CONTROLLABILITY AND PERIODIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS

BUI AN TON
Communicated by Jesus Ildefonso Diaz
Dedicated to the memory of Felix E. Browder whose guidance is gratefully acknowledged

Abstract

The controllability of time-periodic solutions of a n-dimensional nonlinear wave equation is established with $n=2,3$. The result is used to establish the existence of time-periodic solutions of a nonlinear wave equation.

1. Introduction

The purpose of the article is to establish the existence of time-periodic solutions of a nonlinear wave equation in bounded domains of \mathbb{R}^{n} with $n=2,3$, using controllability. Following the pioneering work of Rabinowitz [8, 9] on time-periodic solutions of the one-dimensional nonlinear wave equation, extensive studies of the problem were done by Berti-Bolle [1, 2], Brezis-Nirenberg [3] and others. Controllability and fictitious domains were used by Glowinski and his collaborators [5], Glowinski-Rossi [6] to treat numerically the existence of time-periodic solutions of the linear wave equation in cylindrical domains. For higher spatial dimensions, Berti and Polle [3] used The Nash-Moser iteration to study T-periodic solutions of the problem

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+m u=\varepsilon F(\omega t, x, u) \\
u(t, x)=u(t, x+2 k \pi) \quad \forall k \in Z^{n}
\end{gathered}
$$

where F is $2 \pi / \omega$ periodic in time and 2π-periodic in $x_{j}, j=1, \ldots, n$.
In [10, 11] the author established the existence of time-periodic solutions of a nonlinear wave equation in non-cylindrical domains of $\mathbb{R}^{n}, n=2,3$ with the forcing term in a non-empty subset of K^{\perp} with

$$
K=\left\{v: v \in L^{2}\left(0, T ; L^{2}(G)\right), \int_{0}^{T} v(\cdot, t) d t=0\right\}
$$

In this paper we shall show that for any f in K^{\perp} there exists a time-periodic solution of a nonlinear wave equation in cylindrical domains. The proof is carried out in Section 5.Notations and the basic assumption of the paper are given in Section 2.

[^0]Given f in K^{\perp} and u_{0} in $H_{0}^{1}(G) \cap L^{p}(G)$ we shall establish the existence of a control $g_{f}\left(u_{0}\right)$ in $\left(H_{0}^{1}(G) \cap L^{p}(G)\right)^{*}$ and a time-periodic solution of the nonlinear wave equation

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left.\left\{u, u^{\prime}\right\}\right|_{t=T}=\left\{u_{0}, 0\right\}
\end{gathered}
$$

The solution and its derivative take prescribed values at $t=0$ and at $t=T$.
In Section 4 we consider a semi-exact controllability problem. Given f in K^{\perp} and u_{0} in $H_{0}^{1}(G) \cap L^{p}(G)$, we shall prove the existence of (i) a control $g_{f}\left(u_{0}\right)$ and (ii) a time-periodic solution of the problem

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T), \quad u(0)=u_{0}=u(T), \quad u^{\prime}(0)=u^{\prime}(T) .
\end{gathered}
$$

As the solution u takes a prescribed common value at $t=0$ and at $t=T$, its derivative u^{\prime} is not required to take a specific value at the two end points, we shall call it a semi-exact controllability problem.

Notation. Let G be a bounded open subset of \mathbb{R}^{n} with $n=2,3$, and let

$$
K=\left\{v: v \in L^{2}\left(0, T ; L^{2}(G)\right), \int_{0}^{T} v(., s) d s=0\right\}
$$

The set K is a closed convex subset of $L^{2}\left(0, T ; L^{2}(G)\right)$ and let J, be the duality mapping of $L^{2}\left(0, T ; L^{2}(G)\right)$ into $L^{2}\left(0, T ; L^{2}(G)\right)$ with gauge function $\Phi(r)=r$. The penalty function

$$
\beta(v)=J\left(v-P_{K} v\right)
$$

where P_{K} is the projection of K onto $L^{2}\left(0, T ; L^{2}(G)\right)$, is well-defined. For a given u in $L^{2}\left(0, T ; L^{2}(G)\right)$ there exists a unique $P_{K} u$ in K such that

$$
\left\|u-P_{K} u\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \leq\|u-k\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \quad \forall k \in K
$$

In this article, we denote by (\cdot, \cdot) the various pairings between $L^{2}(G), L^{p}(G)$ and their duals.

Assumption. We assume that $2 \leq p<\infty$ if $G \subset R^{2}$ and $2 \leq p \leq 4$ if $G \subset R^{3}$.

2. EXACt CONTROLLABILITY TIME PERIODIC PROBLEM

The main result of the section is the following theorem
Theorem 2.1. Let $\left\{f, u_{0}\right\}$ be in $K^{\perp} \times\left\{H_{0}^{1}(G) \cap L^{p}(G)\right\}$ then there exist:
(i) $g_{f}\left(u_{0}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$
(ii) $\left\{u, u^{\prime}\right\}$ in $L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right) \times L^{\infty}\left(0, T ; L^{2}(G)\right)$, solution of the problem

$$
\begin{gather*}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T) \\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left.\left\{u, u^{\prime}\right\}\right|_{t=T}=\left\{u_{0}, 0\right\} \tag{2.1}
\end{gather*}
$$

We consider the initial boundary-value problem

$$
\begin{gather*}
u_{\varepsilon}^{\prime \prime}-\varepsilon \Delta u_{\varepsilon}^{\prime}-\Delta u_{\varepsilon}+\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}+\varepsilon^{-1} \beta\left(u_{\varepsilon}^{\prime}\right)=f \quad \text { in } G \times(0, T), \\
u_{\varepsilon}=u_{\varepsilon}^{\prime}=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u_{\varepsilon}, u_{\varepsilon}^{\prime}\right\}\right|_{t=0}=\left\{u_{0}, u_{1}\right\} \tag{2.2}
\end{gather*}
$$

Lemma 2.2. Let $\left\{f, u_{0}, u_{1}\right\}$ be in $K^{\perp} \times\left[H_{0}^{1}(G) \cap L^{p}(G)\right] \times L^{2}(G)$ then there exists a unique solution u_{ε} of (2.2). Moreover

$$
\begin{aligned}
& \left\|u_{\varepsilon}^{\prime}(t)\right\|_{L^{2}(G)}^{2}+2 \varepsilon\left\|\nabla u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, t ; L^{2}(G)\right)}^{2}+\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}(G)}^{2} \\
& +2 p^{-1}\left\|u_{\varepsilon}(t)\right\|_{L^{p}(G)}^{p}+2 \varepsilon^{-1} \int_{0}^{t}\left(\beta\left(u_{\varepsilon}^{\prime}\right), u_{\varepsilon}^{\prime}\right) d s \\
& \leq\left\|u_{1}\right\|_{L^{2}(G)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}+2 p^{-1}\left\|u_{0}\right\|_{L^{p}(G)}^{p}+2 \int_{0}^{t}\left(f, u_{\varepsilon}^{\prime}\right) d s
\end{aligned}
$$

The standard Galerkin approximation method gives the existence of a unique solution of 2.2 with the stated estimate. We shall not reproduce the proof.

Lemma 2.3. Let u_{ε} be as in Lemma 2.2 then there exists a subsequence such that

$$
\left\{u_{\varepsilon}, u_{\varepsilon}^{\prime}, \beta\left(u_{\varepsilon}^{\prime}\right)\right\} \rightarrow\left\{u, u^{\prime}, 0\right\}
$$

in the space

$$
\begin{aligned}
& \left\{C\left(0, T ; L^{2}(G)\right) \cap\left[L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)\right]_{\text {weak*}}\right\} \\
& \times\left[L^{\infty}\left(0, T ; L^{2}(G)\right)\right]_{\text {weak*}} \times\left[L^{2}\left(0, T ; L^{2}(G)\right)\right]_{\text {weak }}
\end{aligned}
$$

Furthermore $\beta\left(u^{\prime}\right)=0$, i.e. u^{\prime} in K and thus, $u(\cdot, 0)=u(\cdot, T)=u_{0}$.
Proof. (1) From the estimate of Lemma 2.2 and the Gronwalls lemma, there exists a subsequence such that $\left\{u_{\varepsilon}, u_{\varepsilon}^{\prime}\right\} \rightarrow\left\{u, u^{\prime}\right\}$ in

$$
C\left(0, T ; L^{2}(G)\right) \cap\left[L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)\right]_{\text {weak** }} \times\left[L^{\infty}\left(0, T ; L^{2}(G)\right)\right]_{\text {weak** }}
$$

We have

$$
\begin{aligned}
\left\|\beta\left(u_{\varepsilon}^{\prime}\right)\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} & =\left\|J\left(u_{\varepsilon}^{\prime}-P_{K} u_{\varepsilon}^{\prime}\right)\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \\
& =\Phi\left(\left\|u_{\varepsilon}^{\prime}-P_{K} u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right) \\
& =\left\|u_{\varepsilon}^{\prime}-P_{K} u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \\
& \leq\left\|u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)}+\left\|P_{K} u_{\varepsilon}^{\prime}-P_{K} 0\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \\
& \leq 2\left\|u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)} \leq M
\end{aligned}
$$

Thus,

$$
\beta\left(u_{\varepsilon}^{\prime}\right) \rightarrow \chi \quad \text { in }\left(L^{2}\left(0, T ; L^{2}(G)\right)\right)_{\text {weak }}
$$

(2) We now show that $\chi=0$. From 2.2 we have

$$
\begin{aligned}
& -\varepsilon \int_{0}^{T}\left(u_{\varepsilon}^{\prime}, \varphi^{\prime}\right) d t+\varepsilon^{2} \int_{0}^{T}\left(\nabla u_{\varepsilon}^{\prime}, \nabla \varphi\right) d t+\varepsilon \int_{0}^{T}\left(\nabla u_{\varepsilon}, \nabla \varphi\right) d t \\
& +\varepsilon \int_{0}^{T}\left(\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}, \varphi\right) d t+\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t \\
& =\varepsilon \int_{0}^{T}(f, \varphi) d t \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
\end{aligned}
$$

Thus,

$$
\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t \rightarrow 0 \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
$$

Since $\beta\left(u_{\varepsilon}^{\prime}\right) \rightarrow \chi$ in $\left[L^{2}\left(0, T ; L^{2}(G)\right]_{\text {weak }}\right.$, we deduce that $\chi=0$.
(3) We now show that $\beta\left(u^{\prime}\right)=0$. Since β is monotone in $L^{2}\left(0, T ; L^{2}(G)\right)$ we have

$$
\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right)-\beta\left(v^{\prime}\right), u_{\varepsilon}^{\prime}-v^{\prime}\right) d t \geq 0 \forall v^{\prime} \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

in particular for all v with

$$
v=\int_{0}^{t} \varphi(., s) d s, \quad \varphi \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

Thus,

$$
\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right)-\beta(\varphi), u_{\varepsilon}^{\prime}-\varphi\right) d t \geq 0 \quad \forall \varphi \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

From the estimate of Lemma 2.2 and from the above we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), u_{\varepsilon}^{\prime}\right) d t=0=\lim _{\varepsilon} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t
$$

Hence

$$
-\int_{0}^{T}\left(\beta(\varphi), u^{\prime}-\varphi\right) d t \geq 0 \quad \forall \varphi \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

Take $\varphi=u^{\prime}+\lambda w, \lambda>0$ and w in $L^{2}\left(0, T ; L^{2}(G)\right)$. We have

$$
\int_{0}^{T}\left(\beta\left(u^{\prime}+\lambda w\right), w\right) d t \geq 0 \quad \forall w \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

Letting $\lambda \rightarrow 0$ we obtain

$$
\int_{0}^{T}\left(\beta\left(u^{\prime}\right), w\right) d t \geq 0 \quad \forall w \in L^{2}\left(0, T ; L^{2}(G)\right)
$$

Changing w to $-w$ and we deduce that $\beta\left(u^{\prime}\right)=0$ i.e. $u^{\prime} \in K$ and $u(\cdot, 0)=u(\cdot, T)=$ u_{0}.

Lemma 2.4. Let $\left\{u_{\varepsilon}, u\right\}$, be as in Lemmas 2.2 and 2.3. There exists $g_{f}\left(u_{0}, u_{1}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and associated with $g_{f}\left(u_{0}, u_{1}\right)$, a unique solution u, of the problem

$$
\begin{gather*}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}, u_{1}\right) \quad \text { in } G \times(0, T), \tag{2.3}\\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left\{u_{0}, u_{1}\right\}=\left\{u(\cdot, T), u_{1}\right\}
\end{gather*}
$$

with

$$
\int_{0}^{T}\left(g_{f}\left(u_{0}, u_{1}\right), \varphi\right) d t=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t
$$

for all $\varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$. Furthermore,

$$
\begin{aligned}
& \lim \inf \left\|u_{\varepsilon}^{\prime}(t)\right\|_{L^{2}(G)}^{2}+\|\nabla u(t)\|_{L^{2}(G)}^{2}+2 p^{-1}\|u(t)\|_{L^{p}(G)}^{p} \\
& \leq\left\|u_{1}\right\|_{L^{2}(G)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}+2 p^{-1}\left\|u_{0}\right\|_{L^{p}(G)}^{p}+2 \int_{0}^{t}\left(f, u^{\prime}\right) d s
\end{aligned}
$$

Proof. (1) Since $u_{\varepsilon} \rightarrow u$ in $C\left(0, T ; L^{2}(G)\right) \cap\left(L^{\infty}\left(0, T ; L^{p}(G)\right)\right)_{\text {weak }}$, a standard argument gives

$$
\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon} \rightarrow|u|^{p-2} u \quad \text { in }\left[L^{\infty}\left(0, T ; L^{q}(G)\right)\right]_{\text {weak** }}
$$

(2) Let φ be in $C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$ then φ^{\prime} is in K and we have

$$
\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right)-\beta\left(\varphi^{\prime}\right), u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t=\int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t \geq 0
$$

It follows from 2.2 that

$$
\begin{align*}
& \int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t+\int_{0}^{T}\left(\nabla\left(\varepsilon u_{\varepsilon}^{\prime}+u_{\varepsilon}\right), \nabla\left(u_{\varepsilon}^{\prime}-\varphi^{\prime}\right)\right) d t \\
& +\int_{0}^{T}\left(\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}, u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t+\varepsilon^{-1} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t \tag{2.4}\\
& =\int_{0}^{T}\left(f, u_{\varepsilon}^{\prime}-\varphi^{\prime}\right) d t
\end{align*}
$$

Hence

$$
\begin{aligned}
& \left\|u_{\varepsilon}^{\prime}(T)\right\|_{L^{2}(G)}^{2}+2 \varepsilon\left\|\nabla u_{\varepsilon}^{\prime}\right\|_{L^{2}\left(0, T: L^{2}(G)\right)}^{2}+\left\|\nabla u_{\varepsilon}(T)\right\|_{L^{2}(G)}^{2}+2 p^{-1}\left\|u_{\varepsilon}(T)\right\|_{L^{p}(G)}^{p} \\
& -2 \int_{0}^{T}\left(f, u_{\varepsilon}^{\prime}\right) d t-\left\{\left\|u_{1}\right\|_{L^{2}(G)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}+2 p^{-1}\left\|u_{0}\right\|_{L^{p}(G)}^{p}\right\} \\
& \leq 2 \int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi^{\prime}\right) d t+2 \int_{0}^{T}\left(\nabla\left(\varepsilon u_{\varepsilon}^{\prime}+u_{\varepsilon}\right), \nabla \varphi^{\prime}\right) d t+2 \int_{0}^{T}\left(\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}-f, \varphi^{\prime}\right) d t
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& \liminf \left\|u_{\varepsilon}^{\prime}(T)\right\|_{L^{2}(G)}^{2}+\|\nabla u(T)\|_{L^{2}(G)}^{2}+2 p^{-1}\|u(T)\|_{L^{p}(G)}^{p} \\
& -\left\{\left\|u_{1}\right\|_{L^{2}(G)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}+2 p^{-1}\left\|u_{0}\right\|_{L^{p}(G)}^{p}\right\} \\
& \leq 2 \int_{0}^{T}<u^{\prime \prime}-\Delta u+|u|^{p-2} u-f, \varphi^{\prime}>d t
\end{aligned}
$$

for all $\varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$. We have used the fact that $f \in K^{\perp}$ and that u^{\prime} is in K. Set

$$
\Phi\left(u, \varphi^{\prime}\right)=2 \int_{0}^{T}<u^{\prime \prime}-\Delta u+|u|^{p-2} u-f, \varphi^{\prime}>d t
$$

and

$$
\begin{aligned}
E(u)= & \liminf \left\|u_{\varepsilon}^{\prime}(T)\right\|_{L^{2}(G)}^{2}+\|\nabla u(T)\|_{L^{2}(G)}^{2}+2 p^{-1}\|u(T)\|_{L^{p}(G)}^{p}-\left\|u_{1}\right\|_{L^{2}(G)}^{2} \\
& -\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}-2 p^{-1}\left\|u_{0}\right\|_{L^{p}(G)}^{p}
\end{aligned}
$$

Then

$$
E(u) \leq \Phi\left(u, \varphi^{\prime}\right) \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
$$

In particular

$$
E(u) \leq \Phi\left(u,-\varphi^{\prime}\right) \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
$$

Hence

$$
E(u) \leq \Phi\left(u, \varphi^{\prime}\right) \leq-E(u) \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
$$

Let $\lambda>0$ then $\lambda^{-1} \varphi$ is in $C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$ and we have

$$
\lambda E(u) \leq \Phi\left(u, \varphi^{\prime}\right) \leq-\lambda E(u)
$$

Letting $\lambda \rightarrow 0$ we obtain

$$
\left.\Phi\left(u, \varphi^{\prime}\right)=\left.\int_{0}^{T}\left\langle u^{\prime \prime}-\Delta u+\right| u\right|^{p-2} u-f, \varphi^{\prime}\right\rangle d t=0
$$

for all $\varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$. Therefore

$$
\left\{u^{\prime \prime}-\Delta u+|u|^{p-2} u-f\right\}^{\prime}=0 \quad \text { in } \mathcal{D}^{\prime}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)
$$

It follows that

$$
\begin{equation*}
u^{\prime \prime}-\Delta u+|u|^{p-2}-f=g_{f}\left(u_{0}, u_{1}\right) \quad \text { in } \mathcal{D}^{\prime}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right) \tag{2.5}
\end{equation*}
$$

for any $g_{f}\left(u_{0}, u_{1}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$.
(3) We now show that $g_{f}\left(u_{0}, u_{1}\right)$ is uniquely defined. From 2.3) we have

$$
\begin{aligned}
& -\int_{0}^{T}\left(u_{\varepsilon}^{\prime}, \varphi^{\prime}\right) d t+\int_{0}^{T}\left(\nabla\left(\varepsilon u_{\varepsilon}^{\prime}+u_{\varepsilon}\right), \nabla \varphi\right) d t+\int_{0}^{T}\left(\left|u_{\varepsilon}\right|^{p-2} u_{\varepsilon}, \varphi\right) d t \\
& +\varepsilon^{-1} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t-\int_{0}^{T}(f, \varphi) d t=0
\end{aligned}
$$

for all $\varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$.
Letting $\varepsilon \rightarrow 0$ we obtain

$$
\begin{aligned}
& -\int_{0}^{T}\left(u^{\prime}, \varphi^{\prime}\right) d t+\int_{0}^{T}(\nabla u, \nabla \varphi) d t \\
& +\int_{0}^{T}\left(|u|^{p-2}, \varphi\right) d t+\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t \\
& =\int_{0}^{T}(f, \varphi) d t
\end{aligned}
$$

for all $\varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$. Thus,

$$
u^{\prime \prime}-\Delta u+|u|^{p-2} u+\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \beta\left(u_{\varepsilon}^{\prime}\right)=f \quad \text { in } \mathcal{D}^{\prime}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)
$$

Comparing with 2.4 and we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \beta\left(u_{\varepsilon}^{\prime}\right)=g_{f}\left(u_{0}, u_{1}\right) \quad \text { in } \mathcal{D}^{\prime}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)
$$

It is clear that if h is any other element of $\left(H_{0}^{1}(G) \cap L^{p}(G)\right)^{*}$ in 2.5 then

$$
h=g_{f}\left(u_{0}, u_{1}\right)=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \beta\left(u_{\varepsilon}^{\prime}\right) \quad \text { in } \mathcal{D}^{\prime}\left(0, T ;\left[H_{0}^{1} \cap L^{p}(G)\right]^{*}\right)
$$

(4) Suppose that v is a solution of the problem

$$
\begin{aligned}
& v^{\prime \prime}-\Delta v+|v|^{p-2} v+g_{f}\left(u_{0}, u_{1}\right)=f \quad \operatorname{in} G \times(0, T), \\
& v=0 \text { on } \partial G \times(0, T), \quad v(\cdot, 0)=u_{0}, \quad v^{\prime}(\cdot, 0)=u_{1}
\end{aligned}
$$

Then an argument as in Lions [11, p.14-15], shows that $u=v$ and completes the proof.

Lemma 2.5. Let $g_{f}\left(u_{0}, u_{1}\right)$ be as in Lemma 2.4 then

$$
\begin{aligned}
& \left\|g_{f}\left(u_{0}, u_{1}\right)\right\|_{\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}} \\
& \leq C\left\{1+\left\|u_{0}\right\|_{H_{0}^{1}(G)}^{p-1}+\left\|u_{1}\right\|_{L^{2}(G)}^{p-1}+\left\|u_{0}\right\|_{L^{p}(G)}^{p-1}+\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right\}
\end{aligned}
$$

Proof. Let h be in $H_{0}^{1}(G) \cap L^{p}(G)$ and let ζ be in $C_{0}^{\infty}(0, T)$ with $\zeta \geq 0$. From Lemma 2.4 we have

$$
\int_{0}^{T} \zeta\left(g_{f}\left(u_{0}, u_{1}\right), h\right)=\int_{0}^{T}(f, \zeta h) d t+\int_{0}^{T}\left(u^{\prime}, \zeta^{\prime} h\right)-\int_{0}^{T}(\nabla u, \zeta \nabla h) d t
$$

$$
-\int_{0}^{T}\left(|u|^{p-2} u, \zeta h\right) d t
$$

Hence

$$
\begin{aligned}
\alpha\left|\left(g_{f}\left(u_{0}, u_{1}\right), h\right)\right| \leq & C\left\{\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}+\left\|u^{\prime}\right\|_{L^{2}\left(0, T ; L^{2}(G)\right)}+\|\nabla u\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right. \\
& \left.+\|u\|_{L^{\infty}\left(0, T ; L^{p}(G)\right)}^{p-1}\right\}\|h\|_{H_{0}^{1}(G)}
\end{aligned}
$$

for all h in $H_{0}^{1}(G) \cap L^{p}(G)$ and where

$$
\alpha=\int_{0}^{T} \zeta d t>0
$$

Since $2 \leq p$, it follows from the estimate of Lemma 2.4 that

$$
\begin{aligned}
& \left\|g_{f}\left(u_{0}, u_{1}\right)\right\|_{\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}} \\
& \leq C\left\{1+\left\|u_{0}\right\|_{H_{0}^{1}(G)}+\left\|u_{1}\right\|_{L^{2}(G)}+\left\|u_{0}\right\|_{L^{p}(G)}^{p-1}+\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right\}
\end{aligned}
$$

The proof is complete.
Lemma 2.6. Let $u_{\varepsilon}^{\prime \prime}$ be as in Lemma 2.2. Then

$$
\left\|u_{\varepsilon}^{\prime \prime}\right\|_{L^{2}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)} \leq C
$$

where C is independent of ε. Moreover

$$
\begin{gathered}
u_{\varepsilon}^{\prime} \rightarrow u^{\prime} \quad \text { in } C\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right) \cap\left[L^{\infty}\left(0, T ; L^{2}(G)\right)\right]_{\text {weak } *}, \\
\left\|u^{\prime}(T)\right\|_{L^{2}(G)} \leq \liminf \left\|u_{\varepsilon}^{\prime}(T)\right\|_{L^{2}(G)}
\end{gathered}
$$

Proof. Let φ be in $C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$ and set

$$
\gamma_{\varepsilon}(\varphi)=\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t
$$

- Case 1: $\gamma_{\varepsilon}(\varphi) \geq 0$. We have

$$
\begin{aligned}
& \lim \left|\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t\right| \\
& =\lim \int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t \\
& =-\int_{0}^{T}(\nabla u, \nabla \varphi) d t-\int_{0}^{T}\left(|u|^{p-2} u, \varphi\right) d t-\lim \varepsilon^{-1} \int_{0}^{T}\left(\beta\left(u_{\varepsilon}^{\prime}\right), \varphi\right) d t+\int_{0}^{T}(f, \varphi) d t \\
& =-\int_{0}^{T}(\nabla u, \nabla \varphi) d t-\int_{0}^{T}\left(|u|^{p-2} u, \varphi\right) d t-\int_{0}^{T}\left(g_{f}\left(u_{0}, u_{1}\right), \varphi\right) d t+\int_{0}^{T}(f, \varphi) d t \\
& \leq C\left\{\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(G)\right)}+\|u\|_{L^{\infty}\left(0, T ; L^{p}(G)\right)}^{p-1}+\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right\} \\
& \quad \times\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)}
\end{aligned}
$$

- Case 2: $\gamma_{\varepsilon}(\varphi) \leq 0$. Then we have

$$
\begin{aligned}
& \lim \left|\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t\right| \\
& =\lim -\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{0}^{T}(\nabla u, \nabla \varphi) d t+\int_{0}^{T}\left(|u|^{p-2} u, \varphi\right) d t+\int_{0}^{T}\left(g_{f}\left(u_{0}, u_{1}\right), \varphi\right) d t-\int_{0}^{T}(f, \varphi) d t \\
\leq & C\left\{\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(G)\right)}+\|u\|_{L^{\infty}\left(0, T ; L^{p}(G)\right)}^{p-1}+\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}\right\} \\
& \times\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)}
\end{aligned}
$$

Hence

$$
\lim \left|\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}, \varphi\right) d t\right| \leq M\|\varphi\|_{L^{2}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)} \quad \forall \varphi \in C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)
$$

Since $C_{0}^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$ is dense in $L^{2}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)$, we have

$$
\left\|u_{\varepsilon}^{\prime \prime}\right\|_{L^{2}\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)} \leq M
$$

The other assertions of the lemma are trivial to verify.
Proof of Theorem 2.1. Taking $u_{1}=0$, from Lemma 2.4 there exists $g_{f}\left(u_{0}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and

$$
\left\{u, u^{\prime}\right\} \in L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right) \times L^{\infty}\left(0, T ; L^{2}(G)\right),
$$

solution of the problem

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T), \quad u(\cdot, 0)=u(\cdot, T)=u_{0}, \quad u^{\prime}(\cdot, 0)=0 .
\end{gathered}
$$

From the estimate in Lemma 2.4 we obtain

$$
\left\|u^{\prime}(T)\right\|_{L^{2}(G)}^{2} \leq 0
$$

as f is in K^{\perp} and u^{\prime} is in K. Therefore

$$
u^{\prime}(\cdot, 0)=0=u^{\prime}(\cdot, T)
$$

The proof is complete.

3. Semi exact controllability

In this section we shall establish the existence of time-periodic solutions of a nonlinear wave equation with the solution taking a prescribed value at $t=0$.

Theorem 3.1. Let $\left\{f, u_{0}\right\}$ be in $K^{\perp} \times\left\{H_{0}^{1}(G) \cap L^{p}(G)\right\}$. There exists
(i) $g_{f}\left(u_{0}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$
(ii) a solution u of the problem

$$
\begin{gather*}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left.\left\{u, u^{\prime}\right\}\right|_{t=T}=\left\{u_{0}, u^{\prime}(0)\right\} \tag{3.1}
\end{gather*}
$$

with $\left\{u, u^{\prime}\right\}$ in $L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right) \times L^{\infty}\left(0, T ; L^{2}(G)\right)$.
As $u^{\prime}(\cdot, 0)$ and $u^{\prime}(\cdot, T)$ are not required to take a prescribed value and are allowed to take the same value derived from the equation, we have only half of the exact controllability condition.

A simple corollary of the theorem yields the existence of time-periodic solutions of linear wave equations.

Corollary 3.2. Let f be in K^{\perp} then there exists $\left\{\tilde{u}, \tilde{u}^{\prime}\right\}$ in $L^{\infty}\left(0, T ; H_{0}^{1}(G)\right) \times$ $L^{\infty}\left(0, T ; L^{2}(G)\right)$, solution of the problem

$$
\begin{gather*}
\tilde{u}^{\prime \prime}-\Delta \tilde{u}+\tilde{u}=f \quad \text { in } G \times(0, T), \\
\tilde{u}=0 \text { on } \partial G \times(0, T),\left.\quad\left\{\tilde{u}, \tilde{u}^{\prime}\right\}\right|_{t=0}=\left.\left\{\tilde{u}, \tilde{u}^{\prime}\right\}\right|_{t=T} \tag{3.2}
\end{gather*}
$$

Proof. Given f in K^{\perp} and a u_{0} in $H_{0}^{1}(G)$ it follows from the theorem that there exists $g_{f}\left(u_{0}\right)$ in $H^{-1}(G)$ and associated with it a solution u of the problem

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+u+g_{f}\left(u_{0}\right)=f \quad \text { in } G \times(0, T) \\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left.\left\{u, u^{\prime}\right\}\right|_{t=T}=\left\{u_{0}, u^{\prime}(0)\right\}
\end{gathered}
$$

Consider the elliptic boundary problem

$$
-\Delta \hat{u}+\hat{u}=g_{f}\left(u_{0}\right) \text { in } G, \quad \hat{u}=0 \text { on } \partial G .
$$

There exists a unique solution \hat{u} in $H_{0}^{1}(G)$ of the problem. Set $\tilde{u}=u+\hat{u}$ and the corollary is proved

Proof of Theorem 3.1. (1) Let

$$
\left\{f, u_{0}, u_{1}\right\} \in K^{\perp} \times\left\{H_{0}^{1}(G) \cap L^{p}(G)\right\} \times L^{2}(G)
$$

then there exists $g_{f}\left(u_{0}, u_{1}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and associated with it, a unique solution u of the problem

$$
\begin{align*}
u^{\prime \prime}-\Delta u+|u|^{p-2} u+g_{f}\left(u_{0}, u_{1}\right) & =f \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T), \quad u(\cdot, 0)=u_{0} & =u(\cdot, T), \quad u^{\prime}(\cdot, 0)=u_{1} \tag{3.3}
\end{align*}
$$

Moreover Lemmas 2.5 and 2.6 show that

$$
\left\|u^{\prime}(T)\right\|_{L^{2}(G)}^{2} \leq\left\|u_{1}\right\|_{L^{2}(G)}^{2}
$$

(2) Let $\mathcal{B}=\left\{v:\|v\|_{L^{2}(G)} \leq 1\right\}$. Then it is clear that \mathcal{B} is a compact convex subset of $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$. Denote by \mathcal{A} the mapping of \mathcal{B} into \mathcal{B} given by

$$
\begin{equation*}
\mathcal{A}\left(u_{1}\right)=u^{\prime}(T) \tag{3.4}
\end{equation*}
$$

as $f \in K^{\perp}$ and u^{\prime} is in K. The mapping is well-defined and takes \mathcal{B} into \mathcal{B}.
We now show that \mathcal{A} is a $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$-continuous mapping. Let $u_{1, n}$ in \mathcal{B}, then corresponding to $\left\{f, u_{0}, u_{1, n}\right\}$, there exists $g_{f}\left(u_{0}, u_{1, n}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and u_{n}, solution of the problem

$$
\begin{gathered}
u_{n}^{\prime \prime}-\Delta u_{n}+\left|u_{n}\right|^{p-2}+g_{f}\left(u_{0}, u_{1, n}\right)=f \quad \text { in } G \times(0, T) \\
u_{n}=0 \text { on } \partial G \times(0, T), \quad u_{n}(0)=u_{0}=u_{n}(T), \quad u_{n}^{\prime}(0)=u_{1, n}
\end{gathered}
$$

From Lemmas 2.4 2.6 we get

$$
\left\|g_{f}\left(u_{0}, u_{1, n}\right)\right\|_{\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}}+\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)}+\left\|u_{n}^{\prime}\right\|_{L^{\infty}\left(0, T ; L^{2}(G)\right)} \leq C
$$

We have a subsequence such that

$$
\left\{u_{n}, u_{n}^{\prime}, g_{f}\left(u_{0}, u_{1, n}\right)\right\} \rightarrow\left\{u, u^{\prime}, g_{f}\left(u_{0}, u_{1}\right)\right\}
$$

in
$\left[L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right)\right]_{\text {weak }^{*}} \times\left[L^{\infty}\left(0, T ; L^{2}(G)\right]_{\text {weak* }} \times\left[H_{0}^{1}(G) \cap L^{p}(G)\right]_{\text {weak }}\right.$
It is clear that $\left\{u_{n}, u_{n}^{\prime}\right\} \rightarrow\left\{u, u^{\prime}\right\}$ in $C\left(0, T ; L^{2}(G)\right) \times C\left(0, T ;\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}\right)$, and therefore

$$
\left\{u_{n}(0), u_{n}^{\prime}(0), u_{n}^{\prime}(T)\right\} \rightarrow\left\{u(0), u^{\prime}(0), u^{\prime}(T)\right\}
$$

in $L^{2}(G) \times\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*} \times\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$. Hence $u(0)=u_{0}=u(T)$ and $u^{\prime}(0)=u_{1}$. A standard argument shows that

$$
\left|u_{n}\right|^{p-2} u_{n} \rightarrow|u|^{p-2} u \quad \text { in }\left[L^{q}\left(0, T ; L^{q}(G)\right]_{\text {weak }}\right.
$$

and thus,

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+|u|^{p-2} u+g_{f}\left(u_{0}, u_{1}\right)=f \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T), \quad u(0)=u_{0}=u(T), q u a d u^{\prime}(0)=u_{1}
\end{gathered}
$$

It follows that $\mathcal{A}\left(u_{1}\right)=u^{\prime}(T)$.
An application of the Schauder fixed point theorem yields the existence of \hat{u}_{1} in \mathcal{B} such that $\mathcal{A}\left(\hat{u}_{1}\right)=\hat{u}_{1}$. With u_{0} given and with the fixed point \hat{u}_{1}, there exists as in Lemma 2.4 a control $g_{f}\left(u_{0}, \hat{u}_{1}\right)=\hat{g}_{f}\left(u_{0}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and associated with the control, a solution of

$$
\begin{aligned}
& \hat{u}^{\prime \prime}-\Delta \hat{u}+|\hat{u}|^{p-2} \hat{u}=f-\hat{g}_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
& \hat{u}=0 \text { on } \partial G \times(0, T),\left.\quad\left\{\hat{u}, \hat{u}^{\prime}\right\}\right|_{t=0}=\left.\left\{\hat{u}, \hat{u}^{\prime}\right\}\right|_{t=T}
\end{aligned}
$$

with $\hat{u}(0)=\hat{u}(T)=u_{0}$. The theorem is proved.

4. Periodic solutions

In this section we shall use u_{0} of Theorem 3.1 as a control to show that for any given $f \in K^{\perp}$, there exists

$$
\left\{\tilde{f}, \tilde{u}_{0}, g_{\tilde{f}}\left(\tilde{u}_{0}\right)\right\} \in K^{\perp} \times H_{0}^{1}(G) \cap L^{p}(G) \times\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}
$$

such that $f=\tilde{f}-g_{\tilde{f}}\left(\tilde{u}_{0}\right)$. The main result of the section and of this article is the following theorem.

Theorem 4.1. Let f be in K^{\perp}. Then there exists a solution $\left\{u, u^{\prime}\right\}$ in the space $L^{\infty}\left(0, T ; H_{0}^{1}(G) \cap L^{p}(G)\right) \times L^{\infty}\left(0, T ; L^{2}(G)\right)$ for the problem

$$
\begin{gather*}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T),\left.\quad\left\{u, u^{\prime}\right\}\right|_{t=0}=\left.\left\{u, u^{\prime}\right\}\right|_{t=T} . \tag{4.1}
\end{gather*}
$$

Proof. First we consider the initial boundary-value problem

$$
\begin{gather*}
w^{\prime \prime}-\Delta w+|w|^{p-2} w=f \quad \text { in } G \times(0, T) \tag{4.2}\\
w=0 \text { on } \partial G \times(0, T),\left.\quad\left\{w, w^{\prime}\right\}\right|_{t=0}=\left\{u_{0}, u_{1}\right\}
\end{gather*}
$$

It is known that for a given

$$
\left\{f, u_{0}, u_{1}\right\} \in L^{2}\left(0, T ; L^{2}(G)\right) \times\left\{H_{0}^{1}(G) \cap L^{p}(G) \times L^{2}(G)\right\}
$$

there exists a unique solution of 4.2 with

$$
\begin{aligned}
& \left\|w^{\prime}(t)\right\|_{L^{2}(G)}^{2}+\|\nabla w(t)\|_{L^{2}(G)}^{2}+2 / p\|w(t)\|_{L^{p}(G)}^{p} \\
& \leq e^{t}\left\{\left\|u_{1}\right\|_{L^{2}(G)}^{2}+\left\|\nabla u_{0}\right\|_{L^{2}(G)}^{2}+2 / p\left\|u_{0}\right\|_{L^{p}(G)}^{p}+\|f\|_{L^{2}\left(0, T ; L^{2}(G)\right)}^{2}\right\}
\end{aligned}
$$

Consider the optimization problem

$$
\begin{align*}
\alpha(f)= & \inf \left\{\|u(0)-u(T)\|_{L^{2}(G)}+\left\|u^{\prime}(0)-u^{\prime}(T)\right\|_{L^{2}(G)}: u\right. \text { is the solution of } \\
& \left.\forall\left\{u_{0}, u_{1}\right\} \text { with }\left\|u_{0}\right\|_{H_{0}^{1}(G) \cap L^{p}(G)}+\left\|u_{1}\right\|_{L^{2}(G)} \leq R\right\} \tag{4.3}
\end{align*}
$$

From Theorem 3.1 we know that for each u_{0} in $H_{0}^{1}(G) \cap L^{p}(G)$, for a given f in K^{\perp} there exists $g_{f}\left(u_{0}\right)$ in $\left[H_{0}^{1}(G) \cap L^{p}(G)\right]^{*}$ and a solution u of

$$
\begin{gathered}
u^{\prime \prime}-\Delta u+|u|^{p-2} u=f-g_{f}\left(u_{0}\right) \quad \text { in } G \times(0, T), \\
u=0 \text { on } \partial G \times(0, T), \quad u(0)=u_{0}=u(T), \quad u^{\prime}(0)=u^{\prime}(T)
\end{gathered}
$$

Let

$$
S=\cup_{f \in K^{\perp}}\left\{f \oplus\left\{-g_{f}\left(u_{0}\right): u_{0} \in H_{0}^{1}(G) \cap L^{p}(G)\right\}\right\}
$$

where $g_{f}\left(u_{0}\right)$ is as in Theorem 3.1 and thus, $\alpha\left(f-g_{f}\left(u_{0}\right)\right)=0$.
The set S is non-empty and $L^{2}(G)=L^{2}(G) \oplus 0 \subset S$. Indeed $L^{2}(G) \subset K^{\perp}$ as the stationary solution of the elliptic boundary problem

$$
-\Delta w+|w|^{p-2} w=f(x) \text { in } G, \quad w=0 \text { on } \partial G
$$

is time-periodic. Thus $\alpha(f)=0=\alpha\left(f-g_{f}\right)$ and $g_{f}=0$, and hence f is in S.
We have

$$
S \subset K^{\perp} \oplus \cup_{h \in K^{\perp}}\left\{-g_{h}\left(u_{0}\right): u_{0} \in H_{0}^{1}(G) \cap L^{p}(G)\right\}
$$

Thus,

$$
\begin{aligned}
L^{2}(G) & =\left\{L^{2}(G) \oplus 0\right\} \cap\left\{K^{\perp} \oplus 0\right\} \\
& \subset S \cap\left\{K^{\perp} \oplus 0\right\} \\
& \subset\left\{K^{\perp} \oplus \cup_{h \in K^{\perp}}\left\{-g_{h}\left(u_{0}\right): u_{0} \in H_{0}^{1}(G) \cap L^{p}(G)\right\}\right\} \cap\left\{K^{\perp} \oplus 0\right\} \\
& \subset K^{\perp} \oplus 0
\end{aligned}
$$

Indeed

$$
0 \in \cup_{h \in K^{\perp}}\left\{-g_{h}\left(u_{0}\right): u_{0} \in H_{0}^{1}(G) \cap L^{p}(G)\right\}
$$

as $\alpha(\hat{f})=0=g_{\hat{f}}$ for $\hat{f} \in L^{2}(G)$. Hence $\left\{K^{\perp} \oplus 0\right\} \subset S$.
Let f in $\left\{K^{\perp} \oplus 0\right\}$ then there exists h in K^{\perp} and $g_{h}\left(u_{0}\right)$ for some u_{0} in $H_{0}^{1}(G) \cap$ $L^{p}(G)$ such that

$$
f=h-g_{h}\left(u_{0}\right), \quad \alpha\left(h-g_{h}\left(u_{0}\right)\right)=0
$$

and therefore $\alpha(f)=0$. Thus for $f \in K^{\perp}$ there exists \tilde{u}, solution of the problem

$$
\begin{gathered}
\tilde{u}^{\prime \prime}-\Delta \tilde{u}+|\tilde{u}|^{p-2} \tilde{u}=f \quad \text { in } G \times(0, T), \\
\tilde{u}=0 \text { on } \partial G \times(0, T),\left.\quad\left\{\tilde{u}, \tilde{u}^{\prime}\right\}\right|_{t=0}=\left.\left\{\tilde{u}, \tilde{u}^{\prime}\right\}\right|_{t=T}
\end{gathered}
$$

The proof is complete.

References

[1] M. Berti,P. Bolle; Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243(2) (2003), 315-328.
[2] M. Berti, P. Bolle; Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal., 56 (2004), 1011-1046.
[3] M. Berti, P. Bolle; Sobolev Periodic Solutions of Nonlinear Wave Equations in Higher Spatial Dimensions, Arch. Rat. Mech. Anal., 2012, DIO 10.1007/s 00205-008-0211-8.
[4] H. Brezis, L. Nirenberg; Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math., 31 (1978), 1-30.
[5] M. O. Bristeau, R. Glowinski, J. Periaux; Controllability methods for the computation of time periodic solutions: applications to scattering, J. Comput. Phys., 147 (1998), 265-292.
[6] R. Glowinski, T. Rossi; A mixed formulation and exact controllability approach for the computation of the periodic solution of the scalar wave equation: (1) Controllability problem formulation and related iterative solution, C. R. Acad. Sci. Paris Ser. 1, (7) (2006), 493-498.
[7] J. L. Lions; Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.
[8] P. Rabinowitz; Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967), 145-205.
[9] P. Rabinowitz; Periodic solutions of nonlinear hyperbolic partial differential equations II, Comm. Pure Appl. Math., 22 (1969), 25-39.
[10] Bui An Ton; Time periodic solutions of a nonlinear wave equation, Nonlinear Anal., 74 (2011), 5088-5096.
[11] Bui An Ton; An identification problem for a time periodic nonlinear wave equation in non cylindrical domains, Nonlinear Anal., 75 (2012), 182-193.

Bui An Ton, Department of Mathematics, University of British Columbia, Bancouver, B.C. V6T 1Z2, Canada

E-mail address: bui@math.ubc.ca

[^0]: 2010 Mathematics Subject Classification. 35L05, 35L70, 93B05.
 Key words and phrases. Exact controllability; time-periodic solution; control;
 3D nonlinear wave equation.
 (C) 2017 Texas State University.

 Submitted July, 25, 2016. Published April 26, 2017.

