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NONLOCAL STURM-LIOUVILLE PROBLEMS WITH INTEGRAL
TERMS IN THE BOUNDARY CONDITIONS

MUSTAFA KANDEMIR, OKTAY SH. MUKHTAROV

Communicated by Ludmila S. Pulkina

Abstract. We consider a new type Sturm-Liouville problems whose main
feature is the nature of boundary conditions. Namely, we study the nonhomo-

geneous Sturm-Liouville equation

p(x)u′′(x) + (q(x)− λ)u = f(x)

on two disjoint intervals [−1, 0) and (0, 1], subject to the nonlocal boundary-

transmission conditions

αku
(mk)(−1) + βku

(mk)(−0) + ηku
(mk)(+0) + γku

(mk)(1)

+

nkX
j=1

δkju
(mk)(xkj) +

2X
υ=1

mkX
j=0

Z
Ωυ

Kkυj(t)u(j)(t)dt = fk, k = 1, 2, 3, 4.

where Ω1 := [−1, 0), Ω2 := (0, 1] and xkj ∈ (−1, 0)∪ (0, 1) are internal points.
By using our own approaches we establish such important properties as Fred-

holmness, coercive solvability and isomorphism with respect to the spectral

parameter λ.

1. Introduction

Various generalizations of classical Sturm-Liouville problems for ordinary lin-
ear differential equations have attracted a lot of attention because of the appear-
ance of new important applications in physical sciences and applied mathematics.
For instance, theoretical investigations have become interested in the discontinu-
ous Sturm-Liouville problems for its application in physics. The discontinuity of
the coefficients of the equations in the Sturm-Liouville problems corresponds to
the fact that the heterogeneous media consists of two different materials. On the
other hand, transmission problems appear frequently in various fields of physics
such as in electrostatics, magnetostatics and in solid mechanic for discontinuous
problems (in these regard see, [8, 21]). Solvability and some spectral properties of
nonlocal Sturm-Liouville problems have been investigated by many authors; see for
example, [3, 4, 12, 13, 14, 20, 27, 28]). An important special case of the nonlocal
Sturm-Liouville problems are so-called multipoint Sturm-Liouville problems. Such
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problems have been extensively studied by many authors; see for example,[9, 10, 11]
and references therein.

In general, the mathematical problems encountered in the study of boundary
value transmission problems or nonclassical problems cannot be treated with the
usual techniques within the standard framework of Sturm-Liouville problems. In
classical theory of boundary-value problems for ordinary differential equations is
usually considered for equations with continuous coefficients and for boundary con-
ditions which contain only endpoints of the considered interval. This article deals
with one nonclassical boundary-value problem for a second-order ordinary differ-
ential equation with discontinuous coefficients and boundary conditions containing
not only endpoints of the considered interval, but also a finite number of internal
points and integral terms. Namely, we consider the differential equation

L(λ)u := p(x)u′′(x) + (q(x)− λ)u(x) = f(x), x ∈ [−1, 0) ∪ (0, 1] (1.1)

together with new type boundary conditions

Lku := αku
(mk)(−1) + βku

(mk)(−0) + ηku
(mk)(+0) + γku

(mk)(1)

+
nk∑
j=1

δkju
(mk)(xkj) +

2∑
υ=1

mk∑
j=0

∫
Ωυ

Kkυj(t)u(j)(t)dt = fk,
(1.2)

for k = 1, 2, 3, 4, where p(x) is piecewise constant function, p(x) = p1 for x ∈ [−1, 0),
p(x) = p2 for x ∈ (0, 1]; λ-complex parameter; pi (i = 1, 2), αk, βk, ηk, γk, δki
(i = 1, 2, k = 1, 2, 3, 4) are complex coefficients; mk (k = 1, 2, 3, 4) are integers;
Ω1 := (−1, 0), Ω2 := (0, 1); Kkυj ∈ Wmk

q (−1, 0)+̇Wmk
q (0, 1); xkj ∈ (−1, 0) ∪ (0, 1)

are internal points and q(x) is measurable function on [−1, 0) ∪ (0, 1]. Naturally,
we shall assume that, p1 6= 0, p2 6= 0 and |αk| + |βk| + |ηk| + |γk| 6= 0 (k =
1, 2, 3, 4). Some special cases of the considered Sturm-Liouville problem (1.1)–(1.2)
arise after an application of the method of separation of variables to the varied
assortment of physical problems, namely, in heat and mass transfer problems (see,
for example, [19]), in diffraction problems (for example, [1]), in vibrating string
problems, when the string loaded additionally with point masses (see, [29]) and
etc. Some problems with transmission conditions which arise in mechanics were
studied in [21, 29]. Investigation of various spectral properties of some nonlocal
boundary-value problems can be found in some works of Imanbaev [12], Sadybekov
[26], Shakhmurov [27], Aliyev [2] and Rasulov [25]. Note that some new type Sturm-
Liouville problems with nonlocal boundary conditions were investigated by authors
of this paper and some others [5, 6, 7, 15, 16, 24, 22, 23].

2. Homogeneous equation with nonhomogeneous transmission
conditions

For convenience we denote

Sku :=
nk∑
j=1

δkju
(mk)(xkj), Fku :=

2∑
υ=1

mk∑
j=0

∫
Ωυ

Kkυj(t)u(j)(t)dt, k = 1, 2, 3, 4 .

We consider the homogeneous differential equation

L0(λ)u := p(x)u′′(x)− λu(x) = 0 (2.1)
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with the nonlocal and nonhomogeneous boundary conditions

Lk0u := αku
(mk)(−1) + βku

(mk)(−0) + ηku
(mk)(+0)

+ γku
(mk)(1) + Sku = fk, k = 1, 2, 3, 4.

(2.2)

For convenience we shall use the notation

ω1 := −(p−1
1 λ)1/2, ω2 := (p−1

1 λ)1/2, ω3 := −(p−1
2 λ)1/2, ω4 = (p−1

2 λ)1/2,

ω := min{arg p1, arg p2}, ω̄ := max{arg p1, arg p2},

θ :=

∣∣∣∣∣∣∣∣
α1ω

m1
1 β1ω

m1
2 η1ω

m1
3 γ1ω

m1
4

α2ω
m2
1 β2ω

m2
2 η2ω

m2
3 γ2ω

m2
4

α3ω
m3
1 β3ω

m3
2 η3ω

m3
3 γ3ω

m3
4

α4ω
m4
1 β4ω

m4
2 η4ω

m4
3 γ4ω

m4
4

∣∣∣∣∣∣∣∣ ,
Bε(ω, ω̄) := {λ ∈ C : π + ω̄ + ε < arg λ < 3π + ω − ε}

for real ε > 0 small enough.
The direct sum of Sobolev spaces W k

q (−1, 0)+̇W k
q (0, 1) (for an integer k ≥ 0 and

real q > 1) is defined as Banach space of complex-valued functions u = u(x) defined
on [−1, 0)∪ (0, 1] which belong to W k

q (−1, 0) and W k
q (0, 1) on intervals (−1, 0) and

(0, 1) respectively, with the norm

‖u‖q,k = ‖u‖Wk
q (−1,0) + ‖u‖Wk

q (0,1).

Here, as usual, W k
q (a, b) is the Sobolev space, i.e. the Banach space consisting of all

measurable functions u(x) that have generalized derivatives on the interval (a, b)
up to k-th order inclusive with the finite norm

‖u‖Wk
q (a,b) =

k∑
i=0

(∫ b

a

|u(i)(x)|qdx
)1/q

.

Theorem 2.1. If θ 6= 0 then for any ε > 0 there exist ρε > 0 such that for all λ ∈
Bε(ω, ω̄) for which |λ| > ρε, the problem (2.1)-(2.2) has a unique solution u(x, λ)
that belongs to W l

q(−1, 0)+̇W l
q(0, 1) for arbitrary l ≥ max{2,max {m1,m2,m3,m4}+

1} and for these λ the coercive estimate

l∑
k=0

|λ|l−k‖u‖q,k ≤ C(ε)
4∑
j=0

|λ|l−mj−
1
q |fυ| (2.3)

is valid.

Proof. Let λ = µ2. Let us define four basic solutions ui = ui(x, µ) (i = 1, 2, 3, 4) of
(2.1) as

ui(x, µ) :=

{
exp(ωiµ(x− ξi)) for x ∈ Ii
0 for x /∈ Ii,

where, ξ1 = −1, ξ2 = ξ3 = 0, ξ4 = 1; j = 1 for i = 1, 2 and j = 2 for i = 3, 4;
I1 = I2 = [−1, 0), I3 = I4 = (0, 1]. Then the general solution of (2.1) can be
written in the form

u(x, µ) =
4∑
k=1

Ckuk(x, µ). (2.4)
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Substituting this expression into (2.2) yields the following system of linear homo-
geneous equations with respect to variables C1, C2, C3, C4:

(ω1µ)mk(αk + βke
ω1µ)C1 + (ω2µ)mk(αke−ω2µ + βk)C2

+ (ω3µ)mk(ηk + γke
ω3µ)C3 + (ω4µ)mk(ηke−ω4µ + γk)C4 = fk, k = 1, 2, 3, 4.

(2.5)
From λ ∈ Bε(ω, ω̄) it follows that

π + ε

2
< arg(ωiµ) <

3π − ε
2

for i = 1, 3;

−π − ε
2

< arg(ωiµ) <
π − ε

2
for i = 2, 4.

Consequently, for these λ and for ε > 0 (small enough), we have

(−1)k+1 Re(ωkµ) ≤ −|λ||ωk| sin
ε

2
, k = 1, 2, 3, 4.

Hence, the determinant of the system (2.5) has the form

∆(λ) = λ
1
2

P4
i=1 mi

(∣∣∣∣∣∣∣∣
α1ω

m1
1 β1ω

m1
2 η1ω

m1
3 γ1ω

m1
4

α2ω
m2
1 β2ω

m2
2 η2ω

m2
3 γ2ω

m2
4

α3ω
m3
1 β3ω

m3
2 η3ω

m3
3 γ3ω

m3
4

α4ω
m4
1 β4ω

m4
2 η4ω

m4
3 γ4ω

m4
4

∣∣∣∣∣∣∣∣
+ eλ

1/2 P4
i=1(−1)i+1ωi

∣∣∣∣∣∣∣∣
β1ω

m1
1 α1ω

m1
2 γ1ω

m1
3 η1ω

m1
4

β2ω
m2
1 α2ω

m2
2 γ2ω

m2
3 η2ω

m2
4

β3ω
m3
1 α3ω

m3
2 γ3ω

m3
3 η3ω

m3
4

β4ω
m4
1 α4ω

m4
2 γ4ω

m4
3 η4ω

m4
4

∣∣∣∣∣∣∣∣
)

= λm(θ + r(λ))

where m = m1 + m2 + m3 + m4 and r(λ) → 0 as |λ| → ∞ in the angle Bε(ω, ω̄).
Since θ 6= 0, there exist ρε > 0 such that for all complex numbers λ satisfying
λ ∈ Bε(ω, ω̄) and |λ| > ρε we have ∆(λ) 6= 0. So, for these λ, system (2.5) has a
unique solution

Ci(λ) =
1

∆(λ)

4∑
k=1

∆ik(λ)fk, i = 1, 2, 3, 4

where ∆ik(λ) is an algebraic complement of (i, k)-th element of the determinant
∆(λ). It is easy to see that each of the determinant ∆ik(λ) has the representation

∆ik(λ) = (θik + rik(λ))λm−mk

where θik are complex numbers and rik → 0 as |λ| → ∞ in the angle sBε(ω, ω̄).
Then we have

Ci(λ) =
4∑
k=1

λ−mk
θik + rik(λ)
θ + r(λ)

fk, i = 1, 2, 3, 4.

Therefore, the solution of problem (2.1)-(2.2) has the form

u(x, λ) =
4∑
i=1

4∑
k=1

λ−mk
θik + rik(λ)
θ + r(λ)

fkui(x, λ).
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From this it follows that for each integer l ≥ 0

‖u(l)‖Lq(−1,1) ≤ C
4∑
k=1

(
|λ|l−mk |fk|

4∑
i=1

‖ui(., λ)‖Lq(Ii)
)
. (2.6)

Further, by (2.4) we have the inequality

‖u1(., λ)‖qLq(−1,0) =
∫ 0

−1

eqRe(ω1λ)(x+1)dx ≤
∫ 0

−1

e−q|λ||ω1| sin ε
2 (x+1)dx

=
(
− q|λ||ω1| sin

ε

2
)−1(

e−q|λ||ω1| sin ε
2 − 1

)
≤ C(ε)|λ|−1

as |λ| → ∞ in the angle λ ∈ Bε(ω, ω̄). In a similar way we have

‖u1(·, λ)‖qLq(Ii) ≤ C(ε)|λ|−1, i = 2, 3, 4

as |λ| → ∞ in the angle λ ∈ Bε(ω, ω̄). Substituting these inequalities in (2.6) we
have

‖u(l)‖Lq(−1,1) ≤ C(ε)
4∑
k=1

|λ|l−mk−
1
q |fk|

which, in turn, gives us the needed estimation (2.3). The proof is complete. �

3. Fredholm property of problem with multipoint and functional
conditions

Let us consider problem (1.1)-(1.2) and the operator L corresponding to this
problem. Suppose that l ≥ max{2,max{m1,m2,m3,m4} + 1} and define a linear
operator L from W l

q(−1, 0)+̇W l
q(0, 1) into W l−2

q (−1, 0)+̇W l−2
q (0, 1) + C4 by action

low
Lu = (L(λ)u, L1u, L2u, L3u, L4u).

Theorem 3.1. Let the following conditions be satisfied:
(1) p1 6= 0, p2 6= 0;
(2) the functionals Fk, k = 1, 2, 3, 4, in Wmk

q (−1, 0)+̇Wmk
q (0, 1) are continuous;

(3) q(x) is measurable function on [−1, 0) ∪ (0, 1].
Then the linear operator L is bounded and Fredholm.

Proof. The operator L can be rewritten in the form

L0u =
(
L0(λ)u, L10u, L20u, L30u, L40u

)
,

L1u =
(
q(x)u+ λ0u,F1u,F2u,F3u,F4u

)
where λ0 ∈ Bε(ω, ω̄) is some complex number sufficiently large in modulus. By
Theorem 2.1 the operator L0 is an isomorphism from W l

q(−1, 0)+̇W l
q(0, 1) onto

W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4. Further, it is easy to see that the linear operator L1

acts compactly from W l
q(−1, 0)+̇W l

q(0, 1) onto W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4.
Consequently, we can apply the theorem of Fredholm operator perturbation [22,

p. 238] to the operator L = L0 + L1, which follows that L is Fredholm. Moreover,
it is obvious that the operator L is bounded. So, the proof of the theorem is
complete. �
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4. Isomorphism and coerciveness of the principal part of the problem

Consider problem (1.1)-(1.2) without internal points, namely,

L0(λ)u := p(x)u′′(x)− λu(x) = f(x), (4.1)

Lk0u := αku
(mk)(−1) + βku

(mk)(−0) + ηku
(mk)(+0) + γku

(mk)(1) = fk, (4.2)

for k = 1, 2, 3, 4. The corresponding operator is

L̃0u = (L0(λ)u, L10u, L20u, L30u, L40u).

Theorem 4.1. Let the following conditions be satisfied:
(1) θ 6= 0;
(2) l ≥ max{2,max{m1,m2,m3,m4}+ 1}.

Then for each ε > 0 there exist ρε > 0 such that for all complex numbers λ sat-
isfying λ ∈ Bε(ω, ω̄), |λ| > ρε the operator L̃0(λ) from W l

q(−1, 0)+̇W l
q(0, 1) onto

W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4 is an isomorphism and for these λ the following in-
equality holds for the solution of (4.1)–(4.2),

l∑
k=0

|λ|
l−k

2 ‖u‖Wq,k

≤ C(ε)
(
‖f‖Wq,l−2 + |λ|

l−2
2 ‖f‖Lq,0 +

4∑
υ=1

|λ|(l−mυ−
1
q )/2|fυ|

)
.

(4.3)

Proof. It is obvious that the linear operator L̃0(λ) is continuous from the space
W l
q(−1, 0)+̇W l

q(0, 1) to W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4. Let (f(x), f1, f2, f3, f4) ∈
W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4 be any element. We shall seek the solution u(x, λ) of
problem (4.1)-(4.2) in the form of the sum u(x, λ) = u1(x, λ) + u2(x, λ) as follows.
By fυ(x) (υ = 1, 2) we shall denote the restriction of f(x) on the interval Ωυ.
Let f̃υ(·) ∈ W l−2

q (R) be an extension of fυ(·) ∈ W l−2
q (Iυ) such that the extension

operator Sυfυ := f̃υ from W l−2
q (Iυ) to W l−2

q (R) is bounded for υ = 1, 2. [30,
Lemma 1.7.6], where as usual R = (−∞,∞). First consider the equations

−pυ(x)u′′(x) + λu(x) = f̃υ(x), x ∈ R

for υ = 1, 2. By applying the [30, Theorem 3.2.1] we see that this equation has a
unique solution ũ1υ = ũ1υ(·, λ) ∈ W l

q(R) and for u1υ(x, λ) (i.e. the restriction of
ũ1υ(x, λ on interval) Ωυ) the estimate

l∑
k=0

|λ|
l−k

2 ‖u1υ‖Wk
q (IΩυ ) ≤ C(ε)(‖f‖W l−2

q (Iυ) + |λ|
l−2
2 ‖f‖Lq(Ωυ)), (4.4)

for υ = 1, 2, is valid for all complex numbers λ satisfying λ ∈ Bε(ω, ω̄). Conse-
quently, the function

u1(x, λ) =

{
u11(x, λ), for x ∈ (−1, 0)
u12(x, λ), for x ∈ (0, 1)

satisfies equation (4.1). In terms of this solution, we construct the boundary-value
problem

p(x)u′′(x)− λu(x) = 0, x ∈ (−1, 0) ∪ (0, 1),
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Lk0u = fk − Lk0u1(., λ), k = 1, 2, 3, 4.

By Theorem 2.1, this problem has a unique solution u2 = u2(x, λ) that belongs to
W l
q(−1, 0)+̇W l

q(0, 1) for all complex numbers λ satisfying λ ∈ Bε(ω, ω̄), sufficiently
large in modulus, and for these λ the estimate

l∑
k=0

|λ|
l−k

2 ‖u2‖q,k ≤ C(ε)
4∑

υ=1

|λ|(l−mυ−
1
q ) 1

2 (|fυ|+ |Lυ0u1|) (4.5)

holds. By applying the of Theorem 2.1 and taking into account [27, Theorem
1.7.7/2], we have that for all λ ∈ Bε(ω, ω̄) and l ≥ max{2,max{m1,m2,m3,m4}+1}
that the following estimates hold.

|λ|(l−mυ−
1
q )/2|Lυ0u1| ≤ C|λ|(l−mυ−

1
q )/2‖u1‖Cmυ [−1,0]+Cmυ [0,1]

≤ C(|λ| l2 ‖u1‖q,0 + ‖u1‖q,l)

≤ C(ε)(‖f‖q,l−2 + |λ|
l−2
2 ‖f‖q,0).

(4.6)

From (4.5) and (4.6) we have the inequality

l∑
k=0

|λ|
l−k

2 ‖u2‖q,k

≤ C(ε)
(
‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0 +

4∑
υ=1

|λ|(l−mυ− 1
2 )/2|fυ|

)
.

(4.7)

It is easy to see that the function u(x, λ) defined as u(x, λ) = u1(x, λ) + u2(x, λ)
is the solution of the considered problem (4.1)-(4.2). Taking into account the
estimates (4.4) and (4.7), we see that for this solution the needed estimation
(4.3) is valid. Moreover, from estimate (4.3) it follows the uniqueness of the
solution. On the other hand by Theorem 3.1 the operator L̃ is Fredholm from
W l
q(−1, 0)+̇W l

q(0, 1) to W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4. Now, isomorphism of this
operator follows from the fact that it is a Fredholm and one-to-one operator. So,the
proof of the theorem is complete. �

5. Solvability and coerciveness of the main problem with nonlocal
boundary conditions

Now, we can study the main problem (1.1)-(1.2)

Theorem 5.1. Let the following conditions be satisfied:

(1) θ 6= 0;
(2) l ≥ max{2,max{m1,m2,m3,m4}+ 1},
(3) The functionals Fυ are continuous in Wmυ

q (−1, 0)+̇Wmυ
q (0, 1).

Then for each ε > 0 there exist ρε > 0 such that for all complex numbers λ ∈
Bε(ω, ω̄) for which |λ| > ρε the operator

L̃(λ)u := (L(λ)u, L1u, L2u, L3u, L4u)

is an isomorphism from W l
q(−1, 0)+̇W l

q(0, 1) onto W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4

and for these λ the following coercive estimate holds for the solution of problem
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(1.1)-(1.2)

l∑
k=0

|λ|
l−k

2 ‖u‖q,k ≤ C(ε)
(
‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0 +

4∑
υ=1

|λ|(l−mυ−
1
q )/2|fυ|

)
(5.1)

where C(ε) is a constant which depends only on ε.

Proof. Let (f(x), f1, f2, f3, f4) be any element of W l−2
q (−1, 0)+̇W l−2

q (0, 1)+̇C4. As-
sume that there exists a solution u = u(x, λ) of problem (1.1)-(1.2) corresponding
to this element. Then this solution satisfies the equalities

L0(λ)u = L(λ)u− q(x)u, (5.2)

Lk0u = Lku− Sku−Fku, k = 1, 2, 3, 4. (5.3)

By applying Theorem 4.1 to the problem (5.2)-(5.3) we have that for this solution
the following a priory estimate hold

l∑
k=0

|λ|
l−k

2 ‖u‖q,k ≤ C(ε)
(
‖L(λ)u− q(x)u‖q,l−2 + |λ|

l−2
2 ‖L(λ)u− q(x)u‖q,0

+
4∑

υ=1

|λ|(l−mυ−
1
q )/2|Lυu− Sku−Fυu|

)
+ C(ε)

(
‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0 + ‖q(x)u‖q,l−2

+ |λ|
l−2
2 ‖q(x)u‖q,0 +

4∑
υ=1

|λ|(l−mυ−
1
q )/2|fυ|

+
4∑

υ=1

|λ|(l−mυ−
1
q )/2(|Sku|+ |Fυu|)

)

(5.4)

Let δ be any real number satisfying

0 < δ < min
{1

2
, 1 + xki, |xki|, 1− xki : k = 1, 2, 3, 4, i = 1, 2, . . . , nk

}
.

By applying the same approach as in [24, sec. 2.8.3] it is easy to construct a function
ψδ(x) ∈ C∞0 [−1, 1] such that

ψδ(x) = 1 for x ∈ [−1 + δ,−δ] ∪ [δ, 1− δ] ,

ψδ(x) = 0 for x ∈ [−1,−1 +
δ

2
] ∪ [−δ

2
,
δ

2
] ∪ [1− δ

2
, 1]

and 0 ≤ ψδ(x) ≤ 1 for all x ∈ [−1, 1]. It is obvious that

|Sku| ≤ C‖(ψδu)(mk)‖C[−1,1]. (5.5)

By [25, Theorem 3.10.4], for u ∈W l
q(−1, 0)+̇W l

q(0, 1) the following estimate holds,

|λ|(l−mυ−
1
q )/2‖u(mυ)‖C[−1,1] ≤ C(‖u‖q,l + |λ| l2 ‖u‖q,0) . (5.6)
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By Theorem 5.1, from (5.5) and (5.6) it follows that for all λ ∈ Bε(ω, ω̄) sufficiently
large in modulus the following estimate holds,

|λ|(l−mυ−
1
q )/2|Sυu| ≤ C|λ|(l−mυ−

1
q )/2‖(ψδu)(mυ)‖C[−1,1]

≤ C
(
‖ψδu‖q,l + |λ| l2 ‖ψδu‖q,0

)
≤ C(ε)

(
‖L0(λ)(ψδu)‖q,l−2 + |λ|

l−2
2 ‖L0(λ)(ψδu)‖q,0

)
≤ C(ε)

(
‖L0(λ)u‖q,l−2 + |λ|

l−2
2 ‖L0(λ)u‖q,0

+ ‖q(x)u‖q,l−2 + |λ|
l−2
2 ‖q(x)u‖q,0 +

l−1∑
k=0

|λ|
l−1−k

2 ‖u‖q,k
)

≤ C(ε)
(
‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0

+ ‖q(x)u‖q,l−2 + |λ|
l−2
2 ‖q(x)u‖q,0 +

l−1∑
k=0

|λ|
l−1−k

2 ‖u‖q,k
)

(5.7)
By [5, Theorem 1.3.3] there is a positive constant C such that for all u in the set
W l
q(−1, 0)+̇W l

q(0, 1) and for each k = 0, 1, . . . , l− 1 the following inequality is valid

‖u‖q,k ≤ C‖u‖
k
k+1
q,k+1‖u‖

1
k+1
q,0 . (5.8)

Applying the well-known Young inequality

ab ≤ 1
p

(αa)p +
1
q

(
b

α
)q

where a > 0, b > 0, α > 0, 1 < p, q <∞, 1
p + 1

q = 1 to the right-hand of (5.7) for

a = ‖u‖
k
k+1
q,k+1, b = ‖u‖

1
k+1
q,0 , p =

k + 1
k

,

we have

‖u‖q,k ≤ C
( k

k + 1
α
k+1
k ‖u‖q,k+1 +

1
k + 1

α−(k+1)‖u‖q,0
)

for k = 0, 1, . . . , l − 1. We denote

A(α) = max
{
C

k

k + 1
α
k+1
k : k = 0, 1, . . . , l − 1

}
,

B(α) = max
{
C

1
k + 1

α−(k+1) : k = 0, 1, . . . , l − 1
}
.

Then from inequality (5.6), we have

|λ|(l−mυ−
1
q )/2|Sυu| ≤ C(ε)(‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0)

+ C(ε)
l−1∑
k=0

|λ|
l−1−k

2 (A(α)‖u‖q,k+1 +B(α)‖u‖q,0)

≤
(
C(ε)A(α) +D(ε, α)|λ|−1/2

) l∑
k=0

|λ|
l−k

2 ‖u‖q,k

(5.9)
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where D(ε, α) is a constant which depends only on ε and α. In view of [30, Theorem
1.7.7/2], for any ζ > 0 we obtain

‖u‖q,k ≤ ζ‖u‖q,k+1 + C(ζ)‖u‖q,0.
On the other hand, from [5, Lemma 1.8] and [25, Theorem 8.19] we have

|Fku| ≤
mk∑
j=0

(
|
∫

Ω1

Kk1j(t)u(j)(t)dt|+ |
∫

Ω1

Kk2j(t)u(j)(t)dt|
)

≤ sup
k

( mk∑
j=0

∫
Ω1

|Kk1j(t)u(j)(t)|dt+
mk∑
j=0

∫
Ω1

|Kk2j(t)u(j)(t)|dt
)

≤ sup
k

( mk∑
j=0

∫
Ω1

|Kk1j(t)u(t)|dt+
mk∑
j=0

∫
Ω1

|Kk2j(t)u(t)|dt
)

≤ C1‖u‖q,k + C2‖u‖q,k
≤ C‖u‖q,k.

(5.10)

From (5.8) and (5.9) we have

‖q(x)u‖q,l−2 + |λ|
l−2
2 ‖q(x)u‖q,0 +

4∑
υ=1

|λ|(l−mυ−
1
q )/2(|Sku|+ |Fυu|)

≤ C(ε)(‖f‖q,l−2 + |λ|
l−2
2 ‖f‖q,0) + ζ(‖u‖q,l + |λ|

l−2
2 ‖u‖q,0)

+ C(ζ)|λ|
l−2
2 ‖u‖q,0 + (C(ε)A(α) +D(ε, α)|λ|−1/2)

l∑
k=0

|λ|
l−k

2 ‖u‖q,k

+ C

4∑
υ=1

|λ|(l−mυ−
1
q )/2‖u‖q,k

≤ C(ε)(‖f‖q,l−2 + |λ|
l−2
2 ‖f‖q,0)

+
(
C(ε)A(α) +D(ε, α)|λ|−

1
2q
) l∑
k=0

|λ|
l−k

2 ‖u‖q,k

(5.11)

Substituting (5.10) into (5.4) we obtain
l∑

k=0

|λ|
l−k

2 ‖u‖q,k ≤ C(ε)
(
‖f‖q,l−2 + |λ|

l−2
2 ‖f‖q,0 +

4∑
υ=1

|λ|(l−mυ−
1
q )/2|fυ|

)
+ (C(ε)A(α) +D(ε, α)|λ|−

1
2q )

l∑
k=0

|λ|
l−k

2 ‖u‖q,k.

For a fixed ε > 0 we can choose α > 0 so small, and |λ| so large that

C(ε)A(α) +D(ε, α)|λ|−1/2q < 1.

Thus, for λ ∈ Bε(ω, ω̄) sufficiently large in modulus we obtain a priori estimate
(5.1). From this estimate it follows the uniqueness property of the solution of prob-
lem (1.1)-(1.2), i.e. the operator L̃(λ) is one-to-one operator. Moreover, by Theo-
rem 3.1 the operator L̃(λ) fromW l

q(−1, 0)+̇W l
q(0, 1) toW l−2

q (−1, 0)+̇W l−2
q (0, 1)+̇C4

is Fredholm. Consequently, the existence of a solution results in its uniqueness. So,
the proof of the theorem is complete. �
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