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CRITICAL EXPONENT FOR THE HEAT EQUATION IN
α-MODULATION SPACES

WANG ZHENG, HUANG QIANG, BU RUI

Abstract. In this article, we propose a method for finding the critical ex-
ponent for heat equations in α-modulation space Ms,α

p,q . We define an index

σ(s, p, q), and use it to determine the critical exponent of the heat equation.

Then we use this exponent to describe well and ill-posedness of the heat equa-
tion in L∞([0, T ];Ms,α

p,q ). In some special case our conclusions are sharp. Fur-

thermore, our method may be applied to other evolution equations.

1. Introduction and statement of main results

It is well known that many dispersive equations have their critical exponents
in either Sobolev spaces or Besov spaces, or both. For instance, the critical ex-
ponent of nonlinear Schrödinger (NLS) equation is n

2 −
2

k−1 when the nonlinear
term is |u|k−1u in Sobolev spaces. Cazenave and Weissler [3] showed that NLS
is local well-posedness in C([−T, T ]; Ḣs) when s ≥ 0 and s > n

2 −
2

k−1 . Christ,
Colliander and Tao [5] proved that when s < max{0, n2 −

2
k−1}, NLS is ill-posed

in C([−T, T ]; Ḣs) for any fixed T > 0. We can see that the domain of well and
ill-posedness is completely described by their critical exponents. Furthermore, the
methods in [3] and [5] relay heavily on the scaling invariance of the work spaces.
In recent years, modulation space emerges and plays a significant role in the study
of certain nonlinear dispersive equations. (We will describe more details of the
modulation space and α-modulation space in the following contents.) Although
modulation space lacks the scaling property, in our previous work[16], we found the
critical exponents for some dispersive equations in modulation space by different
methods. Particularly, we found critical exponents for fractional heat equation in
the modulation space without the scaling property. This exponent also could de-
scribe well and ill posedness in modulation space completely. That description is
quite similar to above conclusions in [3] and [5].

Modulation space was introduced by Feichtinger in [6] to measure smoothness
of a function or distribution in a way different from Lp space, and they are now
recognized as a powerful tool for studying wavelet and pseudo-differential operators
(see [2, 4, 10, 11, 17, 18, 19, 22]). The original definition of the modulation space is
based on the short-time Fourier transform and window function. Wang and Hudizk
[20] gave an equivalent definition of the discrete version on modulation space by
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the frequency-uniform-decomposition. With this discrete version, they were able to
find global solutions for nonlinear Schrödinger equation and nonlinear Klein-Gordon
equation in lower regularity space. After then, there have been many studies on
nonlinear PDEs in modulation space. So far, people have found that modulation
has many advantages in study of PDE’s problems.

The α-modulation space Ms,α
p,q was first introduced by Göbner in his unpublished

thesis [9]. Later, the definition was refined by Han and Wang in [13]. They used
the α-covering and a corresponding bounded admissible partition of unity of order
p (BAPU) to define α-modulation space. The parameter α ∈ [0, 1] determines a
segmentation of the frequency spaces. When α = 0, Ms,0

p,q is equivalent to the
classical modulation space; When α = 1, Ms,1

p,q is equivalent to the classical Besov
space. Obviously, it is proposed to be an intermediate function space between Besov
space and modulation space. Hence, it is very important to study some analysis
and PDE’s problems in α-modulation space. So far, there are many good results
on this topic. Below we list some of them, among many others. Guo and Chen
[12] proved the Stricharz estimates on Ms,α

p,q . For Cauchy problem in α-modulation
space, Han and Wang studied the derivative nonlinear Schrödinger equation in [14];
Chen and Huang studied dispersive equations with noninteger term in [15]. For the
boundness of operators, Wu and Chen [21] obtained the sharp conditions for the
boundness of fractional integral operators and bilinear fractional integral operators
in Ms,α

p,q ; Feichtinger, Huang and Wang [7] studied trace operators in Ms,α
p,q .

In this article, we find the critical exponents for heat equation inMs,α
p,q . Moreover,

we use this exponent to describe well and ill-posedness for heat equation, and get
sharp results in some special cases. First, we recall some important properties of
Besov space [8] and modulation space [20]. The first one is Sobolev-type embedding
that says Bs1p1,q ⊂ B

s2
p2,q if and only if

s2 ≤ s1 and s1 −
n

p1
≥ s2 −

n

p2
.

Ms1
p,q1 ⊂M

s2
p,q2 if and only if

s2 ≤ s1 and s1 −
n

q′1
≥ s2 −

n

q′2
.

The second one is algebra property that says Bsp,q forms a multiplication algebra if
s− n

p > 0, and Ms
p,q forms a multiplication algebra if s− n

q′ > 0. By comparing these
properties to embedding in Ms,α

p,q (see proposition 2.3) and algebra property of Ms,α
p,q

([13, Theorem 5.1]), we observe that the index s−αnp−(1−α) nq′ in the α-modulation
space is an analog of the index s− n

p in the Besov space or s− n
q′ in the modulation

space. Motivated by such an observation, heuristically, we may use the index
s− αnp − (1− α) nq′ to describe the critical exponent for heat equation in Ms,α

p,q . Of
course, this heuristic idea will be technically supported in our following discussion.
For convenience in the discussion, we denote σ(s, p, q) = s − αnp − (1 − α) nq′ , and
σi := σ(si, pi, qi) = si − α n

pi
− (1− α) nq′i , we use the inequality

A(u, v, w . . . ) � B(u, v, w . . . )

to mean that there is a positive number C independent of all main variables
u, v, w . . . , for which A(u, v, w . . . ) ≤ CB(u, v, w . . . ).

Now we state main results in our paper. We only consider the case: D = {(p, q) ∈
R2 : 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, q ≥ p} for the technical problem. Now we use the
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index σ(s, p, q) to describe well and ill-posedness for following heat equation

ut + ∆u = u2, u(0) = u0 (1.1)

in Ms,α
p,q . Following theorems are our main results in this paper:

Theorem 1.1. Let (p, q) ∈ D and σ(s, p, q) > − 2α
2−α . There exists a T > 0 such

that equation (1.1) is local well-posedness in L∞([0, T ];Ms,α
p,q ). Precisely, for every

inial data u0 ∈Ms,α
p,q , there exists T > 0 such that heat equation (1.1) has a unique

solution in L∞([0, T ];Ms,α
p,q ).

Theorem 1.2. Let s ∈ R,1 ≤ p, q ≤ ∞, when σ(s, 2, q) < − 2
k−1 or s− n

2 < −
2

k−1

for any q ∈ [1,∞), then equation (1.1) is ill-posed in L∞([0, T ];Ms,α
p,q ) for any fixed

T > 0.

Remark 1.3. Equation (1.1) is a special case of heat equations. For general case,
if we replace the nonlinear term u2 by uk for k ∈ Z+ or replace Laplacian ∆ by
fractional Laplacian ∆

β
2 , we can also obtain similar results by the same method.

Remark 1.4. When α = 1, we can see the results are sharp and same as that in
Besov space. But for the case α ∈ (0, 1), our results are not sharp for technical
problem. Essentially, this difficulty is due to the shape of α-covering when we prove
the algebra property of Ms,α

p,q (see Lemma 3.2). In the proof of Lemma 3.2, when
(p, q) = (1, 1) we encounter to this difficulty. But for the case 1 ≤ p ≤ ∞, q = ∞,
we can obtain perfect conclusions. So, when (p, q) = (2,∞), our results are sharp
for any α ∈ [0, 1]. Specifically, we have following corollary.

Corollary 1.5. When σ(s, 2,∞) > −2, heat equation (1.1) is locally well-posedness
in L∞([0, T ];Ms,α

p,q ); when σ(s, 2,∞) < −2, heat equation (1.1) is ill-posed in
L∞([0, T ];Ms,α

p,q ) for any fix T > 0.

This article is organized as follows. In Section 2, we will introduce some basic
knowledge on α-modulation space, as well as some useful propositions that will be
used in our proofs. All proofs of main theorems will be presented in Section 3.

2. Preliminaries

In this section, we give the definition and discuss some basic properties of α-
modulation space. Before giving the definition of Ms,α

p,q , we introduce some notation
frequently used in this paper. Let S = S(Rn) be the Schwartz function. Its dual
is S ′ = S ′(Rn), the set of all tempered distribution on Rn. For any p ∈ [1,∞), p′

will stand for the dual index of p, i.e., 1
p + 1

p′ = 1 We write Lp for Lp(Rn) and lp

the sequence Lebesgue space. For a vector k = (k1, k2, . . . , kn) ∈ Zn, we denote
|k| = (k2

1 + k2
2 + · · · + k2

n)
1
2 , |k|∞ = maxi=1,...,n |ki|, 〈k〉 = (1 + |k|2)

1
2 . Now, we

briefly introduce the definition of α-modulation. More details can be found in [13].

Definition 2.1. Let ρ be a nonnegative smooth radial bump function supported
in B(0, 2), satisfying ρ(ξ) = 1 for |ξ| < 1 and ρ(ξ) = 0 for |ξ| ≥ 2. For any
k = (k1, k2, . . . , kn) ∈ Zn, we set

ραk (ξ) = ρ
(ξ − 〈k〉 α

1−α k

r〈k〉
α

1−α

)
,

ϕαk = ραk (ξ)
( ∑
l∈Zn

ραl (ξ)
)
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We define the ball

Brk := {ξ ∈ Rn : |ξ − 〈k〉
α

1−α k| < r〈k〉
α

1−α }

It is easy to check that {ϕαk}k∈Zn satisfy

suppϕαk ⊂ B2r
k ,

ϕαk (ξ) = c, ∀ξ ∈ Brk,∑
k∈Zn

ϕαk (ξ) ≡ 1, ξ ∈ Rn,

‖F−1ϕαk‖L1 ≺ 1

Corresponding to the above sequence {ϕαk}k∈Zn , we can construct an operator se-
quence {�α

k}k∈Zn by
�α
k = F−1ϕαkF

where F and F−1 donate the standard Fourier transform and inverse Fourier trans-
form respectively. For α ∈ [0, 1), 0 ≤ p, q ≤ ∞, s ∈ R, using this decomposition, we
define α-modulation space as

Ms,α
p,q = {f ∈ S ′ : ‖f‖Ms,α

p,q
<∞}

where

‖f‖Ms,α
p,q

=
( ∑
k∈Zn
〈k〉

sq
1−α ‖�α

kf‖
q
Lp

)1/q

Proposition 2.2 (Isomorphism [13]). Let 0 < p, q ≤ ∞, s, σ ∈ R. Jσ = (I−4)σ/2 :
Ms,α
p,q →Ms−σ,α

p,q is an isomorphic mapping, where I is the identity mapping and ∆
is the Laplacian.

Proposition 2.3 (Embedding [13]). Suppose 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞,
we have

(i) if q1 ≤ q2 and s1 ≥ s2 + nα( 1
p1
− 1

p2
), then

Ms1,α
p1,q1 ⊂M

s2,α
p2,q2 (2.1)

(ii) if q1 > q2 and s1 − α n
p1
− (1− α) nq′1 > s2 − α n

p2
− (1− α) nq′2 , then

Ms1,α
p1,q1 ⊂M

s2,α
p2,q2 (2.2)

3. Proof of main results

Before proving Theorem 1.1, we state some key lemmas.

Lemma 3.1. Let 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞, s2 ≤ s1. When σ1−σ2 > R,
heat semigroup et∆ := F−1e−t|ξ|

2F satisfy estimate

‖et∆f‖Ms2,α
p2,q2

� (1 + t−
R
2 )‖f‖Ms1,α

p1,q1

Proof. We first consider the case p = p1 = p2, q = q1 = q2. For the low frequency
part |k| ≤ 100

√
n, by the multiplier estimate of et∆, we have∑

|k|≤100
√
n

〈k〉
s1q
1−α ‖�α

k e
t∆f‖qLp �

∑
|k|≤100

√
n

〈k〉
s2q
1−α ‖�α

kf‖
q
Lp � ‖f‖

q

M
s2
p,q
.
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For the high frequency part, note that the operator �α
k e
t∆ can be written as

�α
k e
t∆ =

∑
|`|≤1

�α
k+`e

t∆�α
k

and �α
k+`e

t∆ are convolution operators with the kernels

Ωk+`(y) = ei〈k+`,y〉
∫

Rn
e−t|ξ+k+`|

2
1−α

ei<y,ξ>ϕ(ξ)dξ.

Hence, when |k| ≥ 100
√
n it is easy to prove that

‖�α
k e
t∆f‖Lp � e−

t
2 |k|

2
1−α ‖�α

kf‖Lp .
Now, we have

〈k〉
s1

1−α ‖�ke
t∆f‖Lp � 〈k〉

s1−s2
1−α e−

t
2 |k|

2
1−α 〈k〉

s2
1−α ‖�α

kf‖Lp

� t− 1
2 (s1−s2)〈k〉

s2
1−α ‖�α

kf‖Lp .
Taking the lq norm in both sides, we obtain

‖et∆f‖Ms2,α
p,q
� (1 + t−

1
2 (s1−s2))‖f‖Ms1,α

p,q
(3.1)

Next, we estimate the case 1 ≤ p1 < p2,1 ≤ q1 < q2 and s1 ≥ s2. By (2.2) and
(3.1), we have

‖et∆f‖Ms1,α
p1,q1

� ‖et∆f‖
M
s2−R,α
p2,q2

� (1 + t−
R
2 )‖f‖Ms2,α

p2,q2
.

�

Lemma 3.2. Let (p, q) ∈ D, s0 > 0. When σ(s, p, q) > − s0α
2−α , we have following

estimate:
‖u2‖

M
s−s0,α
p,q

� ‖u‖2Ms,α
p,q

.

Proof. We start with some notation and basic conclusions which were obtained in
[13]. For every (k1, k2) ∈ Z2n, we introduce

Λ(k1, k2) = {k ∈ Zn : �α
k (�α

k1u�
α
k2u) 6= 0}

We write

Kj(k1, k2) = 〈k1〉
α

1−α k1j + 〈k2〉
α

1−α k2j ,

K(k1, k2) = max
1≤j≤n

|Kj(k1, k2)|

To obtain a more precise estimate, we divide Z2n of all (k1, k2) in to the sets

Ω0 = {(k1, k2 ∈ Z2n) : 〈k1〉 ∼ 〈k2〉},
Ω1 = {(k1, k2 ∈ Z2n) : 〈k1〉 � 〈k2〉},
Ω2 = {(k1, k2 ∈ Z2n) : 〈k1〉 � 〈k2〉}

and separate Ω0 into the sets

Ω0,1 = {(k1, k2 ∈ Ω0 : K(k1, k2) � 〈k1〉
α

1−α },

Ω0,2 = {(k1, k2 ∈ Ω0 : K(k1, k2)� 〈k1〉
α

1−α }.

In [13], it had been proved that when (k1, k2) ∈ Ω0,1, we have 〈k〉 � 〈k1〉α; when
(k1, k2) ∈ Ω0,2, we have 〈k〉 � 〈k1〉y for some y := y(k1, k2) ∈ (α, 1].
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First, we consider the case (p, q) = (1, 1), by the triangle inequality, we have

‖u2‖
M
s−s0,α
p,q

=
∑
k∈Zn
〈k〉

s−s0
1−α ‖�α

ku
2‖L1

≤
∑
k

〈k〉
s−s0
1−α

( ∑
k1,k2

‖�α
k (�α

k1u�
α
k2u)‖L1

)

=
2∑
l=0

∑
(k1,k2)∈Ωl

∑
k∈Λ(k1,k2)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖L1

By the multiplier estimate and Hölder’s inequality, we have

‖�α
k (�α

k1u�
α
k2u)‖L1 � ‖�α

k1u�
α
k2u‖L1 � ‖�α

k1u‖L1‖�α
k2u‖L∞

For (k1, k2) ∈ Ω0,1, choose b = σ(s, 1, 1)− ε, we have∑
(k1,k2)∈Ω01

∑
k∈Λ(k1,k2)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖L1

�
∑

(k1,k2)

〈k1〉
(s−s0)α

1−α +nα− b
1−α ‖�α

k1u‖L1〈k2〉
b

1−α ‖�α
k2u‖L∞

≤ ‖u‖
M

(s−s0)α+nα(1−α)−b,α
1,1

‖u‖Mb,α
∞,1

Choosing ε→ 0+, the domain of σ(s, 1, 1) guarantees that (s−s0)α+nα(1−α)−b <
s. Hence, by (2.2) we have

‖u2‖
M
s−s0,α
1,1

� ‖u‖2Ms,α
1,1

For (k1, k2) ∈ Ω0,2, we have∑
(k1,k2)∈Ω02

∑
k∈Λ(k1,k2)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖L1

�
∑

(k1,k2)

〈k1〉
(s−s0)y

1−α + nα
1−α (1−y)− b

1−α ‖�α
k1u‖L1〈k2〉

b
1−α ‖�α

k2u‖L∞

≤ ‖u‖
M

(s−s0)y+nα(1−y)−b,α
1,1

‖u‖Mb,α
∞,1

Similarly, Choosing ε→ 0+, the domain of σ(s, 1, 1) and y ∈ [α, 1) also guarantees
that (s− s0)y + nα(1− y)− b < s. So we also have

‖u2‖
M
s−s0,α
1,1

� ‖u‖2Ms,α
1,1

For (k1, k2) ∈ Ω1, we recall the refined Hödler inequality:

‖fg‖Lp � ‖Jaf‖Lp1 ‖Jbg‖Lp2 ,
where 1

p = 1
p1

+ 1
p2

, Ja and Jb are Bessel potentials which satisfy a+ b > 0. Also, it
had been proved that ]Λ(k1, k2) ∼ 1 in [13, 5.17]. By this conclusion and the above
Hödler inequality, choosing b = σ(s, 1, 1) − ε, a = 2ε − σ(s, 1, 1), and ε → 0+ we
have ∑

(k1,k2)∈Ω1

∑
k∈Λ(k1,k2)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖L1

�
∑
k1∈Zn

〈k1〉
(s−s0)
1−α ‖�α

k1Jau‖L1

∑
k2∈Zn

‖�α
k2Jbu‖L∞
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≤ ‖u‖
M
s−s0+a,α
1,1

‖u‖Mb,α
∞,1

≤ ‖u‖2Ms,α
1,1

For (k1, k2) ∈ Ω2, we can get the same estimate by using the method above.
Next, we consider the case 1 ≤ p ≤ ∞, q =∞. We also choose b = σ(s, p,∞)−ε,

a = 2ε− σ(s, p,∞), and let ε→ 0+. By the triangle inequality,

‖u2‖
M
s−s0,α
p,q

= sup
k∈Zn
〈k〉

s−s0
1−α ‖�α

ku
2‖Lp

≤ sup
k∈Zn
〈k〉

s−s0
1−α

∑
k1,k2∈Λ(k)

‖�α
k (�α

k1u�
α
k2u)‖Lp

= sup
k∈Zn

2∑
l=0

∑
(k1,k2)∈Λ(k)∩Ωl

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖Lp

For a Φ ⊂ Z2n, we denote

Φ∗1 = {k1 ∈ Zn : ∃k2 ∈ Zn s.t. (k1, k2) ∈ Φ},
Φ∗2 = {k2 ∈ Zn : ∃k1 ∈ Zn s.t. (k1, k2) ∈ Φ} .

It had been proved that ]Λ(−k2, k) � 1 in [13]. Then for any k2 ∈ {{Ω0 ∪ Ω1} ∩
Λ(k)}∗2 with every fixed k, we have∑
(k1,k2)∈{Ω0∪Ω1}∩Λ(k)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖Lp

� sup
k1∈{{Ω0∪Ω1}∩Λ(k)}∗1

〈k〉
s−s0
1−α ‖�α

k1Jau‖Lp
∑

k1∈{{Ω0∪Ω1}∩Λ(k)}∗1

∑
k2∈Λ(−k1,k)

‖�α
k2Jbu‖L∞

� sup
k1∈Zn

〈k1〉
s− s0

1− α
‖�α

k1Jaf‖Lp
∑

k2∈{{Ω0∪Ω1}∩Λ(k)}∗2

∑
k1∈Λ(−k2,k)

‖�α
k2Jbu‖L∞

� ‖u‖
M
s−s0+a,α
p,∞

‖u‖Mb,α
∞,1
� ‖u‖2Ms,α

p,q

For k2 ∈ {{Ω0 ∪ Ω1} ∩ Λ(k)}∗2 with every fixed k, symmetrically, we have∑
(k1,k2)∈Ω2∩Λ(k)

〈k〉
s−s0
1−α ‖�α

k (�α
k1u�

α
k2u)‖Lp

� sup
k2∈Zn

〈k2〉
s−s0
1−α ‖�α

k2Jau‖Lp
∑

k1∈{Ω2∩Λ(k)}∗1

∑
k2∈Λ(−k1,k)

‖�α
k1Jbu‖L∞

� ‖u‖
M
s−s0+a,α
p,∞

‖u‖Mb,α
∞,1
� ‖u‖2Ms,α

p,q

Finally, using the complex interpolation (see [13, Theorem 2.2]) and combining
above estimates, we obtain the desire conclusion. �

Based on the above lemmas, now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is well known that heat equation (1.1) is equivalent to the
integral equation

u = Φ(u) := et∆u0 +
∫ t

0

e(t−τ)∆u2dτ .
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To prove that the above equation is local well-posed in Ms,α
p,q , we use the standard

contraction method. To this end, we define the space

X = {u : ‖u‖L∞([0,T ];Ms,α
p,q ) ≤ C0}

with the metric
d(u, v) = ‖u− v‖L∞([0,T ];Ms,α

p,q ) ,

where the positive numbers C0 and T will be chosen later when we invoke the
contraction. Choosing ε > 0 small enough to ensure that σ(s, p, q) > − (2−ε)α

1−α , by
(3.1) and Lemma 3.2, we have

‖Φ(u)‖X � ‖u0‖Ms,α
p,q

+ ‖
∫ t

0

e(t−τ)∆u2dτ‖X

� ‖u0‖Ms,α
p,q

+ sup
t∈(0,T ]

∫ t

0

(t− τ)−
2−ε
2 ‖u2‖Ms−2+ε,α

p,q
dτ

� ‖u0‖Ms,α
p,q

+ sup
t∈(0,T ]

∫ t

0

(t− τ)−
2−ε
2 dτ‖u‖2

Ms−2+ε,α
p,q

dτ

� ‖u0‖Ms,α
p,q

+ T
ε
2 ‖u‖2X .

By the contraction mapping argument, we obtain the conclusion of Theorem 1.1
after choosing T such that T ε/2 < 1/2, and C0 = 2‖u0‖Ms,α

p,q
. �

Proof of Theorem 1.2. Before the proof, we recall a crucial conclusion which was
obtained by Bejenaru and Tao [1]. They consider equation

u = L(u0) +Nk(u, . . . , u)

where L is a linear operator, u0 is the initial data, Nk(u, . . . , u) is a k-linear operator.
Also we define A1(u0) := L(u0),

An(u0) :=
∑

n1,...,nk≥1;n1+···+nk=n

Nk(An1(u0), . . . , Ank(u0))forn ∈ Z+

They proved that if above equation is well posed from space X to Y , then for each
i ∈ Z+, Ai is continuous from X to Y (see [1, Proposition 1]). So, if we want to
prove ill-posedness of equation (1.1), we only need to choose a special i ∈ Z+ and
prove Ai is discontinuous. Here, we choose i = 2. So, it suffices to show that the
map from Ms,α

p,q to L∞([0, T ];Ms,α
p,q ) defined by

u0 →
∫ t

0

e(t−τ)∆(eτ∆u0)2dτ. (3.2)

is discontinuous in our domain of s, p, q. Actually, if the map is continuous, we will
have

sup
t∈[0,T ]

∥∥∫ t

0

e(t−τ)∆(eτ∆u0)2dτ
∥∥
Ms,α
p,q
� ‖u0‖2Ms,α

p,q
. (3.3)

So, we only need to find a u0 such that (3.3) fails.
First, we consider the case σ(s, p, q) < − 2

k−1 . We choose

û0(ξ) = χ[N1/(1−α),3N1/(1−α)]n(ξ),

where N � 1. Obviously, the number of j ∈ Zn that satisfy

suppϕαj ∩ [N1/(1−α), 3N1/(1−α)]n 6= ∅
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is CNn. By the definition of Ms,α
p,q , we have

‖u0‖Ms,α
p,q

=
( ∑
j∈Zn
〈j〉

sq
1−α ‖�α

j u0‖qL2

)1/q

�
( ∑
j∈Zn
〈N〉

sq
1−α ‖ϕαj û0‖qL2

)1/q

� N
s

1−α+ α
1−α

n
2 +n

q

Now, we estimate
∥∥ ∫ t

0
e(t−τ)∆(eτ∆u0)2dτ

∥∥
Ms,α
p,q

. It is easy to obtain

(û0 ∗ û0)(η) =


∏n
i=1 6N

1
1−α − ηi, η ∈ [4N

1
1−α , 6N

1
1−α ]n∏n

i=1 ηi − 2N
1

1−α , η ∈ [2N
1

1−α , 4N
1

1−α ]n

0, otherwise .

Then by taking t = N−
2

1−α , we obtain

‖
∫ N

− 2
1−α

0

e−(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖q
M
s,α
2,q

=
∑
j∈Zn
〈j〉

sq
1−α ‖�α

j

∫ N
− 2

1−α

0

e(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖qL2

It is easy to see that
e−τ |ξ|

2
≥ C > 0

for τ ∈ [0, N−
2

1−α ] and ξ ∈ supp û0(ξ), and that

e−( 1
Nα−τ)|η|2 ≥ C > 0

for τ ∈ [0, N−
2

1−α ] and η ∈ supp(û0 ∗ û0)(η).
We denote

EN = [(
5
2

)N
1

1−α , (
7
2

)N
1

1−α ]n ∪ [(
9
2

)N
1

1−α , (
11
2

)N
1

1−α ]n.

Also, the number of j ∈ Zn which satisfy suppϕαj ∩ EN 6= ∅ is CNn. By the
Plancharel theorem, for such set of j, we have

∑
j∈Zn
〈j〉

sq
1−α ‖

∫ N
− 2

1−α

0

e−(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖q
M
s,α
2,q

≥
∑
j∈Zn
〈j〉

sq
1−α ‖�α

j

∫ N
− 2

1−α

0

e(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖qL2

=
∑
j∈Zn
〈j〉

sq
1−α ‖ϕαj (ξ)

∫ N
− 2

1−α

0

e−(N
− 2

1−α−τ)|ξ|2
{

(eτ |·|
2
û0) ∗ (eτ |·|

2
û0)
}
dτ‖qL2

�
∑
j∈Zn
〈j〉

sq
1−α

(∫ N
− 2

1−α

0

‖û0 ∗ û0‖L2(EN∩suppϕαj )dτ
)q

� Nn+ sq
1−α−

2q
1−α+ α

1−α
qn
2 + qn

1−α
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So, one has

‖
∫ N

− 2
1−α

0

e−(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖
M
s,α
2,q
� N

s
1−α+n

2
α

1−α+ n
1−α+n

q−
2

1−α .

Hence, when σ(s, 2, q) < −2, map (3.3) fails to be continuous; this leads to the heat
equation (1.1) being ill-posed. �

Next, we consider the case s < −2. Here we choose

û0(ξ) = χ
[N

1
1−α−N

α
1−α ,N

1
1−α+N

α
1−α ]n

(ξ) .

Similarly, by the almost orthogonal property of {ϕαj }(see [13]), the number of j ∈ Zn
satisfying suppϕαj ∩ supp û0 6= ∅ is a constant. Hence, we have

‖u0‖Ms,α
p,q

=
( ∑
j∈Zn
〈j〉

sq
1−α ‖�α

j u0‖qL2

)1/q

�
( ∑
j∈Zn
〈N〉

sq
1−α ‖ϕαj û0‖qL2

)1/q

� N
s

1−α+ α
1−α

n
2

Also, by simple calculations, we have

(û0 ∗ û0)(η) =


∏n
i=1(2N

1
1−α + 2N

α
1−α − ηi), η ∈ [2N

1
1−α − 2N

α
1−α , 2N

1
1−α ]n,∏n

i=1(ηi − 2N
1

1−α + 2N
α

1−α ), η ∈ [2N
1

1−α , 2N
1

1−α + 2N
α

1−α ]n,
0 otherwise.

Note that α ∈ [0, 1), when choose t = N−
2

1−α , we also have

e−τ |ξ|
2
≥ C > 0

for τ ∈ [0, N−
2

1−α ] and ξ ∈ supp û0(ξ), and that

e−( 1
Nα−τ)|η|2 ≥ C > 0

for τ ∈ [0, N−
2

1−α ] and η ∈ supp(û0 ∗ û0)(η). Fixed j0 ∈ Zn such that suppϕαj0 ∩
supp(û0 ∗ û0)(η) 6= ∅, we have

∑
j∈Zn
〈j〉

sq
1−α ‖

∫ N
− 2

1−α

0

e−(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖q
M
s,α
2,q

≥ 〈j0〉
sq

1−α ‖�α
j0

∫ N
− 2

1−α

0

e(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖qL2

= 〈j0〉
sq

1−α ‖ϕαj0(ξ)
∫ N

− 2
1−α

0

e−(N
− 2

1−α−τ)|ξ|2
{

(eτ |·|
2
û0) ∗ (eτ |·|

2
û0)
}
dτ‖qL2

� 〈j0〉
sq

1−α

(∫ N
− 2

1−α

0

‖û0 ∗ û0‖L2(suppϕαj0
)dτ
)q

� N
sq

1−α−
2q

1−α+ α
1−α

qn
2 + qαn

1−α
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So, we have

‖
∫ N

− 2
1−α

0

e−(N
− 2

1−α−τ)∆(eτ∆u0)2dτ‖
M
s,α
2,q
� N

s
1−α+n

2
α

1−α+ αn
1−α−

2
1−α .

Hence, when s − n
2α < −2, map (3.3) fail to be continuous; this lead the heat

equation (1.1) being ill-posed in L∞([0, T ];Ms,α
2,q ) for any fixed T > 0.
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