh) is the weak solution of (2.1) with source term f + sh, and ψ(f) is the
weak solution of (2.1) with source term f .

We compute the Gâteaux (directional) derivative of (2.1) at f in some direction
h ∈ L2(Ω×]0, T [), and we get the so-called tangent linear model:

∂tψ̂ +Aψ̂ = h

ψ̂(0, t) = ψ̂(1, t) = 0 ∀t ∈]0, T [

ψ̂(x, 0) = 0 ∀x ∈ Ω.

(4.2)

We introduce the adjoint variable P , and we integrate,∫ 1

0

∫ T

0

∂tψ̂P dt dx+
∫ 1

0

∫ T

0

Aψ̂P dx =
∫ 1

0

∫ T

0

hP dt dx, (4.3)∫ 1

0

(
[ψ̂P ]T0 −

∫ T

0

ψ̂∂tP dt
)
dx+

∫ T

0

〈Aψ̂, P 〉L2(Ω)dt = 〈h, P 〉L2(Ω×]0,T [), (4.4)
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0

[ψ̂(T )P (T )− ψ̂(0)P (0)]dx−
∫ T

0

〈ψ̂, ∂tP 〉L2(Ω)dt+
∫ T

0

〈Aψ̂, P 〉L2(Ω)dt

= 〈h, P 〉L2(Ω×]0,T [).

(4.5)

Let us take P (x = 0) = P (x = 1) = 0, then we may write 〈ψ̂, AP 〉L2(Ω) =
〈Aψ̂, P 〉L2(Ω). With P (T ) = 0 we may now rewrite (4.5) as∫ T

0

〈ψ̂, ∂tP −AP 〉L2(Ω)dt = −〈h, P 〉L2(Ω×]0,T [)

this gives ∫ T

0

〈ψ̂, ∂tP −AP 〉L2(Ω)dt = −〈h, P 〉L2(Ω×]0,T [)

P (x = 0) = P (x = 1) = 0, P (T ) = 0.
(4.6)

The discretization in time of (4.6), using the Rectangular integration method,
gives

M+1∑
j=0

〈ψ̂(tj), ∂tP (tj)−AP (tj)〉L2(Ω)∆t = 〈−P, h〉L2(Ω×]0,T [)

P (x = 0) = P (x = 1) = 0, P (T ) = 0.

(4.7)

With
tj = j∆t, j ∈ {0, 1, 2, . . . ,M + 1},

where ∆t is the step in time and T = (M + 1)∆t.
The Gâteaux derivative of J at f in the direction h ∈ L2(Ω) is given by

Ĵ(h) = lim
s→0

J(f + sh)− J(f)
s

.

After some computations, we arrive at

Ĵ(h) = 〈ψ(T ), ψ̂(T )〉L2(Ω) + 〈εf, h〉L2(Ω×]0,T [). (4.8)

The adjoint model is

∂tP (T )−AP (T ) =
1

∆t
ψ(T ), ∂tP (tj)−AP (tj) = 0 ∀tj 6= T

P (x = 0) = P (x = 1) = 0 ∀tj ∈]0;T [

P (T ) = 0.

(4.9)

From equations (4.7), (4.8) and (4.9), the gradient of J is given by
∂J

∂f
= −P + εf. (4.10)

Problem (4.9) is retrograde, we make the change of variable t←→ T − t.

5. Discretized problem

Step 1. Full discretization.
Discrete approximations of these problems need to be made for numerical imple-

mentation. To resolve the Direct problem and adjoint problem, we use the Method
θ-schema in time. This method is unconditionally stable for 1 > θ ≥ 1

2 .
Let h be the step in space and ∆t the step in time. Let

xi = ih, i ∈ {0, 1, 2, . . . , N + 1},
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c(xi) = a(xi) + γ,

tj = j∆t, j ∈ {0, 1, 2, . . . ,M + 1},

f ji = f(xi, tj).

We put

ψji = ψ(xi, tj),

da(xi) =
c(xi+1)− c(xi)

h
,

b(x) = − λ

xβ
.

Therefore

∂tψ +Aψ = f (5.1)

is approximated by

− θ∆t
h2

c(xi)ψ
j+1
i−1 +

(
1 +

2θ∆t
h2

c(xi) + da(xi)
θ∆t
h

+ b(xi)θ∆t
)
ψj+1
i

−
(θ∆t
h2

c(xi) + da(xi)
θ∆t
h

)
ψj+1
i+1

=
(1− θ)∆t

h2
c(xi)ψ

j
i−1 +

(
1− (1− θ)∆t

h
da(xi)−

2(1− θ)∆t
h2

c(xi)

− (1− θ)b(xi)∆t
)
ψji +

( (1− θ)∆t
h

da(xi) +
(1− θ)∆t

h2
c(xi)

)
ψji+1

+ ∆t[(1− θ)f ji + θf j+1
i ].

Let us define

g1(xi) = −θ∆t
h2

c(xi),

g2(xi) = 1 +
2θ∆t
h2

c(xi) + da(xi)
θ∆t
h

+ b(xi)θ∆t,

g3(xi) = −θ∆t
h2

c(xi)− da(xi)
θ∆t
h
,

k1(xi) =
(1− θ)∆t

h2
c(xi),

k2(xi) = 1− (1− θ)∆t
h

da(xi)−
2(1− θ)∆t

h2
c(xi)− (1− θ)b(xi)∆t,

k3(xi) =
(1− θ)∆t

h
da(xi) +

(1− θ)∆t
h2

c(xi).

Let ψj = (ψji )i∈{1,2,...,N}, finally we obtain

Dψj+1 = Bψj + V j with j ∈ {1, 2, . . . ,M}
ψ0 = (f(ih))i∈{1,2,...,N},

(5.2)
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where

D =



g2(x1) g3(x1) 0 0
g1(x2) g2(x2) g3(x2) 0

0 g1(x3) g2(x3) g3(x3) 0
0 g1(x4) g2(x4) g3(x4) 0

0 . . . 0
. . . . 0

0 g1(xN−1) g2(xN−1) g3(xN−1)
0 0 g1(xN ) g2(xN )



B =



k2(x1) k3(x1) 0 0
k1(x2) k2(x2) k3(x2) 0

0 k1(x3) k2(x3) k3(x3) 0
0 k1(x4) k2(x4) k3(x4) 0

0 . . . 0
. . . . 0

0 k1(xN−1) k2(xN−1) k3(xN−1)
0 0 k1(xN ) k2(xN )



V j =


∆t[(1− θ)f(x1, tj) + θf(x1, tj + ∆t)]
∆t[(1− θ)f(x2, tj) + θf(x2, tj + ∆t)]

...
∆t[(1− θ)f(xN−1, tj) + θf(xN−1, tj + ∆t)]

∆t[(1− θ)f(xN , tj) + θf(xN , tj + ∆t)]


Step 2. Discretization of the functional

J(u) =
ε

2

∫ 1

0

(u(x))2dx+
1
2

∫ 1

0

(ψ(x, T ))2dx. (5.3)

We recall that the Simpson methods for calculate an integral is∫ b

a

f(x) dx ' h

2

[
f(x0) + 2

N+1
2 −1∑
i=1

f(x2i) + 4

N+1
2∑
i=1

f(x2i+1) + f(xN+1)
]

with x0 = a, xN+1 = b, xi = a+ ih, i ∈ [1, . . . , N + 1].
Let

φ(x) = (u(x))2 ∀x ∈ Ω,

ϕ(x) = (ψ(x, T ))2 ∀x ∈ Ω .

We have ∫ 1

0

φ(x) dx ' h

2

[
φ(0) + 2

N+1
2 −1∑
i=1

φ(x2i) + 4

N+1
2∑
i=1

φ(x2i+1) + φ(1)
]
,

∫ 1

0

ϕ(x) , dx ' h

2

[
ϕ(0) + 2

N+1
2 −1∑
i=1

ϕ(x2i) + 4

N+1
2∑
i=1

ϕ(x2i+1) + ϕ(1)
]
.
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Therefore,

J(u) ' εh

4

[
φ(0) + 2

N+1
2 −1∑
i=1

φ(x2i) + 4

N+1
2∑
i=1

φ(x2i+1) + φ(1)
]

+
h

4
[ϕ(0) + 2

N+1
2 −1∑
i=1

ϕ(x2i) + 4

N+1
2∑
i=1

ϕ(x2i+1) + ϕ(1)].

The main steps for descent method at each iteration are:
• Calculate ψk solution of (2.1) with source term fk

• Calculate P k solution of the adjoint problem
• Calculate the descent direction dk = −∇J(fk)
• Find tk = argmin

t>0
J(fk + tdk)

• Update the variable fk+1 = fk + tkdk.
The algorithm ends when

∣∣J(f)
∣∣ < µ, where µ is a given small precision.

The value tk is chosen by the inaccurate linear search by the Armijo-Goldstein
Rule as follows:

Let αi, β ∈ [0, 1[ and α > 0
if J(fk + αidk) ≤ J(fk) + βαid

T
k dk, tk = αi and stop.

if not, αi = ααi.

6. Numerical experiments

We did all tests on a PC with the following configurations: Intel Core i3 CPU
2.27GHz; RAM 4GB (2.93 usable). For all tests, we take number of points in
space N = 100, number of points in time M = 100, and initial state the function
ψ0 = x(x−1)

T . In the figures below, ψ0 is drawn red and the rebuilt function ψ in
blue.

Noncoercive case. Let α = 1
2 and λ = 0. Figure 1 shows results without regu-

larization. Figures 2 and 3 show results with regularization.

Figure 1. Final temperature without regularization. It shows
that we cannot have ψ(T ) ' 0.
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Figure 2. Temperature at t = t10 (left), and at t = t20 (right).

Figure 3. Temperature at t = t50 which is nearly 0 (left). Final
temperature showing that ψ(T ) ' 0 (right).

Figure 4. Graph of J (left). Norm of gradient (right).

Next we have tests for α ≥ 2 and λ = 0. Using the Carleman estimates, in
[10] we prove that problem (2.1) is non-null controllable. In this tests we confim
numerically this result; see Figures 5 and 6.

6.1. Sub-critical potential case. Let α = 1
2 , λ = − (1−α)2

4 , and β = 2−α
2 . Figure

7 shows test without regularization. Figures 8 and 9 have regularization.

Conclusion. This article presents a regularization method for determining the
source term. This is done with the aim of studying numerically the null controlla-
bility of degenerate/singular parabolic problems.
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Figure 5. Temperature at t = t10 with α = 2 (left). Final tem-
perature with α = 2 which shows the non-null controllability of
(2.1) (right).

Figure 6. Temperature at t = t10 with α = 4 (left). Final tem-
perature with α = 4 which shows the non-null controllability of
(2.1) (right).

Figure 7. Final temperature without regularization which shows
that we cannot have ψ(T ) ' 0.
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sité Hassan 1, Settat 26000, Morocco
E-mail address: k.atifi.uhp@gmail.com



EJDE-2017/135 DATA ASSIMILATION AND NULL CONTROLLABILITY 17

El-Hassan Essoufi
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