ASYMMETRIC CRITICAL FRACTIONAL p-LAPLACIAN PROBLEMS

LI HUANG, YANG YANG
Communicated by Marco Squassina

Abstract

We consider the asymmetric critical fractional p-Laplacian problem $$
\begin{gathered} (-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u+u_{+}^{p_{s}^{*}-1}, \quad \text { in } \Omega ; \\ u=0, \quad \text { in } \mathbb{R}^{N} \backslash \Omega ; \end{gathered}
$$ where $\lambda>0$ is a constant, $p_{s}^{*}=N p /(N-s p)$ is the fractional critical Sobolev exponent, and $u_{+}(x)=\max \{u(x), 0\}$. This extends a result in the literature for the local case $s=1$. We prove the theorem based on the concentration compactness principle of the fractional p-Laplacian and a linking theorem based on the \mathbb{Z}_{2}-cohomological index.

1. Introduction

Beginning with the seminal paper of Ambrosetti and Prodi [2], elliptic boundary value problems with asymmetric nonlinearities have been extensively studied (see, e.g., Berger and Podolak [5], Kazdan and Warner [17], Dancer [8, Amann and Hess [1], and the references therein). In particular, Deng [9], De Figueiredo and Yang [11, Aubin and Wang [3], Calanchi and Ruf [7, and Zhang et al. 32] have obtained existence and multiplicity results for semilinear Ambrosetti-Prodi type problems with critical nonlinearities using variational methods. And the results for the quasilinear Ambrosetti-Prodi type problems can be found in Perera et al. 29.

Recently, a lot of attention has been given to the study of the elliptic equations involving the fractional p-Laplacian, which is the nonlinear nonlocal operator defined on smooth functions by

$$
(-\Delta)_{p}^{s} u(x)=2 \lim _{\epsilon \backslash 0} \int_{\mathbb{R}^{N} \backslash B_{\epsilon}(x)} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+s p}} d y
$$

where $p \in(1,+\infty), s \in(0,1)$ and $N>s p$. Some motivation that have led to the study of this kind of operator can be found in Caffarelli [6]. The operator $(-\Delta)_{p}^{s}$ leads naturally to the quasilinear problem

$$
(-\Delta)_{p}^{s} u=f(x, u), \quad \text { in } \Omega
$$

[^0]$$
u=0, \quad \text { in } \mathbb{R}^{N} \backslash \Omega
$$
where Ω is a domain in \mathbb{R}^{N}. There is currently a rapidly growing literature on this problem when Ω is bounded with Lipschitz boundary. In particular, fractional p-eigenvalue problems have been studied in [12, 16, 18, 26], global Hölder regularity in [15, 22], existence theory in the critical case in [27, 19, 20, 21, 22].

Motivated by [29, in this article, we consider the asymmetric critical fractional p-Laplacian problem

$$
\begin{gather*}
(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u+u_{+}^{p_{s}^{*}-1}, \quad \text { in } \Omega \tag{1.1}\\
u=0, \quad \text { in } \mathbb{R}^{N} \backslash \Omega
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with Lipschitz boundary, $\lambda>0$ is a constant, $p_{s}^{*}=N p /(N-s p)$ is the fractional critical Sobolev exponent, and $u_{+}(x)=$ $\max \{u(x), 0\}$.

We call that $\lambda \in \mathbb{R}$ is a Dirichlet eigenvalue of $(-\Delta)_{p}^{s}$ in Ω if the problem

$$
\begin{gather*}
(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u, \quad \text { in } \Omega \tag{1.2}\\
u=0, \text { in } \mathbb{R}^{N} \backslash \Omega
\end{gather*}
$$

has a nontrivial weak solution. The first eigenvalue λ_{1} is positive, simple, and has an associated eigenfunction φ_{1} that is positive in Ω. And if $\lambda \geq \lambda_{2}$ is an eigenvalue, u is a λ-eigenfunction, then u changes sign in Ω. For problem (1.1) when $\lambda=\lambda_{1}$, $t \varphi_{1}$ is clearly a negative solution for any $t<0$. So here we focus on the case λ is not an eigenvalue of $(-\Delta)_{p}^{s}$, and our result is the following.

Theorem 1.1. Let $1<p<\infty, s \in(0,1), N>s p$, and $\lambda>0$. Then problem 1.1) has a nontrivial weak solution in the following cases
(i) $N=s p^{2}$ and $0<\lambda<\lambda_{1}$;
(ii) $N>s p^{2}$ and λ is not an eigenvalue of $(-\Delta)_{p}^{s}$.

2. Preliminaries and some known results

Let

$$
[u]_{s, p}=\left(\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p}
$$

be the Gagliardo seminorm of a measurable function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$, and let

$$
W^{s, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right):[u]_{s, p}<\infty\right\}
$$

be the fractional Sobolev space endowed with the norm

$$
\|u\|_{s, p}=\left(|u|_{p}^{p}+[u]_{s, p}^{p}\right)^{1 / p}
$$

where $|\cdot|_{p}$ is the norm in $L^{p}\left(\mathbb{R}^{N}\right)$. We work in the closed linear subspace

$$
W_{0}^{s, p}(\Omega)=\left\{u \in W^{s, p}\left(\mathbb{R}^{N}\right): u=0 \text { a.e. in } \mathbb{R}^{N} \backslash \Omega\right\}
$$

equivalently renormed by setting $\|\cdot\|=[\cdot]_{s, p}$, which is a uniformly convex Banach space. The imbedding $W_{0}^{s, p}(\Omega) \hookrightarrow L^{r}(\Omega)$ is continuous for $r \in\left[1, p_{s}^{*}\right]$ and compact for $r \in\left[1, p_{s}^{*}\right)$. Weak solutions of problem (1.1) coincide with critical points of the C^{1}-functional

$$
I_{\lambda}(u)=\frac{1}{p} \iint_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}} d x d y-\frac{\lambda}{p} \int_{\Omega}|u|^{p} d x-\frac{1}{p_{s}^{*}} \int_{\Omega} u_{+}^{p_{s}^{*}} d x
$$

for $u \in W_{0}^{s, p}(\Omega)$.
We recall that I_{λ} satisfies the Cerami compactness condition at the level $c \in \mathbb{R}$, or the $(C)_{c}$ condition for short, if every sequence $\left\{u_{j}\right\} \subset W_{0}^{s, p}(\Omega)$ such that $I_{\lambda}\left(u_{j}\right) \rightarrow c$ and $\left(1+\left\|u_{j}\right\|\right) I_{\lambda}^{\prime}\left(u_{j}\right) \rightarrow 0$, called a $(C)_{c}$ sequence, has a convergent subsequence.

Let

$$
S=\inf _{u \in W_{0}^{s, p}(\Omega) \backslash\{0\}} \frac{\|u\|^{p}}{|u|_{p_{s}^{*}}^{p}}
$$

be the best constant in the Sobolev inequality. From [4], we know that for $1<p<$ $\infty, 0<s<1, N>p s$, there exists a minimizer for S, and for every minimizer U, there exist $x_{0} \in \mathbb{R}^{N}$ and a constant sign monotone function $u: \mathbb{R} \rightarrow \mathbb{R}$ such that $U(x)=u\left(\left|x-x_{0}\right|\right)$. In the following, we shall fix a radially symmetric nonnegative decreasing minimizer $U=U(r)$ for S. Multiplying U by a positive constant if necessary, we may assume that

$$
\begin{equation*}
(-\Delta)_{p}^{s} U=U^{p_{s}^{*}-1} \tag{2.1}
\end{equation*}
$$

For any $\varepsilon>0$, the function

$$
U_{\varepsilon}(x)=\frac{1}{\varepsilon^{(N-s p) / p}} U\left(\frac{|x|}{\varepsilon}\right)
$$

is also a minimizer for S satisfying 2.1]. In [20, Lemma 2.2], the following asymptotic estimates for U were provided.

Lemma 2.1 ([20, Lemma 2.2]). There exist constants $c_{1}, c_{2}>0$ and $\theta>1$ such that for all $r \geq 1$,

$$
\frac{c_{1}}{r^{(N-s p) /(p-1)}} \leq U(r) \leq \frac{c_{2}}{r^{(N-s p) /(p-1)}}
$$

and

$$
\frac{U(\theta r)}{U(r)} \leq \frac{1}{2}
$$

Assume, without loss of generality, that $0 \in \Omega$. For $\varepsilon, \delta>0$, let

$$
m_{\varepsilon, \delta}=\frac{U_{\varepsilon}(\delta)}{U_{\varepsilon}(\delta)-U_{\varepsilon}(\theta \delta)}
$$

let

$$
g_{\varepsilon, \delta}(t)= \begin{cases}0, & 0 \leq t \leq U_{\varepsilon}(\theta \delta) \\ m_{\varepsilon, \delta}^{p}\left(t-U_{\varepsilon}(\theta \delta)\right), & U_{\varepsilon}(\theta \delta) \leq t \leq U_{\varepsilon}(\delta) \\ t+U_{\varepsilon}(\delta)\left(m_{\varepsilon, \delta}^{p-1}-1\right), & t \geq U_{\varepsilon}(\delta)\end{cases}
$$

and let

$$
G_{\varepsilon, \delta}(t)=\int_{0}^{t} g_{\varepsilon, \delta}^{\prime}(\tau)^{1 / p} d \tau= \begin{cases}0, & 0 \leq t \leq U_{\varepsilon}(\theta \delta) \\ m_{\varepsilon, \delta}\left(t-U_{\varepsilon}(\theta \delta)\right), & U_{\varepsilon}(\theta \delta) \leq t \leq U_{\varepsilon}(\delta) \\ t, & t \geq U_{\varepsilon}(\delta)\end{cases}
$$

The functions $g_{\varepsilon, \delta}$ and $G_{\varepsilon, \delta}$ are nondecreasing and absolutely continuous. Consider the radially symmetric non-increasing function

$$
u_{\varepsilon, \delta}(r)=G_{\varepsilon, \delta}\left(U_{\varepsilon}(r)\right)
$$

which satisfies

$$
u_{\varepsilon, \delta}(r)= \begin{cases}U_{\varepsilon}(r), & r \leq \delta \\ 0, & r \geq \theta \delta\end{cases}
$$

We have the following estimates for $u_{\varepsilon, \delta}$ which were proved in [20, Lemma 2.7].
Lemma 2.2 ([20, Lemma 2.7]). There exists a constant $C=C(N, p, s)>0$ such that for any $\varepsilon \leq \delta / 2$,

$$
\left.\begin{array}{c}
\left\|u_{\varepsilon, \delta}\right\|^{p} \leq S^{N / s p}+C\left(\frac{\varepsilon}{\delta}\right)^{(N-s p) /(p-1)} \\
\left|u_{\varepsilon, \delta}\right|_{p}^{p} \geq \begin{cases}\frac{1}{C} \varepsilon^{s p} \log \left(\frac{\delta}{\varepsilon}\right), & \text { if } N=s p^{2} \\
\frac{1}{C} \varepsilon^{s p}, & \text { if } N>s p^{2}\end{cases} \\
\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p_{s}^{*}} \geq S^{N / s p}-C\left(\frac{\varepsilon}{\delta}\right)^{N /(p-1)}
\end{array}\right\} \begin{aligned}
& \left\|u_{\varepsilon, \delta}\right\|^{p}-\lambda\left|u_{\varepsilon, \delta}\right|^{p} \\
& \left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p} \leq \begin{cases}S-\frac{\lambda}{C} \varepsilon^{s p} \log \left(\frac{\delta}{\varepsilon}\right)^{*}+C\left(\frac{\varepsilon}{\delta}\right)^{s p}, & N=s p^{2} \\
S-\frac{\lambda}{C} \varepsilon^{s p}+C\left(\frac{\varepsilon}{\delta}\right)^{(N-s p) /(p-1)}, & N>s p^{2}\end{cases} \tag{2.3}
\end{aligned}
$$

For $p>1$, and the eigenvalues of problem (1.2), we define a non-decreasing sequence λ_{k} by means of the cohomological index. This type of construction was introduced for the p-Laplacian by Perera [23]. (see also Perera and Szulkin [25]), and it is slightly different from the traditional one, based on the Krasnoselskii genus (which does not give the additional Morse-theoretical information that we need here).

We briefly recall the definition of Z_{2}-cohomological index by Fadell and Rabinowitz [10]. Let W be a Banach space and let \mathcal{A} denote the class of symmetric subsets of $W \backslash\{0\}$. For $A \in \mathcal{A}$, let $\bar{A}=A / \mathbb{Z}_{2} 2$ be the quotient space of A with each u and $-u$ identified, let $f: \bar{A} \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ be the classifying map of \bar{A}, and let $f^{*}: H^{*}\left(\mathbb{R} \mathrm{P}^{\infty}\right) \rightarrow H^{*}(\bar{A})$ be the induced homomorphism of the Alexander-Spanier cohomology rings. The cohomological index of A is defined by

$$
i(A)= \begin{cases}0, & \text { if } A=\emptyset \\ \sup \left\{m \geq 1: f^{*}\left(\omega^{m-1}\right) \neq 0\right\}, & \text { if } A \neq \emptyset\end{cases}
$$

where $\omega \in H^{1}\left(\mathbb{R} \mathrm{P}^{\infty}\right)$ is the generator of the polynomial ring $H^{*}\left(\mathbb{R} \mathrm{P}^{\infty}\right)=\mathbb{Z}_{2} 2[\omega]$. See Perera et al. 24] for details.

So the eigenvalues of problem $\sqrt[1.2]{ }$, coincide with critical values of the functional

$$
\Psi(u)=\frac{1}{|u|_{p}^{p}}, \quad u \in \mathcal{M}=\left\{u \in W_{0}^{s, p}(\Omega):\|u\|=1\right\}
$$

Let \mathcal{F} denote the class of symmetric subsets of \mathcal{M}, and set

$$
\lambda_{k}:=\inf _{M \in \mathcal{F}, i(M) \geq k} \sup _{u \in M} \Psi(u), \quad k \in \mathbb{N}
$$

Then $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow+\infty$ is a sequence of eigenvalues of problem $\sqrt{1.2}$, and

$$
\lambda_{k}<\lambda_{k+1} \Longrightarrow i\left(\Psi^{\lambda_{k}}\right)=i\left(\mathcal{M} \backslash \Psi_{\lambda_{k+1}}\right)=k
$$

where

$$
\Psi^{a}=\{u \in \mathcal{M}: \Psi(u) \leq a\}, \quad \Psi_{a}=\{u \in \mathcal{M}: \Psi(u) \geq a\}, \quad a \in \mathbb{R}
$$

From [20, Proposition 3.1], the sublevel set $\Psi^{\lambda_{k}}$ has a compact symmetric subset $E\left(\lambda_{k}\right)$ of index k that is bounded in $L^{\infty}(\Omega)$. We may assume without loss of
generality that $0 \in \Omega$. Let $\delta_{0}=(0, \partial \Omega)$, take a smooth function $\eta:[0, \infty) \rightarrow[0,1]$ such that $\eta(s)=0$ for $s \leq 3 / 4$ and $\eta(s)=1$ for $s \geq 1$, set

$$
v_{\delta}(x)=\eta\left(\frac{|x|}{\delta}\right) v(x), \quad v \in E\left(\lambda_{k}\right), 0<\delta \leq \frac{\delta_{0}}{2}
$$

and let $E_{\delta}=\left\{\pi\left(v_{\delta}\right): v \in E\left(\lambda_{k}\right)\right\}$, where $\pi: W_{0}^{s, p}(\Omega) \backslash\{0\} \rightarrow \mathcal{M}, u \mapsto u /\|u\|$ is the radial projection onto \mathcal{M}.
Lemma 2.3 ([20, Proposition 3.2]). There exists a constant $C=C(N, \Omega, p, s, k)>$ 0 such that for all sufficiently small $\delta>0$,
(i) $\frac{1}{C} \leq|\omega|_{q} \leq C$, for all $\omega \in E_{\delta}, 1 \leq q \leq \infty$,
(ii) $\sup _{\omega \in E_{\delta}} I_{\lambda}(\omega) \leq \lambda_{k}+C \delta^{N-s p}$,
(iii) $E_{\delta} \cap \Psi_{\lambda_{k+1}}=\emptyset, i\left(E_{\delta}\right)=k$,
(iv) $\operatorname{supp} \omega \cap \operatorname{supp} \pi\left(u_{\varepsilon, \delta}\right)=\emptyset$ for all $\omega \in E_{\delta}$,
(v) $\pi\left(u_{\varepsilon, \delta}\right) \notin E_{\delta}$.

We need the following two lemmas for the fractional p-Laplacian.
Lemma 2.4 ([14, P.161]). If $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset W_{0}^{s, p}(\Omega)$ is such that $u_{n} \rightharpoonup u$ in $W_{0}^{s, p}(\Omega)$, and

$$
\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)\left(\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)\right)}{|x-y|^{N+p s}} d x d y \rightarrow 0
$$

as $n \rightarrow \infty$, then $u_{n} \rightarrow u$ in $W_{0}^{s, p}(\Omega)$ as $n \rightarrow \infty$.
Lemma 2.5 ([19, Theorem 2.5]). Let $\left\{u_{n}\right\}$ be a bounded sequence in $W_{0}^{s, p}(\Omega)$, let $\left|D^{s} u_{n}\right|^{p}(x):=\int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p}}{|x-y|^{N+p s}} d y$, for a.e. $x \in \mathbb{R}^{N}$. Then, up to a subsequence, there exists $u \in W_{0}^{s, p}(\Omega)$, two Borel regular measures μ and ν, Λ denumerable, $x_{j} \in \Omega, \nu_{j} \geq 0, \mu_{j} \geq 0$ with $\mu_{j}+\nu_{j}>0$, such that

$$
\begin{gathered}
u_{n} \rightharpoonup u \quad \text { weakly in } \quad W_{0}^{s, p}(\Omega), \quad \text { and } u_{n} \rightarrow u \quad \text { strongly in } L^{p}(\Omega) \\
\left|D^{s} u_{n}\right|^{p} \xrightarrow{w^{*}} d \mu, \quad\left|u_{n}\right|^{p_{s}^{*}} \xrightarrow{w^{*}} d \nu \\
d \mu \geq\left|D^{s} u\right|^{p}+\sum_{j \in \Lambda} \mu_{j} \delta_{x_{j}}, \quad \mu_{j}:=\mu\left(\left\{x_{j}\right\}\right) \\
d \nu=|u|^{p_{s}^{*}}+\sum_{j \in \Lambda} \nu_{j} \delta_{x_{j}}, \quad \nu_{j}:=\nu\left(\left\{x_{j}\right\}\right) \\
\mu_{j} \geq S \nu_{j}^{p / p_{s}^{*}}
\end{gathered}
$$

We will prove Theorems 1.1 using the following abstract critical point theorem proved in Yang and Perera [31, Theorem 2.2], which was also used successfully in [28, 29, 20, and generalizes the well-known linking theorem of Rabinowitz [30].
Lemma 2.6 (31, Theorem 2.2]). Let W be a Banach space, let $S=\{u \in W$: $\|u\|=1\}$ be the unit sphere in W, and let $\pi: W \backslash\{0\} \rightarrow S, u \mapsto u /\|u\|$ be the radial projection onto S. Let I be a C^{1}-function on W and let A_{0} and B_{0} be disjoint nonempty closed symmetric subsets of S such that

$$
i\left(A_{0}\right)=i\left(S \backslash B_{0}\right)<\infty
$$

Assume that there exist $R>r>0$ and $v \in S \backslash A_{0}$ such that

$$
\sup I(A) \leq \inf I(B), \quad \sup I(X)<\infty
$$

where

$$
\begin{gathered}
A=\left\{t u: u \in A_{0}, 0 \leq t \leq R\right\} \cup\left\{R \pi((1-t) u+t v): u \in A_{0}, 0 \leq t \leq 1\right\}, \\
B=\left\{r u: u \in B_{0}\right\}, \quad X=\{t u: u \in A,\|u\|=R, 0 \leq t \leq 1\}
\end{gathered}
$$

Let $\Gamma=\left\{\gamma \in C(X, W): \gamma(X)\right.$ is closed and $\left.\left.\gamma\right|_{A}=i d_{A}\right\}$, and set

$$
c:=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma(X)} I(u)
$$

Then

$$
\inf I(B) \leq c \leq \sup I(X)
$$

in particular, c is finite. If, in addition, I satisfies the $(C)_{c}$ condition, then c is a critical value of I.

3. Proof of Theorem 1.1

First, we will give our main lemma.
Lemma 3.1. If $\lambda \neq \lambda_{1}$, then I_{λ} satisfies the $(C)_{c}$ condition for all $c<\frac{s}{N} S^{N / s p}$.
Proof. Let $c<\frac{s}{N} S^{N / s p}$, and let $\left\{u_{j}\right\}$ be a $(C)_{c}$ sequence. First we show that $\left\{u_{j}\right\}$ is bounded. We have

$$
\begin{align*}
& \frac{1}{p} \iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p}}{|x-y|^{N+p s}} d x d y-\frac{\lambda}{p} \int_{\Omega}\left|u_{j}\right|^{p} d x-\frac{1}{p_{s}^{*}} \int_{\Omega} u_{j+}^{p_{s}^{*}} d x=c+o(1) \tag{3.1}\\
& \quad \iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)(v(x)-v(y))}{|x-y|^{N+p s}} d x d y \\
& \quad-\lambda \int_{\Omega}\left|u_{j}\right|^{p-2} u_{j} v d x-\int_{\Omega} u_{j+}^{p_{s}^{*}-1} v d x \tag{3.2}\\
& \quad=\frac{o(1)\|v\|}{1+\left\|u_{j}\right\|}
\end{align*}
$$

Taking $v=u_{j}$ in (3.2) and combing with (3.1) gives

$$
\begin{equation*}
\int_{\Omega} u_{j+}^{p_{s}^{*}} d x=\frac{N}{s} c+o(1) \tag{3.3}
\end{equation*}
$$

Taking $v=u_{j+}$ in (3.2), and using the equality

$$
\begin{equation*}
\left|u_{+}(x)-u_{+}(y)\right|^{p} \leq|u(x)-u(y)|^{p-2}(u(x)-u(y))\left(u_{+}(x)-u_{+}(y)\right) \tag{3.4}
\end{equation*}
$$

gives

$$
\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j+}(x)-u_{j+}(y)\right|^{p}}{|x-y|^{N+p s}} d x d y \leq \lambda \int_{\Omega} u_{j+}^{p} d x+\int_{\Omega} u_{j+}^{p_{s}^{*}} d x+o(1)
$$

So $\left\{u_{j+}\right\}$ is bounded in $W_{0}^{s, p}(\Omega)$. Suppose $\rho_{j}:=\left\|u_{j}\right\|=\left(\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p}}{|x-y|^{N+p s}}\right)^{1 / p} \rightarrow$ ∞ for a renamed subsequence. Then $\tilde{u}_{j}=\frac{u_{j}}{\left\|u_{j}\right\|}$ converges to some \tilde{u} weakly in $W_{0}^{s, p}(\Omega)$, strongly in $L^{q}(\Omega)$ for $1 \leq q<p_{s}^{*}$, and a.e. in Ω for a further subsequence. Since the sequence $\left\{u_{j+}\right\}$ is bounded, dividing 3.1) by ρ_{j}^{p} and 3.2 by ρ_{j}^{p-1} and passing to the limit then gives

$$
\lambda \int_{\Omega}|\tilde{u}|^{p} d x=1
$$

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2 N}} \frac{|\tilde{u}(x)-\tilde{u}(y)|^{p-2}(\tilde{u}(x)-\tilde{u}(y))(v(x)-v(y))}{|x-y|^{N+p s}} d x d y \\
& =\lambda \int_{\Omega}|\tilde{u}|^{p-2} \tilde{u} v d x, \quad \forall v \in W_{0}^{s, p}(\Omega)
\end{aligned}
$$

respectively. Moreover, since $\tilde{u}_{j+}=u_{j+} / \rho_{j} \rightarrow 0, \tilde{u} \leq 0$ a.e. Hence $\tilde{u}=t \varphi_{1}$ for some $t<0$ and $\lambda=\lambda_{1}$, this is a contradiction with assumption. So $\left\{u_{j}\right\}$ is bounded, and for a renamed subsequence, it converges to some u weakly in $W_{0}^{s, p}(\Omega)$ and $L^{p_{s}^{*}}(\Omega)$. Since $\left\{u_{j+}\right\}$ is bounded, according to Lemma 2.5 , a renamed subsequence of which then converges to some $v \geq 0$ weakly in $\left.W_{0}^{s, p} \bar{\Omega}\right)$, strongly in $L^{q}(\Omega)$ for $1 \leq q<p_{s}^{*}$ and a.e. in Ω, and

$$
\begin{equation*}
\left|D^{s} u_{j+}\right|^{p} \xrightarrow{w^{*}} d \mu, \quad\left|u_{j+}\right|^{p_{s}^{*}} \xrightarrow{w^{*}} d \nu, \tag{3.5}
\end{equation*}
$$

then there exists an at most countable index set Λ and points $x_{i} \in \Omega, \quad i \in \Lambda$, such that

$$
\begin{align*}
d \mu \geq\left|D^{s} v\right|^{p}+\sum_{i \in \Lambda} \mu_{i} \delta_{x_{i}}, \quad \mu_{i}:=\mu\left(\left\{x_{i}\right\}\right) \\
d \nu=|v|^{p_{s}^{*}}+\sum_{i \in \Lambda} \nu_{i} \delta_{x_{i}}, \quad \nu_{i}:=\nu\left(\left\{x_{i}\right\}\right) \tag{3.6}
\end{align*}
$$

where $\mu_{i}, \nu_{i} \geq 0, \mu_{i}+\nu_{i}>0$, and $\mu_{i} \geq S \nu_{i}^{p / p_{s}^{*}}$.
Now for any $\rho>0$, let $\varphi_{i, \rho} \in C_{c}^{\infty}\left(B_{2 \rho}\left(x_{i}\right)\right)$ satisfy

$$
0 \leq \varphi_{i, \rho},\left.\quad \varphi_{i, \rho}\right|_{B_{\rho}}=1, \quad\left|\varphi_{i, \rho}\right|_{\infty} \leq 1, \quad\left|\nabla \varphi_{i, \rho}\right|_{\infty} \leq C / \rho
$$

From [19, (2.14)], for all $w \in L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\lim _{\rho \backslash 0} \int_{\mathbb{R}^{N}}|w|^{p}\left|D^{s} \varphi_{i, \rho}\right|^{p} d x=0 \tag{3.7}
\end{equation*}
$$

Testing equation 3.2 with $\varphi_{i, \rho} u_{j+}$, which is also bounded in $W_{0}^{s, p}(\Omega)$, from (3.4), we obtain

$$
\begin{equation*}
o(1) \tag{3.8}
\end{equation*}
$$

$$
\begin{aligned}
= & \iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)\left(\varphi_{i, \rho}(x) u_{j+}(x)-\varphi_{i, \rho}(y) u_{j+}(y)\right)}{|x-y|^{N+p s}} d x d y \\
& -\lambda \int_{\Omega}\left|u_{j}\right|^{p-2} u_{j} \varphi_{i, \rho} u_{j+} d x-\int_{\Omega} u_{j+}^{p_{s}^{*}-1} \varphi_{i, \rho} u_{j+} d x \\
= & \iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)\left(u_{j+}(x)-u_{j+}(y)\right)}{|x-y|^{N+p s}} \varphi_{i, \rho}(x) d x d y \\
& -\int_{\Omega} u_{j+}^{p_{s}^{*}} \varphi_{i, \rho} d x \\
& +\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right) u_{j+}(y)\left(\varphi_{i, \rho}(x)-\varphi_{i, \rho}(y)\right)}{|x-y|^{N+p s}} d x d y \\
& -\lambda \int_{\Omega}\left|u_{j}\right|^{p-2} u_{j} \varphi_{i, \rho} u_{j+} d x \\
\geq & \iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j+}(x)-u_{j+}(y)\right|^{p}}{|x-y|^{N+p s}} \varphi_{i, \rho}(x) d x d y-\int_{\Omega} u_{j+}^{p_{s}^{*}} \varphi_{i, \rho} d x \\
& +\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right) u_{j+}(y)\left(\varphi_{i, \rho}(x)-\varphi_{i, \rho}(y)\right)}{|x-y|^{N+p s}} d x d y
\end{aligned}
$$

$$
\begin{equation*}
-\lambda \int_{\Omega}\left|u_{j}\right|^{p-2} u_{j} \varphi_{i, \rho} u_{j+} d x \tag{3.9}
\end{equation*}
$$

By (3.5), we have

$$
\begin{aligned}
\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j+}(x)-u_{j+}(y)\right|^{p}}{|x+y|^{N+s p}} \varphi_{i, \rho}(x) d x d y & \rightarrow \int_{\mathbb{R}^{N}} \varphi_{i, \rho} d \mu \\
\int_{\Omega} u_{j+}^{p_{s}^{*}} \varphi_{i, \rho} d x & \rightarrow \int_{\Omega} \varphi_{i, \rho} d \nu \\
\int_{\Omega} u_{j+}^{p} \varphi_{i, \rho} d x & \rightarrow \int_{\Omega} v^{p} \varphi_{i, \rho} d x
\end{aligned}
$$

Moreover, by Hölder's inequality, we obtain

$$
\begin{align*}
& \left|\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right) u_{j+}(y)\left(\varphi_{i, \rho}(x)-\varphi_{i, \rho}(y)\right)}{|x-y|^{N+p s}} d x d y\right| \\
& \leq \iint_{\mathbb{R}^{2 N}}\left|\frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right) u_{j+}(y)\left(\varphi_{i, \rho}(x)-\varphi_{i, \rho}(y)\right)}{|x-y|^{N+p s}}\right| d x d y \\
& \leq\left(\iint_{\mathbb{R}^{2 N}} \left\lvert\, \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)}{\left.\left.|x-y|^{\frac{(p-1)(N+p s)}{p}}\right|^{p /(p-1)} d x d y\right)^{(p-1) / p}}\right.\right. \\
& \quad \times\left(\int_{\mathbb{R}^{N}}\left|u_{j+}\right|^{p}\left|D^{s} \varphi_{i, \rho}\right|^{p} d y\right)^{1 / p} . \tag{3.10}
\end{align*}
$$

Notice that $\left|D^{s} \varphi_{i, \rho}\right|^{p} \in L^{\infty}\left(\mathbb{R}^{N}\right)$, since

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{\left|\varphi_{i, \rho}(x)-\varphi_{i, \rho}(y)\right|^{p}}{|x-y|^{N+p s}} d y \leq \frac{C}{\rho^{p}} \int_{\mathbb{R}^{N}} \frac{\min \left\{1,|x-y|^{p}\right\}}{|x-y|^{N+p s}} d y \leq \frac{C}{\rho^{p}}, \tag{3.11}
\end{equation*}
$$

then

$$
\limsup _{j \rightarrow+\infty} \int_{\mathbb{R}^{N}}\left|u_{j+}\right|^{p}\left|D^{s} \varphi_{i, \rho}\right|^{p} d y=\int_{\mathbb{R}^{N}} v^{p}\left|D^{s} \varphi_{i, \rho}\right|^{p} d y
$$

passing to the limit in 3.9 gives,

$$
\int_{\mathbb{R}^{N}} \varphi_{i, \rho} d \mu \leq \int_{\Omega} \varphi_{i, \rho} d \nu+C\left(\int_{\mathbb{R}^{N}} v^{p}\left|D^{s} \varphi_{i, \rho}\right|^{p} d y\right)^{1 / p}+\lambda \int_{\Omega} v^{p} \varphi_{i, \rho} d x .
$$

Letting $\rho \searrow 0$ and using (3.7), gives $\nu_{i} \geq \mu_{i}$, which together with $\mu_{i} \geq S \nu_{i}^{p / p_{s}^{*}}$, then give $\nu_{i}=0$ or $\nu_{i} \geq S^{N / s p}$.

We claim that $\nu_{i} \geq S^{N / s p}$ is not possible to hold. Indeed, passing to the limit in (3.3) and by (3.5) and 3.6), then $\nu_{i} \leq \frac{N}{s} c<S^{N / s p}$. So $\nu_{i}=0, \Lambda$ is empty, and

$$
\int_{\Omega} u_{j+}^{p_{s}^{*}} d x \rightarrow \int_{\Omega} v^{p_{s}^{*}} d x
$$

then $u_{j+} \rightarrow v$ strongly in $L^{p_{s}^{*}}(\Omega)$ by uniform convexity. Combining the fact that u_{j} converges to u weakly in $L^{p_{s}^{*}}(\Omega)$,

$$
\int_{\Omega} u_{j+}^{p_{s}^{*}-1}\left(u_{j}-u\right) d x \rightarrow 0
$$

Now we have

$$
\begin{aligned}
& \left\langle I_{\lambda}^{\prime}\left(u_{j}\right),\left(u_{j}-u\right)\right\rangle \\
& =\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)\left(\left(u_{j}-u\right)(x)-\left(u_{j}-u\right)(y)\right)}{|x-y|^{N+p s}} d x d y
\end{aligned}
$$

$$
-\lambda \int_{\Omega}\left|u_{j}\right|^{p-2} u_{j}\left(u_{j}-u\right) d x-\int_{\Omega} u_{j+}^{p_{s}^{*}-1}\left(u_{j}-u\right) d x \rightarrow 0 .
$$

Therefore

$$
\iint_{\mathbb{R}^{2 N}} \frac{\left|u_{j}(x)-u_{j}(y)\right|^{p-2}\left(u_{j}(x)-u_{j}(y)\right)\left(\left(u_{j}-u\right)(x)-\left(u_{j}-u\right)(y)\right)}{|x-y|^{N+p s}} d x d y \rightarrow 0
$$

By Lemma 2.4. we obtain $u_{j} \rightarrow u$ in $W_{0}^{s, p}(\Omega)$.
Proof of Theorem 1.1. We now give the proof for the case when $\lambda>\lambda_{1}$ is not one of the eigenvalues. For $0<\lambda<\lambda_{1}$, the proof is similar and simpler. Fix λ^{\prime} such that $\lambda_{k}<\lambda^{\prime}<\lambda<\lambda_{k+1}$, and let $\delta>0$ be so small such that $\lambda_{k}+C \delta^{N-s p}<\lambda^{\prime}$, in particular,

$$
\begin{equation*}
\Psi(\omega)<\lambda^{\prime}, \quad \forall \omega \in E_{\delta} \tag{3.12}
\end{equation*}
$$

Then take $A_{0}=E_{\delta}$ and $B_{0}=\Psi_{\lambda_{k+1}}$, and note that A_{0} and B_{0} are disjoint nonempty closed symmetric subsets of \mathcal{M} such that

$$
i\left(A_{0}\right)=i\left(\mathcal{M} \backslash B_{0}\right)=k
$$

Now, let $0<\varepsilon \leq \delta / 2$, let $R>r>0$, and let $v_{0}=\pi\left(u_{\varepsilon, \delta}\right) \in \mathcal{M} \backslash E_{\delta}$, and let A, B, and X be as in Lemma 2.6 .

For $u \in \Psi_{\lambda_{k+1}}$,

$$
I_{\lambda}(r u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) r^{p}-\frac{1}{p_{s}^{*} S_{s}^{p_{s}^{*} / p}} r^{p_{s}^{*}}
$$

Since $\lambda<\lambda_{k+1}$, it follows that $\inf I_{\lambda}(B)>0$ if r is sufficiently small. Next we show $I_{\lambda} \leq 0$ on A if R is sufficiently large. For $\omega \in E_{\delta}$ and $t \geq 0$,

$$
\begin{aligned}
I_{\lambda}(t \omega) & =\frac{1}{p}\|t \omega\|^{p}-\frac{\lambda}{p}|t \omega|_{p}^{p}-\left.\frac{1}{p_{s}^{*}}\left|t \omega_{+}\right|\right|_{p_{s}^{*}} ^{p_{s}^{*}} \\
& \leq \frac{t^{p}}{p}\left(1-\frac{\lambda}{\Psi(\omega)}\right) \leq 0
\end{aligned}
$$

by (3.12). Now let $\omega \in E_{\delta}, 0 \leq t \leq 1$, and set $u=\pi\left((1-t) \omega+t v_{0}\right)$. Clearly, $\left\|(1-t) \omega+t v_{0}\right\| \leq 1$, and since the supports of ω and v_{0} are disjoint by Lemma 2.3 (iv),

$$
\begin{gathered}
\left|(1-t) \omega+t v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}}=(1-t)^{p_{s}^{*}}|\omega|_{p_{s}^{*}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} \\
|u|_{p}^{p}=\frac{\left|(1-t) \omega+t v_{0}\right|_{p}^{p}}{\left\|(1-t) \omega+t v_{0}\right\|^{p}} \geq \frac{(1-t)^{p}}{\Psi(\omega)} \geq \frac{(1-t)^{p}}{\lambda^{\prime}}
\end{gathered}
$$

Since

$$
\begin{equation*}
\left|v_{0}\right|_{p_{s}^{s}}^{p_{s}^{*}}=\frac{\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p_{s}^{*}}}{\left\|u_{\varepsilon, \delta}\right\|^{p_{s}^{*}}} \geq \frac{1}{S^{N /(N-s p)}}+O\left(\varepsilon^{(N-s p) /(p-1)}\right) \tag{3.13}
\end{equation*}
$$

it follows that

$$
\begin{align*}
\left|u_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}} & =\frac{\left|\left[(1-t) \omega+t v_{0}\right]_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}}}{\|(1-t) \omega+t v_{0}| |_{s}^{p_{s}^{*}}} \\
& \geq(1-t)^{p_{s}^{*}}\left|\omega_{+}\right|_{p_{s}^{s}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} \tag{3.14}\\
& \geq t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} \geq \frac{t^{p_{s}^{*}}}{C}
\end{align*}
$$

if ε is sufficiently small, where $C=C(N, \Omega, p, s, k)>0$. Then

$$
\begin{align*}
I_{\lambda}(R u) & =\frac{R^{p}}{p}\|u\|^{p}-\frac{\lambda R^{p}}{p}|u|_{p}^{p}-\frac{R^{p_{s}^{*}}}{p_{s}^{*}}\left|u_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}} \\
& \leq-\frac{R^{p}}{p}\left[\frac{\lambda}{\lambda^{\prime}}(1-t)^{p}-1\right]-\frac{t^{p_{s}^{*}}}{p_{s}^{*} C} R^{p_{s}^{*}} \tag{3.15}
\end{align*}
$$

The above expression is clearly non-positive if $t \leq 1-\left(\lambda^{\prime} / \lambda\right)^{1 / p}=: t_{0}$. For $t>t_{0}$, it is non-positive if R is sufficiently large.

Now, it only remains to show that

$$
\begin{equation*}
\sup I_{\lambda}(X)<\frac{s}{N} S^{N / s p} \tag{3.16}
\end{equation*}
$$

if ϵ is sufficiently small, where

$$
X=\left\{\rho \pi\left((1-t) \omega+t v_{0}\right): \omega \in E_{\delta}, 0 \leq t \leq 1,0 \leq \rho \leq R\right\}
$$

Set again $u=\pi\left((1-t) \omega+t v_{0}\right)$. From (3.15), $I_{\lambda}(\rho u) \leq 0$, for all $0 \leq \rho \leq R$, if $0 \leq t \leq t_{0}$. So we only need to consider the case that $1 \geq t \geq t_{0}$. Then

$$
\begin{align*}
\sup _{0 \leq \rho \leq R} I_{\lambda}(\rho u) & \leq \sup _{\rho \geq 0}\left[\frac{\rho^{p}}{p}\left(1-\lambda|u|_{p}^{p}\right)-\frac{\rho^{p_{s}^{*}}}{p_{s}^{*}}\left|u_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}}\right] \\
& =\frac{s}{N}\left[\frac{\left(1-\lambda|u|_{p}^{p}\right)_{+}}{\left.\left|u_{+}\right|\right|_{p_{s}^{*}} ^{p}}\right]^{N / s p} \tag{3.17}\\
& =\frac{s}{N}\left[\frac{\left(\left\|(1-t) \omega+t v_{0}\right\|^{p}-\lambda\left|(1-t) \omega+t v_{0}\right|_{p}^{p}\right)_{+}}{\left|\left[(1-t) \omega+t v_{0}\right]_{+}\right|_{p_{s}^{*}}^{p}}\right]^{N / s p}
\end{align*}
$$

From the arguments in [20, pp.17-18 (3.15)-(3.17)],

$$
\begin{equation*}
\left\|(1-t) \omega+t v_{0}\right\|^{p} \leq \frac{\lambda}{\lambda^{\prime}}(1-t)^{p}+t^{p}+C \varepsilon^{N-(N-s p) q / p} \tag{3.18}
\end{equation*}
$$

where $q \in(N(p-1) /(N-s p), p)$,

$$
\begin{gather*}
\left|(1-t) \omega+t v_{0}\right|_{p}^{p}=(1-t)^{p}|\omega|_{p}^{p}+t^{p}\left|v_{0}\right|_{p}^{p}, \\
\left|\left[(1-t) \omega+t v_{0}\right]_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}} \geq(1-t)^{p_{s}^{*}}\left|\omega_{+}\right|_{p_{s}^{*}}^{p_{s}^{*}}+t^{p_{s}^{*}}\left|v_{0}\right|_{p_{s}^{*}}^{p_{s}^{*}} \tag{3.19}
\end{gather*}
$$

By (3.13), $\left|v_{0}\right|_{p_{s}^{*}}$ is bounded away from zero, if ε is sufficiently small, so the last expression in (3.19) is bounded away from a certain number for $1 \geq t \geq t_{0}$. It follows from 3.18), 3.19 and $|\omega|_{p} \geq \frac{1}{\lambda^{\prime}}$ by 3.12), that

$$
\begin{aligned}
& \frac{\left\|(1-t) \omega+t v_{0}\right\|^{p}-\lambda\left|(1-t) \omega+t v_{0}\right|_{p}^{p}}{\left|\left[(1-t) \omega+t v_{0}\right]_{+}\right|_{p_{s}^{*}}^{p}} \\
& \leq \frac{1-\lambda\left|v_{0}\right|_{p}^{p}}{\left|v_{0}\right|_{p_{s}^{*}}^{p}}+C \varepsilon^{N-(N-s p) q / p} \\
& \leq \frac{\left\|u_{\varepsilon, \delta}\right\|^{p}-\lambda\left|u_{\varepsilon, \delta}\right|^{p}}{\left|u_{\varepsilon, \delta}\right|_{p_{s}^{*}}^{p}}+C \varepsilon^{N-(N-s p) q / p} \\
& \leq S-\left(\frac{\lambda}{C}-C \varepsilon^{\left(N-s p^{2}\right) /(p-1)}-C \varepsilon^{(N-s p)(1-q / p)}\right) \varepsilon^{s p}
\end{aligned}
$$

by $v_{0}=u_{\varepsilon, \delta} /\left\|u_{\varepsilon, \delta}\right\|$, and (2.3). Since $N>s p^{2}$ and $q<p$, it follows from this that the last expression in 3.17 is strictly less than $\frac{s}{N} S^{N / s p}$ if ε is sufficiently small.

So $0<c<\frac{s}{N} S^{N / s p}$. Then I_{λ} satisfies the $(C)_{c}$ condition by Lemma 3.1, and hence c is a critical value of I_{λ} by Lemma 2.6 .

Acknowledgments. Yang Yang was supported by the NSFC, projects 11501252 and 11571176.

References

[1] H. Amann, P. Hess; A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 84(1-2), 145-151, 1979.
[2] A. Ambrosetti, G. Prodi; On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl., 93(4), 231-246, 1972.
[3] T. Aubin, W. Z. Wang; Positive solutions of Ambrosetti-Prodi problems involving the critical Sobolev exponent, Bull. Sci. Math., 125(4), 311-340, 2001.
[4] L. Brasco, S. Mosconi, M. Squassina; Optimal decay of extremal functions for the fractional Sobolev inequality, Calculus Var. Partial Differential Equations, 55, 1-32, 2016.
[5] M. S. Berger, E. Podolak; On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J., 24, 837-846, 1974/75.
[6] L. Caffarelli; Non-local diffusions, drifts and games, in: Nonlinear Partial Differential Equations, Abel Symp., 7, 37-52, 2012.
[7] M. Calanchi, B. Ruf; Elliptic equations with one-sided critical growth, Electron. J. Differential Equations, 520(1), 225-228, 2002.
[8] E. N. Dancer; On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl., 57(4), 351-366, 1978.
[9] Y. Deng, On the superlinear Ambrosetti-Prodi problem involving critical Sobolev exponents, Nonlinear Anal., 17(12), 1111-1124, 1991.
[10] E. R. Fadell, P. H. Rabinowitz; Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45(2), 139-174, 1978.
[11] D. G. de Figueiredo, J. Yang, Critical superlinear Ambrosetti-Prodi problems, Topol. Methods Nonlinear Anal., 14(1), 59-80, 1999.
[12] G. Franzina, G. Palatucci; Fractional p-eigenvalues, Riv. Math. Univ. Parma, 5(2), 373-386, 2014.
[13] A. Herbert, H. Peter; A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 84(1-2), 145-151, 1979.
[14] K. Ho, K. Perera, I. Sim, M. Squassina; A note on fractional p-Laplacian problems with singular weights, Journal of Fixed Point Theory and Applications, 19(1), 157-173, 2017.
[15] A. Iannizzotto, S. Mosconi, M. Squassina; Global Hölder regularity for the fractional pLaplacian, Rev. Mat. Iberoam, 32, 1355-1394, 2016.
[16] A. Iannizzotto, M. Squassina; Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal., 88 (4), 233-245, 2014.
[17] L. Jerry, F. Kazdan, W. Warner; Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28(5), 567-597, 1975.
[18] E. Lindgren, P. Lindqvist; Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (1-2), 795-826, 2014.
[19] S. Mosconi, M. Squassina; Nonlocal problems at nearly critical growth, Nonlinear Anal., 136, 84-101, 2016.
[20] S. Mosconi, K. Perera, M. Squassina, Y. Yang; The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations, 55: 105, 2016.
[21] T. Mukherjee, K. Sreenadh; On Dirichlet problem for fractional p-Laplacian with singular nonlinearity, Advances in Nonlinear Analysis, DOI: https://doi.org/10.1515/anona-20160100.
[22] S. Mosconi, M. Squassina; Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Mathematical Analysis Sem., 7, 147-164, 2016.
[23] K. Perera; Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal., 21(2), 301-309, 2003.
[24] K. Perera, R. P. Agarwal, D. O'Regan; Morse theoretic aspects of p-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
[25] K. Perera, A. Szulkin; p-Laplacian problems where the nonlinearity crosses an eigenvalue, Discrete Contin. Dyn. Syst., 13(3), 743-753, 2005.
[26] K. Perera, M. Squassina, Y. Yang; A note on the Dancer-Fučík spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (1), 13-23, 2015.
[27] K. Perera, M. Squassina, Y. Yang; Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr., 289(2-3), 332-342, 2016.
[28] K. Perera, M. Squassina, Y. Yang; Critical fractional p-Laplacian problems with possibly vanishing potentials, J. Math. Anal. Appl., 433, 818-831, 2016.
[29] K. Perera, Y. Yang, Z. Zhang; Asymmetric critical p-Laplacian problems, arXiv preprint arXiv: 1602.01071, 2016.
[30] P. H. Rabinowitz; Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1), 215-223, 1978.
[31] Y. Yang, K. Perera; N-Laplacian problems with critical Trudinger-Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. XVI, 1123-1138, 2016.
[32] Z. Zhang, M. Calanchi, B. Ruf; Elliptic equations in \mathbb{R}^{2} with one-sided exponential growth, Commun. Contemp. Math., 6(6), 947-971, 2004.

Li Huang
School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
E-mail address: 1005596725@qq.com
Yang Yang (CORRESPONDING AUTHOR)
School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
E-mail address: yynjnu@126.com

[^0]: 2010 Mathematics Subject Classification. 35B33, 35J92, 35J20.
 Key words and phrases. Fractional p-Laplacian; critical nonlinearity; asymmetric nonlinearity; linking; \mathbb{Z}_{2}-cohomological index.
 (C) 2017 Texas State University.

 Submitted November 9, 2016. Published April 18, 2017.

