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Abstract. Referring to incommensurate and commensurate fractional sys-

tems, this article presents a new approach to investigate the coexistence of

some synchronization types between non-identical systems characterized by
different dimensions and different orders. In particular, the paper shows

that complete synchronization (CS), anti-synchronization (AS) and inverse
full state hybrid function projective synchronization (IFSHFPS) coexist when

synchronizing a three-dimensional master system with a four-dimensional slave

system. The approach is based on two new results involving stability theory
of linear fractional systems and the fractional Lyapunov method. A number

of examples are provided to highlight the applicability of the method.

1. Introduction

Over the last few years, substantial efforts have been devoted to the study of
chaos synchronization in dynamical systems described by integer-order differential
equations [5, 15, 29]. Different types of synchronization have been proposed in the
literature for continuous–time systems [17, 18, 19, 23] as well as discrete-time [16, 24,
27, 28]. Recently, a lot of attention has been paid to dynamical systems described by
fractional-order differential equations [2, 8, 35]. Research studies have shown that
fractional-order systems, as generalizations of the more well–known integer-order
systems, may also have complex dynamics such as chaos and bifurcation [3, 7, 32].
Some recent studies such as [9, 37] have also shown that chaotic fractional-order
systems can be synchronized. However, since the subject is still relatively new, fewer
synchronization types have been introduced for fractional-order systems compared
to integer-order ones. It is important to note that most of the approaches available
in the literature are related to the synchronization of identical fractional-order
systems [38]. Very few methods for synchronizing non-identical fractional-order
chaotic systems have been established, see [20].

When studying the synchronization of chaotic systems, an interesting phenom-
enon that may occur is the coexistence of several synchronization types. In fact,
the coexistence of these types between different dimensional chaotic (hyperchaotic)
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systems remains entirely unexplored. Perhaps the most relevant studies dedicated
to the coexistence of synchronization types between two chaotic systems include:

• [25]: the approach developed in this study proves rigorously the coexistence
of some synchronization types between discrete–time chaotic (hyperchaotic)
systems.
• [21]: this study proposes two synchronization schemes of coexistence for

integer-order chaotic systems.
• [22]: a robust method is applied to study the coexistence of two generalized

types of synchronization in fractional chaotic systems with different dimen-
sions. The coexistence of synchronization types can be used to enhance the
security in communications and chaotic encryption schemes.

This article investigates the coexistence of various synchronization types between
fractional chaotic (hyperchaotic) systems with different dimensions. In particular,
the paper shows that complete synchronization (CS) [11], anti-synchronization (AS)
[14] and inverse full state hybrid function projective synchronization (IFSHFPS)
[26] coexist between a three-dimensional fractional-order master system and a four-
dimensional fractional-order slave system. By exploiting the stability theory of
fractional linear systems, the coexistence of CS, AS and IFSHFPS between two
incommensurate fractional-order systems with different dimensions is proved. Ad-
ditionally, by using a fractional Lyapunov approach, the coexistence of CS, AS and
IFSHFPS is illustrated when the slave system is of the commensurate fractional-
order type. Numerical examples are used to confirm the capability of the proposed
approach in successfully achieving the coexistence of these synchronization types
in the commensurate and incommensurate cases.

The paper is organized as follows: Section 2 lists some preliminaries relating
to fractional calculus and the stability of fractional systems. In Section 3, the
coexistence of CS, AS and IFSHFPS in fractional-order systems is formulated. The
main results of the study are presented in Section 4, followed by some numerical
examples in Section 5 that confirm the formulated problem. A summary of the
conclusions is, then, given in the last section.

2. Preliminaries

Definition 2.1 ([33]). The Riemann-Liouville fractional integral operator of order
p > 0 of the function f(t) is defined as

Jpf(t) =
1

Γ(p)

∫ t

0

(t− τ)p−1f(τ)dτ, t > 0, (2.1)

where Γ denotes Gamma function.

Definition 2.2 ([4]). The Caputo fractional derivative of f(t) is defined as

Dp
t f(t) = Jm−p

( dm
dtm

f(t)
)

=
1

Γ(m− p)

∫ t

0

f (m)(τ)
(t− τ)p−m+1

dτ, (2.2)

for m− 1 < p ≤ m, m ∈ N, t > 0.

Lemma 2.3 ([13]). The Laplace transform of the Caputo fractional derivative rule
reads

L(Dp
t f(t)) = spF(s)−

n−1∑
k=0

sp−k−1f (k)(0), (p > 0, n− 1 < p ≤ n). (2.3)
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Particularly, when 0 < p ≤ 1, we have

L(Dp
t f(t)) = spF(s)− sp−1f(0). (2.4)

Lemma 2.4 ([31]). The Laplace transform of the Riemann-Liouville fractional
integral rule satisfies

L(Jqf(t)) = s−qF(s), (q > 0). (2.5)

Lemma 2.5 ([12]). The fractional-order linear system

Dpi

t xi(t) =
n∑
j=1

aijxj(t), i = 1, 2, . . . , n, (2.6)

is asymptotically stable if all roots λ of the characteristic equation

det(diag(λMp1 , λMp2 , . . . , λMpn)−A) = 0, (2.7)

satisfy | arg(λ)| > π
2M , where A = (aij) and M is the least common multiple of the

denominators of pi’s.

Lemma 2.6 ([6]). The trivial solution of the fractional order system

Dp
tX(t) = F (X(t)), (2.8)

where X(t) = (xi(t))1≤i≤n, p is a rational number between 0 and 1, and F : Rn →
Rn is asymptotically stable if there exists a positive definite Lyapunov function
V (X(t)) such that Dp

t V (X(t)) < 0 for all t > 0.

Lemma 2.7 ([1]). For all X(t) ∈ Rn, all p ∈]0, 1] and all t > 0,
1
2
Dp
t (XT (t)X(t)) ≤ XT (t)Dp

t (X(t)). (2.9)

3. Problem formulation

We consider the master system given by

Dp1
t x1(t) = f1(X(t)),

Dp2
t x2(t) = f2(X(t)),

Dp3
t x3(t) = f3(X(t)),

(3.1)

where X(t) = (x1(t), x2(t), x3(t))T is the state vector of the master system (3.1),
fi : Rn → R, 0 < pi < 1, and Dpi

t is the Caputo fractional derivative of order pi
for i = 1, 2, 3. Also, consider the slave system defined as

Dq1
t y1(t) =

4∑
j=1

b1jyj(t) + g1(Y (t)) + u1,

Dq2
t y2(t) =

4∑
j=1

b2jyj(t) + g2(Y (t)) + u2,

Dq3
t y3(t) =

4∑
j=1

b3jyj(t) + g3(Y (t)) + u3,

Dq4
t y4(t) =

4∑
j=1

b4jyj(t) + g4(Y (t)) + u4,

(3.2)



4 A. OUANNAS, S. ABDELMALEK, S. BENDOUKHA EJDE-2017/128

where Y (t) = (y1(t), y2(t), y3(t), y4(t))T is the slave system’s state vector, (bij) ∈
R4×4, gi : Rn → R, i = 1, 2, 3, 4 are nonlinear functions, 0 < qi < 1, Dqi

t is the
Caputo fractional derivative of order qi, and ui, i = 1, 2, 3, 4 are controllers to be
designed. Based on the master–slave synchronizing system described by (3.1) and
(3.2), the following definition for the coexistence of different synchronization types
can be stated.

Definition 3.1. Complete synchronization (CS), anti–synchronization (AS) and
inverse full state hybrid function projective synchronization (IFSHFPS) co–exist in
the synchronization of the master system (3.1) and the slave system (3.2) if there
exist controllers ui (1 ≤ i ≤ 4) and given differentiable functions αi(t) (1 ≤ i ≤ 4)
such that the synchronization errors:

e1(t) = y1(t)− x1(t),

e2(t) = y2(t) + x2(t),

e3(t) =
4∑
j=1

αj(t)yj(t)− x3(t),
(3.3)

satisfy
lim
t→∞

ei(t) = 0, (3.4)

for i = 1, 2, 3.

Before presenting the main result of this study, let us start by rewriting the
synchronization error problem (3.3). The system can be differentiated to yield

Dq1
t e1(t) = Dq1

t y1(t)−Dq1
t x1(t),

Dq2
t e2(t) = Dq2

t y2(t) +Dq2
t x2(t),

ė3(t) =
4∑
j=1

α̇j(t)yj(t) +
4∑
j=1

αj(t)ẏj(t)− ẋ3(t).

(3.5)

This can, then, be divided in two subsystems as follows

(Dq1
t e1(t), Dq2

t e2(t))T = (B − C)(e1(t), e2(t))T + (u1, u2)T + (R1, R2)T , (3.6)

and
ė3(t) = α3(t)ẏ3(t) +R3, (3.7)

where B = (bij)1≤i;j≤2, C = (cij)1≤i;j≤2 is a control matrix to be selected and

R1 = (c11 − b11)e1(t) + (c12 − b12)e2(t) +
4∑
j=1

b1jyj(t)

+ g1(Y (t))−Dq1
t x1(t),

R2 = (c21 − b21)e1(t) + (c22 − b22)e2(t) +
4∑
j=1

b2jyj(t)

+ g2(Y (t))−Dq2
t x2(t),

R3 =
4∑
j=1

α̇j(t)yj(t) +
4∑
j=1
j 6=3

αj(t)ẏj(t)− ẋ3(t).

(3.8)
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4. Coexistence of synchronization types

In this section, we show that three different synchronization types can coexist
between the proposed systems (3.1) and (3.2) subject to some conditions. In order
to achieve synchronization between the master and slave systems, we assume that
α3(t) 6= 0 for all t ≥ 0. Hence, we may now formulate the following theorem.

Theorem 4.1. CS, AS and IFSHFPS coexist between the master system (3.1) and
the slave system (3.2) under the following conditions:

(i)
(
u1

u2

)
= −

(
R1

R2

)
,

u3 = −
4∑
i=1

b3jyj(t)− g3(Y (t)) + Jq3
[ 1
α3(t)

((b33 − c)e3(t)−R3)
]
,

and u4 = 0.
(ii) All roots of

det(diag(λMq1 , λMq2) + C −B) = 0

satisfy
| arg(λ)| > π

2M
,

where M is the least common multiple of the denominators of q1 and q2.
(iii) The control constant c is chosen such that b33 − c < 0.

Proof. To prove Theorem 4.1, we need to show that equations (3.4) are satisfied.
First of all, using (i), the error subsystem (3.6) can be written in the form

Dq
t ê(t) = (B − C)ê(t), (4.1)

where
Dq
t ê(t) = (Dq2

t e1(t), Dq1
t e2(t))T .

If the feedback gain matrix C is chosen according to (ii), then based on Lemma
2.5, we conclude that

lim
t→+∞

e1(t) = lim
t→+∞

e2(t) = 0. (4.2)

As for the third error, we use the controller u3 to obtain the following description
for state y3(t)

Dq3
t y3(t) = Jq3

[ 1
α3(t)

((b33 − c)e3(t)−R3)
]
. (4.3)

Applying the Laplace transform to (4.3) and letting

F(s) = L(y3(t)), (4.4)

we obtain,

sq3F(s)− sq3−1y3(0) = sq3−1L(
1

α3(t)
((b33 − c)e3(t)−R3)). (4.5)

Multiplying both sides of (4.5) by s1−q3 and applying the inverse Laplace transform
yields the equation

ẏ3(t) =
1

α3(t)
((b33 − c)e3(t)−R3). (4.6)

From (4.6) and (3.7), the dynamics of e3(t) can be given by

ė3(t) = (b33 − c)e3(t). (4.7)
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If c is selected according to (ii), we obtain

lim
t→∞

e3(t) = 0. (4.8)

Finally, from (4.2) and (4.8), we conclude that the master system (3.1) and the
slave system (3.2) are globally synchronized. �

The conditions derived in Theorem 4.1 can be simplified in the case where q1 =
q2 = q. The following proposition shows the simplification.

Proposition 4.2. Subject to q1 = q2 = q, condition (ii) of Theorem 4.1 may be
replaced by the following condition:

(ii) The control matrix C is selected such that B − C is a negative definite
matrix.

Proof. If a Lyapunov function candidate is chosen as V (ê(t)) = 1
2 ê
T (t)ê(t), then

the time Caputo fractional derivative of order q of V along the trajectory of the
system (4.1) may be stated as

Dq
tV (ê(t)) = Dq

t

(1
2
êT (t)ê(t)

)
. (4.9)

Using Lemma 2.7 along with (4.9), we obtain

Dq
tV (e(t)) ≤ êT (t)Dq

t ê(t) = êT (t)(B − C)ê(t).

If we select the matrix C such that B − C is negative definite, we obtain

Dq
tV (ê(t)) < 0.

From Lemma 2.6, the zero solution of system (4.1) is globally asymptotically stable,
i.e

lim
t→+∞

e1(t) = lim
t→+∞

e2(t) = 0. (4.10)

�

5. Numerical examples

In this section, we use numerical simulations to validate the theoretical synchro-
nization results proposed in the previous section given some examples of nonlinear
chaotic fractional systems.

Case I: q1 6= q2. Consider as master the fractional version of the modified coupled
dynamos system proposed in [36] and given by

Dp1x1 = −αx1 + (x3 + β)x2,

Dp2x2 = −αx2 + (x3 − β)x1,

Dp3x3 = x3 − x1x2.

(5.1)

System (5.1) can exhibit chaotic behaviors when (p1, p2, p3) = (0.9, 0.93, 0.96) and
(α, β) = (2, 1). Attractors of the master system (5.1) are shown in Figure 1.

Let us also consider the slave system
Dq1y1 = α(y2 − y1) + y4 + u1,

Dq2y2 = γy1 − y2 − y1y3 + u2,

Dq3y3 = −βy3 + y1y2 + u3,

Dq4y4 = δy4 + y2y3 + u4,

(5.2)
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Figure 1. Chaotic attractors in 3-D of the master system (5.1)
when (p1, p2, p3) = (0.9, 0.93, 0.96) and (α, β) = (2, 1).

where the vector controller is

U = (u1, u2, u3, u4)T .

We observe that for (u1, u2, u3, u4) = (0, 0, 0, 0), (q1, q2, q3, q4) = (0.94, 0.96, 0.97, 0.99)
and (α, β, γ, δ) = (10, 8

3 , 28,−1), system (5.2) exhibits a hyperchaotic behavior, see
[34]. Attractors of the uncontrolled system (5.2) are shown in Figure 2.

According to our approach presented in the previous sections, the error system
between the master (5.1) and slave (5.2) is defined as

e1 = y1 − x1,

e2 = y2 + x2,

e3 = α1(t)y1 + α2(t)y2 + α3(t)y3 + α4(t)y4 − x3,

(5.3)

where α1(t) = 1, α2(t) = 1
t2+1 , α3(t) = exp(−t) and α4(t) = sin t. Using the

notations defined in Section 3 above, we can write

B =
(
−10 10
28 −1

)
, C =

(
0 10
28 0

)
,
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Figure 2. Hyperchaotic attractors in 3-D of the slave sys-
tem (5.2) when (u1, u2, u3, u4) = (0, 0, 0, 0), (q1, q2, q3, q4) =
(0.94, 0.96, 0.97, 0.99) and (α, β, γ, δ) = (10, 8

3 , 28,−1).

b33 = −8/3 and c = 0. According to Theorem 4.1, the controllers set of controllers
(u1, u2, u3, u4) may be designed as

u1 = −10e1 + α(y2 − y1)−D0.94
t x1,

u2 = −e2 + γy1 − y2 − y1y3 −D0.96
t x2,

u3 = βy3 − y1y2 +
1
3
J0.97

(
− 8

3
e3(t)− 1

(t+ 1)2
y2 + exp(−t)y3

− (cos t)y4 − y1 − (
1

t+ 1
)y2 − (sin t)y4 + ẋ3

)
,

u4 = 0.

(5.4)

The roots of equation

det(diag(λ0.94M , λ0.96M ) + C −B) = 0

are

λ1 = 10
1

0.94M (cos
π

0.94M
+ i sin

π

0.94M
),
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λ2 = cos
π

0.96M
+ i sin

π

0.96M
,

where M is the least common multiple of the denominators of 0.94 and 0.96. It is
easy to show that | arg(λi)| > π

2M for i = 1, 2. Hence, the conditions of Theorem 4.1
are satisfied and, consequently, systems (5.1) and (5.2) are globally synchronized.
The error system can be summarized by the two subsystems

D0.94e1 = −10e1,

D0.96e2 = −e2,
(5.5)

and

ė3 = −8
3
e3. (5.6)

Fractional Euler integration and fourth order Runge-Kutta integration methods
have been used to solve systems (5.5) and (5.6), respectively. Time evolution of the
errors e1, e2 and e3 are shown in Figures 3 and 4, respectively.
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Figure 3. Time series of the synchronized error signals e1 and e2
between the master system (5.1) and the slave system (5.2).

Case II: q1 = q2 = q. Now, let us consider as master the fractional-order Liu
system with the hyperchaotic fractional-order Lorenz system as its slave. The
master system is

Dp1x1 = a(x2 − x1),

Dp2x2 = bx1 − x1x3,

Dp3x3 = −cx3 + 4x2
1.

(5.7)

This system exhibits chaotic behavior when (p1, p2, p3) = (0.93, 0.94, 0.95) and
(a, b, c) = (10, 40, 2.5) [10]. The attractors for (5.7) are shown in Figure 5.
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Figure 4. Time evolution of the error e3 between the master sys-
tem (5.1) and the slave system (5.2).

The slave system is
Dq1y1 = 0.56y1 − y2 + u1,

Dq2y2 = y1 − 0.1y2y2
3 + u2,

Dq3y3 = 4y2 − y3 − 6y4 + u3,

Dq4y4 = 0.5y3 + 0.8y4 + u4,

(5.8)

where u1, u2, u3, u4 are the synchronization controllers. This system, as illustrated
in [30], exhibits a hyperchaotic behavior when (u1, u2, u3, u4) = (0, 0, 0, 0) and
(q1, q2, q3, q4) = (0.98, 0.98, 0.95, 0.95). The attractors of (5.8) are shown in Figure
6.

The error system between the master (5.7) and slave (5.8) is

e1 = y1 − x1,
e2 = y2 + x2,
e3 = sin(t)y1 + cos(t)y2 + 1

t2+1y3 + y4 − x3.
(5.9)

In this case, based on the notation presented in the Section 3, we write

B =
(

0.56 −1
1 0

)
, C =

(
1 −1
1 1

)
,

b33 = −1 and c = 0, and using Theorem 4.1 and Proposition 4.2, the controllers
can constructed as

u1 = −0.44e1 − 0.56y1 + y2 −D0.98
t x1,

u2 = −e2 +−y1 + 0.1y2y2
3 −D0.98

t x2,

u3 = −4y2 + y3 + 6y4 + J0.97(t2 + 1)(−e3 − cos(t)y1 + sin(t)y2)

+ J0.97(t2 + 1)
(
− 2t

(t2 + 1)2
y3 − sin(t)y1 − cos(t)y2 − y4 + ẋ3

)
,

u4 = 0.

(5.10)
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Figure 5. Chaotic attractors in 3-D of the master system (5.7)
when (p1, p2, p3) = (0.93, 0.94, 0.95) and (a, b, c) = (10, 40, 2.5).

We can show that B − C is a negative definite matrix, which fulfills the condition
of Proposition 4.2. Therefore, systems (5.10) and (5.11) are globally synchronized.
The error systems is

D0.98e1 = −0.44e1,

D0.98e2 = −e2,
(5.11)

and
ė3 = −e3. (5.12)

Again, similar to the previous example, the Fractional Euler and fourth order
Runge-Kutta integration methods have been used to solve systems (5.11) and (5.12),
respectively. The time evolutions of e1, e2 and e3 are shown in Figures 7 and 8.

Conclusions. This paper has proposed a new method to analyze the coexistence
problem of some fractional synchronization types. In particular, the approach de-
veloped in this paper has proven the coexistence of complete synchronization (CS),
anti–synchronization(AS) and inverse full state hybrid function projective synchro-
nization (IFSHFPS) between a three-dimensional fractional-order master system
and a four-dimensional fractional-order slave system. It has been shown that the
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Figure 6. Hyperchaotic attractors in 3-D of the slave system (5.8)
when when (u1, u2, u3, u4) = (0, 0, 0, 0) and (q1, q2, q3, q4) =
(0.98, 0.98, 0.95, 0.95).

approach presents the remarkable feature of being both rigorous and applicable to a
wide class of commensurate and incommensurate systems with different dimensions
and orders. The numerical examples reported in the paper have clearly highlighted
the capability of the proposed approach in successfully achieving the coexistence of
these synchronization types between chaotic and hyperchaotic systems of different
dimensions for both commensurate and incommensurate fractional-order cases.
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