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PARTIAL CONTINUITY FOR A CLASS OF ELLIPTIC SYSTEMS
WITH NON-STANDARD GROWTH

JIHOON OK

Abstract. We study partial Hölder continuity of weak solutions to elliptic
systems with variable non-standard growth, which are related to the function

Φ(x, t) := tp(x) log(e+ t). We prove that weak solutions are Hölder continuous

for any Hölder exponent, except Lebesgue measure zero sets, if systems satisfy
certain continuity assumptions. In particular, the variable exponent functions

p(·) are assumed to satisfy so-called vanishing log-Hölder continuity.

1. Introduction

The aim of this article is to study partial Hölder continuity of solutions to elliptic
systems with non-standard growth conditions, and, in particular, with a certain
type of Orlicz growth conditions. Problems with non-standard growth conditions
have initially studied in the fundamental papers of Marcellini [31, 32, 33, 34] and
have subsequently been the object of intensive investigation. The new methods
here will be explained for a special, yet significant case, incorporating both the
features of purely Orlicz structures and the ones of variable exponent functionals.
The same methods can be considered as a substantial starting point to treat more
general structures including both Orlicz structures and the non-autonomous case,
that in the case of non-standard growth conditions poses additional difficulties.

Specifically, let Ω ⊂ Rn be a bounded open set in Rn with n ≥ 2, and p(·) : Ω→ R
be a variable exponent function satisfying

2 < γ1 ≤ p(·) ≤ γ2 <∞. (1.1)

Moreover, we assume that p(·) satisfies the so-called vanishing log-Hölder continuity:

lim
r→0

ω(r) log
(1
r

)
= 0, (1.2)

where ω(·) : [0,∞) → [0,∞) is the modulus of continuity of p(·), that is, it is a
nondecreasing and concave function satisfying that ω(0) = 0 and |p(x) − p(y)| ≤
ω(|x− y|) for every x, y ∈ Ω. With this p(·), we consider the elliptic system

div a(x, u,Du) = 0 in Ω. (1.3)
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Here, a : Ω×RN ×RNn → RNn, N ≥ 1, satisfies growth and ellipticity conditions:

|a(x, ζ, ξ)|+ |∂a(x, ζ, ξ)|(1 + |ξ|) ≤ ΛΦp(x)−1(1 + |ξ|),
∂a(x, ζ, ξ)η · η ≥ νΦp(x)−2(1 + |ξ|)|η|2,

(1.4)

and
|a(x1, ζ, ξ)− a(x2, ζ, ξ)|
≤ Λω(|x1 − x2|)[Φp(x1)−1(1 + |ξ|) + Φp(x2)−1(1 + |ξ|)] log(1 + |ξ|),

(1.5)

for every x, x1, x2 ∈ Ω, ζ ∈ RN and ξ, η ∈ RnN and for some 0 < ν ≤ Λ, where
Φp : [0,∞)→ [0,∞), p > 0, is denoted by

Φp(t) := tp log(e+ t), (1.6)

and ∂a(x, ζ, ξ) := Dξa(x, ζ, ξ). We note from the ellipticity condition, that is the
second inequality in (1.4), that one can see the monotonicity

(a(x, ζ, ξ1)− a(x, ζ, ξ2)) : (ξ1 − ξ2)

≥ ν̃Φp(x)−2(1 + |ξ1|+ |ξ2|)|ξ1 − ξ2|2

≥ ν̃

2
{Φp(x)−2(1 + |ξ1|)|ξ1 − ξ2|2 + Φp(x)(|ξ1 − ξ2|)}.

(1.7)

For a function p(·), we set

Φ(x, t) := Φp(x)(t) = tp(x) log(e+ t), (1.8)

and define the Musielak-Orlicz space LΦ(Ω,RN ) by the set of all measurable vector
valued functions f : Ω→ RN satisfying∫

Ω

Φ(x, |f |) dx =
∫

Ω

|f |p(x) log(e+ |f |) dx <∞.

and W 1,Φ(Ω,RN ) by the set of all f ∈W 1,1(Ω,RN ) with |f |, |Df | ∈ LΦ(Ω,R1).
Our purpose in this article is to investigate partial Hölder continuity of weak

solutions to (1.3). We say u ∈W 1,Φ(Ω,RN ) is a weak solution to (1.3) if it satisfies∫
Ω

a(x, u,Du) : Dϕdx = 0 for every ϕ ∈W 1,Φ
0 (Ω,RN ),

where W 1,Φ
0 (Ω,RN ) is the closure of C∞0 (Ω,RN ) in W 1,Φ(Ω,RN ). To obtain the

desired regularity, we impose continuity assumptions on the nonlinearity a as fol-
lows. There exists a nondecreasing and concave function µ : [0,∞) → [0,∞) with
µ(0) = 0 such that

|a(x, ζ1, ξ)− a(x, ζ2, ξ)| ≤ Λµ(|ζ1 − ζ2|) Φp(x)−1(1 + |ξ|), (1.9)

|∂a(x, ζ, ξ1)− ∂a(x, ζ, ξ2)| ≤ Λµ
( |ξ1 − ξ2|

1 + |ξ1|+ |ξ2|

)
Φp(x)−2(1 + |ξ|). (1.10)

Note that the prototype of a is

a(x, ζ, ξ) ≡ a(x, ξ) = Dξ[Φ(x, 1 + |ξ|)], (1.11)

for which one can see that the nonlinearity a in (1.11) satisfies (1.10) with µ(r) = rα

for any α ∈ (0, 1).
The following theorem is the main result in this article; while the notation used

here will be introduced in the next section.
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Theorem 1.1. Let u ∈W 1,Φ(Ω,RN ) be a weak solution to (1.3). Then there exists
Ωu ⊂ Ω such that |Ω\Ωu| = 0 and u ∈ Cα(Ωu,RN ) for every α ∈ (0, 1). Moreover,

Ω \ Ωu ⊂
{
x0 ∈ Ω : lim inf

r↓0
−
∫
Br(x0)

|Du− (Du)x0,r| dx > 0
}

∪
{
x0 ∈ Ω : lim sup

r↓0
−
∫
Br(x0)

Φ(x, |Du|) dx =∞
}
.

Partial Hölder continuity for elliptic systems is one of classical regularity issues,
which was first presented by Campanato [6, 7], after several papers where partial
regularity has been proved for the gradient (rather than for the solution itself)
under stronger assumptions. Note that there has been reported various systems,
for which there exists a weak solution having a singularity, see for example [35], to
which we also refer for results concerning regularity and vectorial problems. For
systems with standard p-growth, Foss and Mingione [18] proved it when p ≥ 2 and a
is continuous for the space variable x, see also [4] for the parabolic counterpart. On
the other hand, Habermann [21] considered systems with p(x)-growth and also p-
growth with 1 < p < 2. In addition, Bögelein, Duzaar, Harbermann and Scheven [5]
considered p-growth systems with VMO coefficients. Finally, it is worth mentioning
the papers [26, 27], which treat elliptic system with measure data.

As mentioned at the beginning the problems considered here are significant since
they do combine features of problems with non-standard growth typical of the Orlicz
setting (see for instance [8, 9]) with those coming from variable exponent spaces (see
[14] and references) and more in general of functionals with non-standard growth
conditions of non-autonomous type. The main point of the energies considered here
is that the type of growth with respect to the gradient variable strongly depends
on the variable x; this type of phenomenon poses new problems, leads to new
techniques and conditions for regularity. This is a recent direction that only now
starts being exploited in detail [2, 3, 10, 11, 12, 16, 17, 22, 23, 36, 37, 38, 39]. The
main common feature of all these examples is the analysis of functionals

v 7→
∫

Ω

f(x,Dv), dx (1.12)

with Ψ-growth, i.e.,

f(x,Dv) ≈ Ψ(x, |Dv|)

and for every fixed x, z 7→ Ψ(x, |z|) is an Orlicz function. In many cases, this maps
has non-standard growth conditions of polynomial type, as for instance considered
in [31, 32, 28, 29].

In this paper, we consider systems with Φ-growth, with Φ being the function
introduced in (1.8); anyway, as already mentioned at the beginning, some of the
methods considered can be extended to more general choices of Φ. These systems
are related to functionals as (1.12) via the Euler-Lagrange equation. For the single
equation case, i.e. N = 1, and a(x, ζ, ξ) ≡ a(x, ξ), in view of [19, 37], one can deduce
that u ∈ C0,α for all α ∈ (0, 1) if p(·) satisfies (1.2) without any further continuity
assumption like (1.10). In addition, For systems with p(x)-growth, partial Hölder
continuity was proved by Harbermann [21], in which the assumptions on p(·) and
a are the exactly same to ones in this paper (of course, those are modified in the
setting of p(x)-growth).
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However, we point out that compared with [18, 5, 21], our case has a different
behavior. Note that the function Φ is vary with respect to the position x. More-
over, even on fixed positions, we have Φ(x0, t) = Φp(x0)(t) = tp(x0) log(e+ t), which
does not have standard p-growth structure. In fact, Φp, 1 < p < ∞, is the typical
example of the Orlicz function. We refer to [30, 13] and related references for prob-
lems with Orlicz growth. This makes obtaining partial Hölder continuity difficult.
We point out that although the paper [21] considers systems with variable growth,
estimates in there are obtained in space with fixed exponent, i.e., classical Lebesgue
space.

The first difficulty is the lack of normalization property, and the second one is
that we do not expect the integral version of Hölder’s continuity. If G(t) = tp, then
it is trivial that G(st) = G(s)G(t) for every s, t > 0, and∫

U

|fg| dx =
(∫

U

G(|f |) dx
)1/p(∫

U

|g|p
′
dx
)1/p′

.

Note that these properties have been used over all in [18, 5, 21]. However, for
G ≡ Φp, those properties do not hold anymore. In fact, they are not true for
general Orlicz function. It seems that those difficulties are the reasons why the
partial Hölder continuity for Orlicz growth has not been proved yet. Therefore, in
our best knowledge, our result with p(·) ≡ p is the first result for the partial Hölder
continuity for systems with Orlicz growth.

The technical starting point of our proof is the approach in [18]. We also refer to
[5, 21]. However, we need a lot of new ideas to overcome the difficulties mentioned
above. We also point out that in the proof of [21], when analyzing on a ball, the
author froze the variable exponent p(·) as a maximum value in a ball. This makes
computations complicated since we consider the sequence of shrinking balls hence
the frozen exponent is continuously changed. On the other hand, in this paper we
freeze the variable exponent as a center point of balls. Therefore, the exponent is
not changed with respect to shrinking balls. This makes our argument somehow
clearer.

We organize this paper as follows. In the next section, we introduce notation and
ingredients of the proof of Theorem 1.3 such as higher integrability, affine functions
and the A-harmonic approximation lemma. In Section 3, we prove Theorem 1.3.
To do that we first derive a Caccioppoli type inequality, compare weak solutions
with A-harmonic maps, investigate a decay of a suitable excess functional E, see
(3.3), and finally obtain estimates of Du in the Morrey space which implies the
desired Hölder continuity.

2. Preliminaries

2.1. Orlicz function Φp and modulus of continuity. Let y ∈ Rn, r > 0 and
U is a bounded domain in Rn. Br(y) is a standard ball in Rn centered at y with
radius r. For a locally integrable vector valued function f in Rn, (f)y,r is the
integral average of f in Br(y) such that

(f)y,r = −
∫
Br(y)

f dx =
1

|Br(y)|

∫
Br(y)

f dx.

Note that if the center point is not important or well understood, we will use the
brief notation Br = Br(y) and (f)r = (f)y,r. For matrix values A = (aij), B =
(bij) ∈ RnN , we define an inner product by A : B :=

∑
aijbij . P : Rn → RN is
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always an affine function; that is, P (x) = Ax + b for some A ∈ RnN and b ∈ RN .
For simplicity, we shall write logβ t := [log t]β , where β > 0 and t ≥ 1.

Suppose 1 < p <∞, and recall the function Φp(t) = tp log(e+ t). We define the
conjugate function of Φp, Φ∗p : [0,∞)→ [0,∞), by

Φ∗p(τ) := sup
t≥0

(τt− Φp(t)).

We then state elementary properties of Φp and Φ∗p. We refer to [37] for their proofs,
see also [14].

Proposition 2.1. Let t, τ > 0, 1 < p <∞, s > 1 and 0 < θ < 1.

(1) Φp(st) ≤ sp+1Φp(t) and Φp(θt) ≤ θpΦp(t).
(2) Φ∗p(sτ) ≤ s

p
p−1 Φ∗p(τ) and Φ∗p(θτ) ≤ θ

p+1
p Φ∗p(τ).

(3) Φp(t+ τ) ≤ 1
2 (Φp(2t) + Φp(2τ)) ≤ 2p(Φp(t) + Φp(τ)).

(4) (Young’s inequality) For any κ ∈ (0, 1], we have

tτ ≤ Φp(κ
1
p t) + Φ∗p(κ

− 1
p τ) ≤ κΦp(t) + κ−

1
p−1 Φ∗p(τ), (2.1)

tτ ≤ Φ∗p(κ
p−1
p τ) + Φp(κ−

p−1
p t) ≤ κΦ∗p(τ) + κ−

p2−1
p Φp(t). (2.2)

(5) There exists c = c(p) > 1 such that

1
c

Φp(t) ≤ Φ∗p
(
Φp(t)t−1

)
≤ cΦp(t). (2.3)

Moreover, if 1 < γ1 ≤ p ≤ γ2 <∞, then the constant c depends only on γ1

and γ2, instead of p.

Note that (1)–(3) of the previous proposition are simple results, hence, we will
use them without any comment except the cases that they are crucially used.

We recall the concave functions ω(·) and µ(·) introduced in Section 1. Then,
since ω(0) = µ(0) = 0, we see that for r > 0, 0 < θ < 1 and s ≥ 1,

θω(r) ≤ ω(θr), θµ(r) ≤ µ(θr), ω(sr) ≤ sω(r), µ(sr) ≤ sµ(r). (2.4)

Moreover, we will ultimately consider sufficiently small value r in ω(r) log(1/r) and
µ(r) in this paper. Hence, in view of (1.2) and the monotonicity of µ, we shall
assume without loss of generality that

ω(r) log
(1
r

)
≤ 1 and µ(r) ≤ 1 for every r > 0. (2.5)

We fix a weak solution u ∈W 1,Φ(Ω,RN ) to (1.3), and then define

M :=
∫

Ω

[Φ(x,Du) + 1] dx+ 1. (2.6)

For the rest of this article, we write letter c > 0 for any constant depending on
the structure constants n,N, γ1, γ2, ν,Λ.

2.2. Basic inequalities. First, we recall Jensen’s inequality such that for any
convex function G : [0,∞)→ [0,∞),

G
(
−
∫
U

|f | dx
)
≤ −
∫
U

G(|f |) dx,
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which will be used frequently in this paper. For any vector valued function f ,
constant vector A and 1 < p <∞, we have

−
∫
Br(y)

|f − (f)y,r|2 dx ≤ 2−
∫
Br(y)

|f −A|2 dx,

−
∫
Br(y)

Φp(|f − (f)y,r|) dx ≤ 2p+1 −
∫
Br(y)

Φp(|f −A|) dx.

Note that the second inequality follows from (3) of Proposition 2.1 and Jensen’s
inequality.

The next inequality related to the embedding property from L logβ L(U) space
to Lq(U) space, where β > 0 and 1 < q <∞. We refer to [24], see also [1].

−
∫
U

|f | logβ
(
e+

|f |
−
∫
U
|f | dx

)
dx ≤ c(q, β)

(
−
∫
U

|f |q dx
)1/q

. (2.7)

Here, the constant c(q, β) > 0 is continuously changed with respect to q and β. The
next lemma is the Sobolev-Poincaré type inequality for the function Φp, which can
be easily obtained by using the result in [13, Theorem 7].

Lemma 2.2. Let 1 < γ1 ≤ p ≤ γ2 <∞ and f ∈ W 1,1(Br,RN ). Then there exists
σs = σs(n,N, γ1, γ2) > 0 such that

−
∫
Br

[
Φp
( |f − (f)r|

r

)]1+σs
dx ≤ c

(
−
∫
Br

Φp(|Df |) dx
)1+σs

. (2.8)

for some c = c(n,N, γ1, γ2) > 0.

We finally state the iteration lemma, see [20, Lemma 7.3] and [18, Lemma 2.3].

Lemma 2.3. Let φ : (0, ρ]→ R be a positive and nondecreasing function satisfying

φ(θk+1ρ) ≤ θqφ(θkρ) + c0(θkρ) for k = 0, 1, 2, . . . ,

where θ ∈ (0, 1), q ∈ (0, n) and c0 > 0. Then there exists c̃ = c̃(n, θ, γ) > 0 such
that

φ(t) ≤ c̃
{

(
t

ρ
)qφ(ρ) + c0t

q
}

for t ∈ (0, ρ).

2.3. Higher integrability. We introduce one of the basic regularity properties of
weak solutions to (1.3), which is the higher integrability. For the scalar case, i.e.
N = 1, with

a(x, ξ) = Dξ(Φ(x, |ξ|)),
this property was proved in [36, Theorem 3.9]. We point out that one can also
prove the same result for the system (1.3) in the same way. Therefore, we shall
omit to prove the following result here.

Theorem 2.4. Suppose that p(·) : Ω→ R with (1.1) is vanishing log-Hölder contin-
uous and satisfies the first inequality (2.5), a : Ω×RN ×RnN → RnN only satisfies
the growth and ellipticity conditions in (1.4), and u ∈W 1,Φ(Ω,RN ) is a weak solu-
tion to (1.3). Then, there exist small constants δ0 = δ0(n,N, γ1, γ2, ν,Λ, ω(·)) > 0
and σh = σh(n,N, γ1, γ2, ν,Λ) > 0 such that for any B2r(x0) ⊂ Ω with r ≤ δ0M−1,
where M > 1 is denoted in (2.6), and any σ ≤ σh we have

−
∫
Br(x0)

[Φ(x, |Du|)]1+σ dx ≤ c
(
−
∫
B2r(x0)

Φ(x, |Du|) dx+ 1
)1+σ

. (2.9)
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for some c = c(n,N, γ1, γ2, ν,Λ) ≥ 1. Moreover, for any δ ∈ (0, 1] we also have

−
∫
Br(x0)

[Φ(x, |Du|)]1+σ dx ≤ c(δ)
{(
−
∫
B2r(x0)

[Φ(x, |Du|)]δ dx
) 1+σ

δ

+ 1
}
. (2.10)

for some c(δ) = c(n,N, γ1, γ2, ν,Λ, δ) ≥ 1.

Note that estimates (2.10) follows from (2.9) by using the argument in [20,
Remark 6.12].

From the above lemma we can observe the following. Consider B4r(x0) ⊂ Ω
with x0 ∈ Ω and r > 0 satisfying

2r ≤ δ0M−1 and ω(2r) ≤ min{σh
8
,

1
2
}, (2.11)

and set
p0 := p(x0), p1 := inf

B4r(x0)
p(·), p2 := sup

B4r(x0)

p(·).

We first note from the fact r ≤M−1 and the first inequality in (2.5) that(
−
∫
B2r(x0)

Φ(x, |Du|) dx+ 1
)ω(r)

≤ c(r−nM)ω(r) ≤ cr−(n+1)ω(r) ≤ c. (2.12)

Then since p0 ≤ p(x)(1 + ω(r)) ≤ p(x)(1 + σh/8) for x ∈ Br(x0), applying (2.9)
with σ = ω(r) and (2.12), we have

−
∫
Br(x0)

Φp0(|Du|) dx ≤ −
∫
B2r(x0)

[Φ(x, |Du|)]1+ω(r) dx+ 1

≤ c
(
−
∫
B2r(x0)

Φ(x, |Du|) dx+ 1
)1+ω(r)

≤ c
(
−
∫
B2r(x0)

Φ(x, |Du|) dx+ 1
)
.

Note that this implies Φp0(|Du|) ∈ L1
loc(Ω). In the same way, since p0(1 + σh/2) ≤

p(x)(1 + ω(r))(1 + σh/2) ≤ p(x)(1 + σh) for x ∈ Br(x0), we also have

−
∫
Br(x0)

[Φp0(|Du|)]1+
σh
2 dx ≤ c

{(
−
∫
B2r(x0)

Φ(x, |Du|) dx
)1+

σh
2

+ 1
}
. (2.13)

On the other hand, by taking δ = 1/2 ≤ p1/p2 from (2.10), Hölder’s inequality and
(2.12) with (2.4) we have

−
∫
B2r(x0)

Φ(x, |Du|) dx

≤ c
{(
−
∫
B4r(x0)

[Φ(x, |Du|)]
p1
p2 dx

)p2/p1
+ 1
}

≤ c
(
−
∫
B4r(x0)

Φp0(|Du|) dx+ 1
)(
−
∫
B4r(x0)

Φ(x, |Du|) dx+ 1
)ω(8r)

≤ c
(
−
∫
B4r(x0)

Φp0(|Du|) dx+ 1
)
.

(2.14)

Moreover, since
p2 − 1
p0 − 1

(
1 +

σh
4

)
p0 ≤ p(x)(1 + ω(r))2

(
1 +

σh
4

)
≤ p(x)

(
1 +

7
8
σh

)
,
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applying (2.9) with σ = p2−1
p0−1 (1 + ω(r)), or

σ =
p2 − 1
p0 − 1

(
1 +

σh
4
)
(1 + ω(r)),

(2.12) and (2.14), we have

−
∫
Br

Φp0(1 + |Du|)
p2−1
p0−1 dx ≤ c

(
−
∫
B2r

Φ(x, |Du|) dx+ 1
)(1+ω(r))2

≤ c
(
−
∫
B4r

Φp0(|Du|) dx+ 1
) (2.15)

and

−
∫
Br

Φp0(1 + |Du|)
p2−1
p0−1

(
1+

σh
4

)
dx ≤ c

(
−
∫
B4r

Φp0(|Du|) dx+ 1
)1+

σh
4
. (2.16)

2.4. Affine functions. For a given u ∈ L2(Br(x0),RN ), we define an affine func-
tion Px0,r by the minimizer of the functional

P 7→ −
∫
Br(x0)

|u− P |2 dx.

Then we can easily see that Px0,r = DPx0,r(x− x0) + (u)x0,r, where

DPx0,r :=
n+ 2
r2
−
∫
Br(x0)

u⊗ (x− x0) dx.

Then we have the following lemma.

Lemma 2.5. Let 2 < p <∞ and r > 0.
(1) For any u ∈ LΦp(Br(x0)) and θ ∈ (0, 1), we have

Φp(|DPx0,r −DPx0,θr|) ≤ c−
∫
Bθr(x0)

Φp
( |u− Px0,r|

θr

)
dx. (2.17)

(2) For any u ∈W 1,Φp(Br(x0)), we have

Φp
(
|DPx0,r − (Du)Br(x0)|

)
≤ c−

∫
Br(x0)

Φp(|Du− (Du)Br(x0)|) dx. (2.18)

Here, the constants c depend only on n,N, p.

Proof. By [25, Lemma 2], we have

|DPx0,r −DPx0,θr|2 ≤ c−
∫
Bθr(x0)

|u− Px0,r|2

(θr)2
dx,

|DPx0,r − (Du)Br(x0)|2 ≤ c−
∫
Br(x0)

|Du− (Du)Br(x0)|2 dx.

Using these and Jensen’s inequality for the convex map t 7→ Φp(
√
t), we obtain

Φp(|DPx0,r −DPx0,θr|) ≤ cΦp
(
−
∫
Bθr(x0)

|u− Px0,r|2

(θr)2
dx
)1/2

≤ c−
∫
Bθr(x0)

Φp
( |u− Px0,r|

θr

)
dx,

which yileds (2.17). In the same way we obtain (2.18). �
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2.5. A-harmonic approximation. Let A be a bilinear form in RnN . Moreover
A satisfies the so-called Legendre-Hadamard condition: there exist 0 < ν ≤ λ such
that

ν|ξ|2|η|2 ≤ ξ ⊗ η : ξ ⊗ η ≤ Λ|ξ|2|η|2 (2.19)

for every ξ ∈ Rn, η ∈ RN . For this A we say that h ∈W 1,2t(Ω,RN ) is A-harmonic
if ∫

Ω

ADh : Dϕ = 0

for every ϕ ∈ C1
0 (Ω,RN ). We then state the so-called A-harmonic approximation

lemma, see [15, Lemma 3.3].

Lemma 2.6. Let ε > 0 and 0 < ν ≤ Λ. Assume that there exists small δ =
δ(n,N, ν,Λ, ε) > 0 such that if the bilinear form A on RnN satisfies (2.19), r > 0
and w ∈W 1,2(Br,RN ) satisfies

−
∫
Br

|Dw|2 dx ≤ 1,

∣∣−∫
Bρ

ADw : Dϕdx
∣∣ ≤ δ‖Dϕ‖L∞(Br) for every ϕ ∈ C1

0 (Br,RN ),

then there exists A-harmonic map h such that

−
∫
Br

|Dw|2 dx ≤ 1, r−2 −
∫
Br

|w − h|2 dx ≤ ε.

3. Partial continuity

Let us first consider ρ > 0 satisfying

ρ ≤ ρ0 := sup
{
r > 0 : 4r ≤ δ0M−1, ω(4r) ≤ min{σh

8
,

1
2
}
}
, (3.1)

where M is denoted in (2.6) and δ0, σh are determined in Theorem 2.4. Then we
see that ρ satisfies (2.11) with r replaced by 2ρ. We then consider B4ρ(x0) ⊂ Ω
with x0 ∈ Ω and ρ ≤ ρ0 and set

p0 := p(x0), p1 := inf
B2ρ(x0)

p(·), p2 := sup
B2ρ(x0)

p(·),

C(x0, ρ, P ) := −
∫
Bρ(x0)

[ |Du−DP |2
(1 + |DP |)2

+
Φp0(|Du−DP |)
Φp0(1 + |DP |)

]
dx (3.2)

and

E(x0, ρ, P ) := C(x0, ρ, P ) +
[
µ
(
−
∫
Bρ

|u− P (x0)|2 dx
)

+ ω(ρ) log(
1
ρ

)
] 1

2p0−1
. (3.3)

Here, P : Rn → RN is any affine function. In this setting we derive a Caccioppoli
type inequality.

Lemma 3.1. Assume that

C(x0, 8ρ, P ) ≤ 1. (3.4)
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Then

C(x0, ρ, P ) ≤ c−
∫
B2ρ(x0)

[ |u− P |2

(2ρ)2(1 + |DP |)2
dx+

Φp0(|u− P |/(2ρ))
Φp0(1 + |DP |)

]
dx

+ c
{
µ
(
−
∫
B2ρ(x0)

|u− P (x0)|2 dx
)

+ ω(2ρ) log(
1
2ρ

)
} (3.5)

for some c = c(n,N, γ1, γ2, ν,Λ) > 0.

Proof. Set ϕ = ηp0+1(u − P ), where η ∈ C∞0 (B2ρ) with 0 ≤ η ≤ 1, η ≡ 1 on Bρ
and |Dη| ≤ c(n)/ρ. Taking ϕ as a test function in (1.3), we have

−
∫
B2ρ

ηp0+1a(x, u,Du) : D(u−P ) dx = −(p0+1)−
∫
B2ρ

ηp0a(x, u,Du) : Dη⊗(u−P ) dx.

This and the trivial identity

−
∫
B2ρ

a(x0, P (x0), DP ) : Dϕdx = 0

imply

I1 := −
∫
B2ρ

ηp0+1(a(x0, u,Du)− a(x0, u,DP )) : (Du−DP ) dx

= −
∫
B2ρ

(a(x0, u,Du)− a(x0, u,DP )) : Dϕdx

− (p0 + 1)−
∫
B2ρ

ηp0(a(x0, u,Du)− a(x0, u,DP )) : Dη ⊗ (u− P ) dx

= −
∫
B2ρ

(a(x0, u,Du)− a(x, u,Du)) : Dϕdx

+−
∫
B2ρ

(a(x0, P (x0), DP )− a(x0, u,DP )) : Dϕdx

− (p0 + 1)−
∫
B2ρ

ηp0(a(x0, u,Du)− a(x0, u,DP )) : Dη ⊗ (u− P ) dx

=: I2 + I3 − I4.

(3.6)

Estimate for I1. From (1.7) we have

−
∫
Bρ

ηp0+1{Φp0−2(1 + |DP |)|Du−DP |2 + Φp0(|Du−DP |)} dx ≤ cI1. (3.7)

Estimate for I2. Using (1.5) and (2.1), for κ ∈ (0, 1), we have

|I2| ≤ c−
∫
B2ρ

ω(2ρ) log(e+ 1 + |Du|) Φp2−1(1 + |Du|)
(
|Du−DP |+ |u− P |

ρ

)
dx

≤ κ−
∫
B2ρ

[
Φp0(|Du−DP |) + Φp0

( |u− P |
ρ

)]
dx

+ c(κ)−
∫
B2ρ

Φ∗p0
(
ω(2ρ) log(e+ 1 + |Du|)Φp2−1(1 + |Du|)

)
dx.

Now we estimate the last integral above:

Ĩ2 := −
∫
B2ρ

Φ∗p0 (ω(2ρ) log(e+ 1 + |Du|)Φp2−1(1 + |Du|)) dx. (3.8)
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Using (2) and (5) of Proposition 2.1 and that 1 + |Du| ≤ Φp0(1 + |Du|)
p2−1
p0−1 , we

have

Ĩ2 ≤ −
∫
B2ρ

[ω(2ρ) log(e+ 1 + |Du|)]i(p0)(1 + |Du|)(p2−p0)
p0
p0−1 Φp0(1 + |Du|) dx

≤ c
[
ω(2ρ) log

(
e+

(
Φp0(1 + |Du|)

p2−1
p0−1

)
2ρ

)]i(p0)

−
∫
B2ρ

[Φp0(1 + |Du|)]
p2−1
p0−1 dx

+ c[ω(2ρ)]
p0+1
p0 −
∫
B2ρ

log
p0
p0−1

(
e+

Φp0(1 + |Du|)
p2−1
p0−1

(Φp0(1 + |Du|)
p2−1
p0−1 )2ρ

)
×
[
Φp0(1 + |Du|)

] p2−1
p0−1 dx,

where

i(p0) =

{
p0
p0−1 if ω(2ρ) log(e+ 1 + |Du|) > 1,
p0+1
p0

if ω(2ρ) log(e+ 1 + |Du|) ≤ 1.

Then, applying (2.5), (2.7) and two inequalities concerning the higher integrability:
(2.15) and (2.16) with r = 2ρ, we obtain

Ĩ2 ≤ c
[
ω(2ρ) log(

1
ρ

)
]i(p0) −

∫
B8ρ

Φp0(1 + |Du|) dx

+ [ω(2ρ)]
p0+1
p0

(
−
∫
B2ρ

Φp0(1 + |Du|)
p2−1
p0−1

(
1+

σh
4

)
dx
) 1

1+
σh
4

≤ c
[
ω(2ρ) log(

1
2ρ

)
] p0+1

p0 −
∫
B8ρ

Φp0(1 + |Du|) dx

≤ c
[
ω(2ρ) log(

1
2ρ

)
] p0+1

p0 Φp0(1 + |DP |).

(3.9)

In the last equality above, we have used the assumption (3.4) so that

−
∫
B8ρ

Φp0(1 + |Du|) dx ≤ c
(
−
∫
B8ρ

Φp0(|Du−DP |) dx+ Φp0(1 + |DP |) dx
)

≤ cΦp0(1 + |DP |).
(3.10)

Therefore,

|I2| ≤ κ−
∫
B2ρ

[
Φp0(|Du−DP |) + Φp0

( |u− P |
ρ

)]
dx

+ c(κ)ω(2ρ) log(
1
2ρ

)Φp0(1 + |DP |).
(3.11)

Estimate for I3. Applying (1.9),

|I3| ≤ c−
∫
B2ρ

µ
(
|u− P (x0)|2

)
Φp0−1(1 + |DP |)

(
ηp0+1|Du−DP |+ |u− P |

ρ

)
dx.
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Using (2.1), (2.5) and Jensen’s inequality, we see that for κ ∈ (0, 1),

|I3| ≤ κ−
∫
B2ρ

[
ηp0+1Φp0(|Du−DP |) + Φp0

( |u− P |
ρ

)]
dx

+ c(κ)−
∫
B2ρ

µ
(
|u− P (x0)|2

) p0+1
p0 Φp0(1 + |DP |) dx

≤ κ−
∫
B2ρ

ηp0+1Φp0(|Du−DP |) dx+−
∫
B2ρ

Φp0
( |u− P |

ρ

)
dx

+ c(κ)µ
(
−
∫
B2ρ

|u− P (x0)|2 dx
)

Φp0(1 + |DP |).

(3.12)

Estimate for I4. From the first inequality in (1.4), Young’s inequality and (2.2),
we have that for κ ∈ (0, 1),

|I4|

≤ c−
∫
B2ρ

(∫ 1

0

|∂a(x0, u, t(Du−DP ) +DP )| dt
)
|Du−DP |ηp0 |u− P |

ρ
dx

≤ c−
∫
B2ρ

Φp0−2(1 + |DP |+ |Du−DP |)|Du−DP |ηp0 |u− P |
ρ

dx

≤ cΦp0−2(1 + |DP |)−
∫
B2ρ

η
p0+1

2 |Du−DP | |u− P |
ρ

dx

+ c−
∫
B2ρ

Φp0−1(|Du−DP |)ηp0 |u− P |
ρ

dx

≤ κ−
∫
B2ρ

ηp0+1
[
Φp0−2(1 + |DP |)|Du−DP |2 + Φp0(|Du−DP |)

]
dx

+ c(κ)
(

Φp0−2(1 + |DP |)−
∫
B2ρ

|u− P |2

ρ2
dx+−

∫
B2ρ

Φp0
( |u− P |

ρ

)
dx
)
.

(3.13)

Consequently, inserting (3.7)-(3.13) into (3.6) and choosing κ sufficiently small, we
get the estimate (3.5). �

Next, we define

A = A(x0, P ) :=
∂a(x0, P (x0), DP )
Φp(x0)−2(1 + |DP |)

, w :=
u− P

(1 + |DP |)
√
E(x0, ρ, P )

. (3.14)

Then one can see from (1.4) that A satisfies (2.19). The next lemma implies that if
E(x0, ρ, P ) is sufficiently small then one can apply Lemma 3.2 to A and w denoted
above.

Lemma 3.2. Suppose that (3.4) holds. Then there exists c = c(n,N, γ1, γ2, ν,Λ) >
0 such that∣∣−∫

Bρ(x0)

ADw : Dϕdx
∣∣ ≤ c[µ(

√
E(x0, ρ, P )) + E(x0, ρ, P )]1/2 sup

Bρ(x0)

|Dϕ| (3.15)

for every ϕ ∈ C∞0 (Bρ(x0)).
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Proof. We first consider ϕ ∈ C∞0 (Bρ(x0)) with supBρ(x0) |Dϕ| = 1, and set v :=
u− P , i.e., v = (1 + |DP |)

√
E(x0, ρ, P )w, and Bρ = Bρ(x0). Then

Φp0−2(1 + |DP |)−
∫
Bρ

ADv : Dϕdx

= −
∫
Bρ

∫ 1

0

(∂a(x0, P (x0), DP )− ∂a(x0, P (x0), DP + sDv))Dv : Dϕdt dx

+−
∫
Bρ

∫ 1

0

∂a(x0, P (x0), DP + sDv)Dv : Dϕdt dx

=: I5 + I6.

(3.16)

We first estimate I5. Applying (1.10), we have

|I5| ≤ c−
∫
Bρ

∫ 1

0

µ
( s|Dv|

1 + |DP |

)
Φp0−2(1 + |DP |+ |DP + sDv|)|Dv| dt dx

≤ c−
∫
Bρ

µ
( |Du−DP |

1 + |DP |

)
(Φp0−2(1 + |DP |) + Φp0−2(|Du−DP |))|Du−DP | dx

= cΦp0−1(1 + |DP |)×−
∫
Bρ

µ
( |Du−DP |

1 + |DP |

)
×
( |Du−DP |

1 + |DP |
+

Φp0−1(|Du−DP |)
Φp0−1(1 + |DP |)

)
dx.

Set B+
ρ := {x ∈ Bρ : |Du(x) − DP | > 1 + |DP |} and B−ρ := Bρ \ B+

ρ . Then, by
(2.4) and (2.5), in B+

ρ ,

µ
( |Du−DP |

1 + |DP |

)( |Du−DP |
1 + |DP |

+
Φp0−1(|Du−DP |)
Φp0−1(1 + |DP |)

)
≤ |Du−DP |

2

(1 + |DP |)2
+

Φp0(|Du−DP |)
Φp0(1 + |DP |)

.

On the other hand, in B−ρ ,

µ
( |Du−DP |

1 + |DP |

)( |Du−DP |
1 + |DP |

+
Φp0−1(|Du−DP |)
Φp0−1(1 + |DP |)

)
≤ µ

( |Du−DP |
1 + |DP |

) |Du−DP |
1 + |DP |

+ µ
( |Du−DP |

1 + |DP |

)(Φp0(|Du−DP |)
Φp0(1 + |DP |)

) p0−1
p0

.

Using Hölder’s inequality, (2.4) and Jensen’s inequality for the concave function
µ−1, we have from the pervious two inequalities that

|I5|
Φp0−1(1 + |DP |)

≤ c−
∫
Bρ

( |Du−DP |
1 + |DP |

+
Φp0(|Du−DP |)
Φp0(1 + |DP |)

)
dx

+ c
[
µ
(
−
∫
Bρ

|Du−DP |
1 + |DP |

dx
)]1/2(

−
∫
Bρ

|Du−DP |2

1 + |DP |2
dx
)1/2

+ c
[
µ
(
−
∫
Bρ

|Du−DP |
1 + |DP |

dx
)]1/p0(

−
∫
Bρ

Φp0(|Du−DP |)
Φp0(1 + |DP |)

dx
) p0−1

p0
.
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Therefore, recalling the definitions of C(x0, ρ, P ) and E(x0, ρ, P ), and using Young’s
inequality, we obtain

|I5|
Φp0−1(1 + |DP |)

≤ c
{
C(x0, ρ, P ) +

[
µ(
√
C(x0, ρ, P ))

]1/2[C(x0, ρ, P )]1/2

+
[
µ(
√
C(x0, ρ, P ))

]1/p0 [C(x0, ρ, P )]
p0−1
p0

}
≤ c
{
E(x0, ρ, P ) +

[
µ(
√
E(x0, ρ, P ))

]1/2 [E(x0, ρ, P )]1/2
}
.

(3.17)

Next we estimate I6. Applying (1.5) and (1.9), we have

I6 = −
∫
Bρ

(a(x0, P (x0), Du)− a(x0, P (x0), DP )) : Dϕdx

= −
∫
Bρ

(a(x0, P (x0), Du)− a(x, P (x0), Du)) : Dϕdx

+−
∫
Bρ

(a(x, P (x0), Du)− a(x, u,Du)) : Dϕdx

≤ c−
∫
Bρ

ω(ρ) log(e+ 1 + |Du|)Φp2−1(1 + |Du|) dx

+ c−
∫
Bρ

µ(|u− P (x0)|2)Φp0−1(1 + |Du|) dx

=: c(I6a + I6b).

For I6a, from Jensen’s inequality for the convex function Φ∗p0 we have

I6a ≤ (Φ∗p0)−1
(
−
∫
Bρ

Φ∗p0 (ω(ρ) log(e+ 1 + |Du|)Φp2−1(1 + |Du|)) dx
)
.

Note that the integration on the right hand side above is exactly same to Ĩ2 denoted
in (3.8) with 2ρ replaced by ρ, hence it follows from (3.9) and (5) of Proposition
2.1 that

I6a ≤ (Φ∗p0)−1
([
ω(ρ) log(

1
ρ

)
] p0+1

p0 Φp0(1 + |DP |)
)

≤
[
ω(ρ) log(

1
ρ

)
] p20−1

p0 Φp0−1(1 + |DP |).

In the above inequality, we used that (Φ∗p)
−1(θt) ≤ θ

p−1
p (Φ∗p)

−1(t), θ ∈ (0, 1) and
t > 0, which can be easily derived from (2) of Proposition 2.1.

As for I6b, using (2.5), Hölder’s inequality, Jensen’s inequality for the convex

functions µ−1 and Ψ(t) := Φp0(Φ−1
p0−1(t

2p0−2
2p0−1 )), and (3.10), we have

I6b ≤ c
(
−
∫
Bρ

µ(|u− P (x0)|2) dx
) 1

2p0−1
(
−
∫
Bρ

[Φp0−1(1 + |Du|)]
2p0−1
2p0−2 dx

) 2p0−2
2p0−1

≤ c
[
µ
(
−
∫
Bρ

|u− P (x0)|2 dx
)] 1

2p0−1
[
Ψ−1

(
−
∫
Bρ

Φp0(1 + |Du|) dx
)] 2p0−2

2p0−1
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≤ c
[
µ
(
−
∫
Bρ

|u− P (x0)|2 dx
)] 1

2p0−1 [
Ψ−1 (Φp0(1 + |DP |))

] 2p0−2
2p0−1

≤ c
[
µ
(
−
∫
Bρ

|u− P (x0)|2 dx
)] 1

2p0−1
Φp0−1(1 + |DP |).

Therefore, from the previous two estimates and the definition of E, we have

|I6|
Φp0−1(1 + |DP |)

≤ cE(x0, ρ, P ). (3.18)

Inserting (3.17) and (3.18) into (3.16) and using the definition of (3.3), we have
(3.15) for every ϕ ∈ C∞(Bρ(x0)) with supBρ |Dϕ| = 1. Therefore, the standard
normalization argument yields (3.15) for every ϕ ∈ C∞(Bρ(x0)). �

We consider the affine function P = (Du)x0,ρ(x− x0) + (u)x0,ρ, and set

C(x0, ρ) := C(x0, ρ, (Du)x0,ρ(x− x0) + (u)x0,ρ)

= −
∫
Bρ

[ |Du− (Du)x0,ρ|2

(1 + |(Du)x0,ρ|)2
+

Φp0(|Du− (Du)x0,ρ|)
Φp0(1 + |(Du)x0,ρ|)

]
dx,

(3.19)

Ẽ(x0, ρ) := E(x0, ρ, (Du)x0,ρ(x− x0) + (u)x0,ρ)

= C(x0, ρ) +
[
µ
(
−
∫
Bρ

|u− (u)x0,ρ|2 dx
)

+ ω(ρ) log(
1
ρ

)
] 1

2p0−1
,

(3.20)

E(x0, ρ) := C(x0, ρ) +
[
µ
(
ρ−
∫
Bρ

|Du|2 dx
)

+ ω(ρ) log(
1
ρ

)
] 1

2p0−1
. (3.21)

Then, from Poincaré’s inequality along with the fact ρ < 1, we see that

Ẽ(x0, ρ) ≤ cE(x0, ρ). (3.22)

some c = c(n,N) ≥ 1.

Lemma 3.3. For θ ∈ (0, 1/8), there exists ε0 = ε0(n,N, γ1, γ2, ν,Λ, θ) > 0 such
that if E(x0, ρ) ≤ ε0 and ρ ≤ ε1 := min{θn, ρ0}, where ρ0 is defined in (3.1), then

C(x0, θρ) ≤ c∗θ2E(x0, ρ) (3.23)

for some c∗ = c∗(n,N, γ1, γ2, ν,Λ) ≥ 1.

Proof. Step 1. We first estimate the integrals

−
∫
B2θρ

|u(x)− P2θρ|2

(2θρ)2
dx and −

∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx. (3.24)

where the affine function Px0,2θρ is defined in Section 2.4. Recall A and w denoted
in (3.14) with P = (Du)ρ(x− x0) + (u)ρ. Then

w :=
u− (Du)ρ(x− x0)− (u)ρ

(1 + (Du)ρ)
√
Ẽ(x0, ρ)

and −
∫
Bρ

|Dw|2 dx ≤ 1.

Let ε ∈ (0, 1) be a sufficiently small number determined later, for which we consider
δ = δ(n,N, ν,Λ, ε) > 0 determined in Lemma 2.6. Then by Lemma 3.2 with (3.20),
(3.21) and (3.22), we have∣∣−∫

Bρ(x0)

ADw : Dϕdx
∣∣ ≤ δ sup

Bρ(x0)

|Dϕ|,
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by taking sufficiently small ε0 = ε0(n,N, γ1, γ2, ν,Λ, ε) ∈ (0, 1). We point out
that when using Lemma 3.2, we need the assumption (3.4), which is clear since
C(x0, ρ) ≤ E(x0, ρ) ≤ ε0 ≤ 1. Therefore, in view of Lemma 2.6, there exists an
A-harmonic map h such that

−
∫
Bρ

|Dh|2 dx ≤ 1 and −
∫
Bρ

|w − h|2 dx ≤ ερ2. (3.25)

We notice by a basic regularity theory for A-harmonic maps, see for instance [20,
Chapter 10], that

ρ−2 sup
Bρ/2

|Dh|2 + sup
Bρ/2

|D2h| ≤ cρ−2 −
∫
Bρ

|Dh|2 dx ≤ cρ−2. (3.26)

Moreover, the Taylor expansion of h implies that for θ ∈ (0, 1/4),

sup
x∈B2θρ

|h(x)− h(x0)−Dh(x0)(x− x0)|2 ≤ cθ4ρ2. (3.27)

At this point we choose ε = θn+4. Then we have from the second inequality in
(3.25) and (3.27) that

−
∫
B2θρ

|w − h(x0)−Dh(x0)(x− x0)|2

(2θρ)2
dx ≤ cθ2,

hence, by the definitions of the affine function P2θρ := Px0,2θρ denoted in Section
2.4 and w and (3.22), we obtain

−
∫
B2θρ

|u− P2θρ|2

(2θρ)2
dx ≤ cθ2(1 + |(Du)ρ|)2E(x0, ρ). (3.28)

Next we estimate the second integral in (3.24). Let t0 = t(x0) ∈ (0, 1) be a
number satisfying

1
p0

= (1− t0) +
t0

p0(1 + σs)
, (3.29)

where σs is given in Lemma 2.2. Note that since 2 < γ1 ≤ p0 ≤ γ2, there exists
0 < tm ≤ tM < 1 depending only on γ1, γ2, σs such that tm ≤ t0 ≤ tM . Then
by Hölder’s inequality, Jensen’s inequality for the convex map t 7→ [(Φp0)−1(tp0)]2,
(3.28), (2.8) and (1) of Proposition 2.1, we have

−
∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx

≤
(
−
∫
B2θρ

[
Φp0
( |u− P2θρ|

2θρ

)]1/p0
dx
)(1−t0)p0

×
(
−
∫
B2θρ

[
Φp0
( |u− P2θρ|

2θρ

)]1+σs
dx
) t0

1+σs

≤
[
Φp0

(
θ(1 + |(Du)ρ|)

√
E(x0, ρ)

)]1−t0 (
−
∫
B2θρ

Φp0(|Du−DP2θρ|) dx
)t0

≤ [θ
√
E(x0, ρ)]p0(1−t0) [Φp0(1 + |(Du)ρ|)]1−t0

(
−
∫
B2θρ

Φp0(|Du−DP2θρ|) dx
)t0

.
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In addition, from (2.17), (1) of Proposition 2.1, (2.8), (2.18) and the definition of
E, we have

−
∫
B2θρ

Φp0(|Du−DP2θρ|) dx

≤ cθ−n −
∫
Bρ

Φp0(|Du−DPρ|) dx+ cΦp0(|DPρ −DP2θρ|)

≤ cθ−n −
∫
Bρ

Φp0(|Du−DPρ|) dx+ cθ−(p+1) −
∫
Bθρ

Φp
( |u− Pρ|

ρ

)
dx

≤ cθ−n−(p+1) −
∫
Bρ

Φp(|Du−DPρ|) dx

≤ cθ−n−(p+1) −
∫
Bρ

Φp0(|Du− (Du)ρ|) dx

≤ cθ−n−(p+1)Φp0(1 + |(Du)ρ|)E(x0, ρ).

Combining the two above estimates, we obtain

−
∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx

≤ cθp0−(2p0+n+1)t0Φp0(1 + |(Du)ρ|)E(x0, ρ)(
p0
2 −1)(1−t0)+1.

Therefore, taking ε0 = ε0(n,N, γ1, γ2, θ) > 0 sufficiently small so that

E(x0, ρ)(p/2−1)(1−t0) ≤ ε(
p0
2 −1)(1−t0)

0 ≤ ε(
γ1
2 −1)(1−tM )

0

≤ θ−γ1+(2γ2+n+1)tM+2 ≤ θ−p0+(2p0+n+1)t0+2,

we obtain

−
∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx ≤ cθ2Φp0(1 + |(Du)ρ|)E(x0, ρ). (3.30)

Moreover, by assuming √
E(x0, ρ) ≤

√
ε0 ≤ θn/8,

we have

1 + |(Du)ρ| ≤ 2(1 + |(Du)θρ|) and 1 + |(Du)2θρ| ≤ 2(1 + |(Du)θρ|), (3.31)

see [18, page 483]. Therefore, inserting the first inequality in (3.31) into (3.28) and
(3.30), we obtain

−
∫
B2θρ

|u− P2θρ|2

(2θρ)2
dx ≤ cθ2(1 + |(Du)θρ|)2E(x0, ρ), (3.32)

−
∫
B2θρ

Φp0
( |u− P2θρ|

2θρ
)
dx ≤ cθ2Φp0(1 + |(Du)θρ|)E(x0, ρ). (3.33)

Step 2. Now we prove (3.23). Suppose that

E(x0, ρ) ≤ ε0 ≤ θn. (3.34)

Then we observe that

C(x0, 8θρ) ≤ (8θ)−nE(x0, ρ) ≤ 1.
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Hence, in view of Lemma 3.1 with ρ replaced by θρ and P = P2θρ, we have

−
∫
Bθρ

Φp0−2(1 + |DP2θρ|)|Du−DP2θρ|2 dx+−
∫
Bθρ

Φp0(|Du−DP2θρ|) dx

≤ cΦp0−2(1 + |DP2θρ|)−
∫
B2θρ

|u− P2θρ|2

(2θρ)2
dx+ c−

∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx

+ cΦp0(1 + |DP2θρ|)
{
µ
(
−
∫
B2θρ

|u− (u)2θρ|2 dx
)

+ ω(2θρ) log
( 1

2θρ
)}
.

We note that Young’s inequalities such as (4) and (5) of Proposition 2.1 also hold
for the Orlicz function G(t) := t

p
2 log(e+

√
t). Using this fact and Lemma 2.5 with

(ρ, θ) replaced by (θρ, 1/2), we have

−
∫
Bθρ

Φp0−2(1 + |(Du)θρ|)|Du− (Du)θρ|2 dx

≤ c−
∫
Bθρ

Φp0−2(1 + |DP2θρ|)|Du− (Du)θρ|2 dx

+ c−
∫
Bθρ

Φp0−2(|(Du)θρ −DPθρ|)|Du− (Du)θρ|2 dx

+ c−
∫
Bθρ

Φp0−2(|DPθρ −DP2θρ|)|Du− (Du)θρ|2 dx

≤ c−
∫
Bθρ

Φp0−2(1 + |DP2θρ|)|Du−DP2θρ|2 dx+ c−
∫
Bθρ

Φp0(|Du− (Du)θρ|) dx

+ c (Φp0(|(Du)θρ −DPθρ|) + Φp0(|DPθρ −DP2θρ|))

≤ c−
∫
Bθρ

Φp0−2(1 + |DP2θρ|)|Du−DP2θρ|2 dx+ c−
∫
Bθρ

Φp0(|Du− (Du)θρ|) dx

+ c−
∫
B2θρ

Φp0
( |u− P2θρ|

2θρ
)
dx.

Combining the two estimates above with

−
∫
Bθρ

Φp0(|Du− (Du)θρ|) dx ≤ c−
∫
Bθρ

Φp0(|Du−DP2θρ|) dx,

we obtain

−
∫
Bθρ

Φp0−2(1 + |(Du)θρ|)|Du− (Du)θρ|2 dx+−
∫
Bθρ

Φp0(|Du− (Du)θρ|) dx

≤ cΦp0−2(1 + |DP2θρ|)−
∫
B2θρ

|u− P2θρ|2

(2θρ)2
dx+ c−

∫
B2θρ

Φp0
( |u− P2θρ|

2θρ

)
dx

+ cΦp0(1 + |DP2θρ|)
{
µ
(
−
∫
B2θρ

|u− (u)2θρ|2 dx
)

+ ω(2θρ) log
( 1

2θρ
)}
.

(3.35)

We further estimate the right hand side on the above inequality. Applying (2.18),
(3.34) and (3.31), we have

Φp0(|DP2θρ|) ≤ cΦp0(|DP2θρ − (Du)2θρ|) + cΦp0(|(Du)2θρ|)

≤ cθ−n −
∫
Bρ

Φp0(|Du− (Du)ρ|) dx+ cΦp0(|(Du)2θρ|)
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≤ c(θ−nE(x0, ρ) + 1)Φp0(1 + |(Du)ρ|)
≤ cΦp0(1 + |(Du)θρ|)
≤ Φp0 (c(1 + |(Du)θρ|)) ,

which implies
|DP2θρ| ≤ c(1 + |(Du)θρ|).

Moreover, using Poincaré’s inequality and the fact that ρ ≤ θn, we have

−
∫
B2θρ

|u− (u)2θρ|2 dx ≤ cθ−n −
∫
Bρ

|u− (u)ρ|2 dx ≤ cρ−
∫
Bρ

|Du|2 dx.

Therefore, inserting the two above inequalities, (3.32) and (3.33) into (3.35), we
obtain

C(x0, θρ) ≤ cθ2E(x0, ρ) + c[E(x0, ρ)]2p0−1

Finally, assuming

[E(x0, ρ)]2(p0−1) ≤ [E(x0, ρ)]2(γ1−1) ≤ ε2(γ1−1)
0 ≤ θ2,

we obtain (3.23). �

Now, we are ready to prove Theorem 1.1

Proof of Theorem 1.1. Fix α ∈ (0, 1). Let us determine several constants such that

λ := n− 2(1− α) ∈ (n− 2, n), (3.36)

θ := min
{1

8
,

1
√
c∗
,

1
31/(n−λ)

}
(3.37)

ε2 := min
{θn

16
,
ε0
2
}
, (3.38)

where c∗ and ε0 are determined in Lemma 3.3. We note from the continuity of µ(·)
and (1.2) that one can find δ1 = δ1(µ, ω, ε2) > 0 such that

µ(r) + ω(r) log
(1
r

)
≤ ε2 for every r ∈ (0, δ1]. (3.39)

Then we denote
ρm := min{δ1, ε1, ρ0}. (3.40)

Step 1. In this step, we fix Bρ = Bρ(x0) ⊂ Ω with x0 ∈ Ω and ρ ∈ (0, ρm], and
suppose that

C(x0, ρ) ≤ ε2 and M(x0, ρ) := ρ−
∫
Bρ

|Du|2 dx ≤ δ1. (3.41)

Then we claim that for any k = 0, 1, 2, . . . ,

C(x0, θ
kρ) ≤ ε2 and M(x0, θ

kρ) := θkρ−
∫
B
θkρ

|Du|2 dx ≤ δ1. (3.42)

We prove the claim by induction. For the sake of convenience, for k = 0, 1, 2, . . . ,
we write (3.42)k,1 (resp. (3.42)k,2) with the first (resp. second) inequality in (3.42).
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Now we suppose that the inequalities in (3.42) hold for k, and then prove that
(3.42) holds for k replaced by k + 1. We first observe from (3.42)k,1 and Hölder’s
inequality that

−
∫
B
θkρ

|Du− (Du)θkρ|2 dx ≤ (1 + |(Du)θkρ|)2C(x0, θ
kρ)

≤ 2ε2
(

1 +−
∫
B
θkρ

|Du|2 dx
)
.

(3.43)

and so, by (3.42)k,2,

θkρ−
∫
B
θkρ

|Du− (Du)θkρ|2 dx ≤ 2ε2θkρ+ 2ε2δ1.

This together with (3.37), (3.38) and (3.40) imply

M(x0, θ
k+1ρ) ≤ 2θk+1ρ−

∫
B
θk+1ρ

|Du− (Du)θkρ|2 dx+ 2θk+1ρ|(Du)θkρ|2

≤ 2θ1−nθkρ−
∫
B
θkρ

|Du− (Du)θkρ|2 dx+ 2θM(x0, θ
kρ)

≤ 4θk+1−nε2ρ+ 4θ1−nε2δ1 + 2θδ1
≤ 4θ−nε2ρ+ 4θ−nε2δ1 + 2θδ1 ≤ δ1,

which shows (3.42)k+1,2. It remains to prove (3.42)k+1,1. We notice from (3.21),
(3.38), (3.39), (3.42)k,1, (3.42)k,2 and the fact that θkρ ≤ ρm ≤ δ1 that

E(x0, θ
kρ) := ε2 +

[
µ(δ1) + ω(θkρ) log

( 1
θkρ

)] 1
2p0−1 ≤ 2ε2 < ε0.

Therefore, applying Lemma 3.3, we have

C(x0, θ
k+1ρ) ≤ c∗θ2ε2 ≤ ε2.

This shows (3.42)k+1,1. Hence, we prove that (3.42) holds for every k = 0, 1, 2, . . . .
Here, we note that (3.43) also holds for every k = 0, 1, 2, . . . .

Next we observe from (3.38) and (3.43) that

−
∫
B
θk+1ρ(x0)

|Du|2 dx ≤ 2−
∫
B
θk+1ρ

|Du− (Du)θkρ|2 dx+ 2|(Du)θkρ|2

≤ 2θ−n −
∫
B
θkρ

|Du− (Du)θkρ|2 dx+ 2−
∫
B
θkρ

|Du|2 dx

≤ 4θ−nε2 + (4θ−nε2 + 2)−
∫
B
θkρ

|Du|2 dx

≤ 4θ−nε2 + 3−
∫
B
θkρ

|Du|2 dx,

and so, by (3.37),∫
B
θk+1ρ

|Du|2 dx ≤ θλ
∫
B
θkρ

|Du|2 dx+ 4|B1|(θkρ)n.
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Then applying Lemma 2.3 with φ(r) =
∫
Br
|Du|2 dx, for every r ∈ (0, ρ), we have∫

Br

|Du|2 dx ≤ c
{( r
ρ

)λ ∫
Bρ

|Du|2 dx+ rλ
}

≤ c

ρλ

(∫
Ω

|Du|2 dx+ 1
)
rλ.

(3.44)

Step 2. To complete the proof, we define

Ωu :=
{
x0 ∈ Ω : u ∈ Cα̃(Ux0 ,RN ) for every α̃ ∈ (0, 1) and for some Ux0 ⊂ Ω

}
.

where Ux0 is an open neighborhood of x0. Suppose that x0 ∈ Ω satisfies

lim inf
ρ↓0

−
∫
Bρ(x0)

|Du− (Du)ρ| dx = 0,

Mx0 := lim sup
ρ↓0

−
∫
Bρ(x0)

|Du|2 dx <∞.
(3.45)

For p ∈ [γ1, γ2], set tp ∈ (0, 1) such that

1
p

= 2tp +
(1− tp)
p(1 + σh

2 )
, (3.46)

where σh is determined in Theorem 2.4. Note that Since p ∈ [γ1, γ2] 7→ tp is
continuous there exists tm = tm(γ1, γ2, σh) ∈ (0, 1) such that tm ≤ tp for every
p ∈ [γ1, γ2]. We define

s := min
{[ (ε2/2)γ2/2

c1(Mx0 + 2)

] 1
γ1tm

, δ1

}
< 1, (3.47)

where c1 > 0 will be determined later. Then in view of (3.45), one can find

ρ < min{ρm, (2n(Mx0 + 1) + 1)−1δ1}. (3.48)

with B3ρ(x0) ⊂ Ω such that

−
∫
Bρ(x0)

|Du− (Du)ρ|dx < s and −
∫
B2ρ(x0)

Φ(x, |Du|) dx < Mx0 + 1. (3.49)

Then by Hölder’s inequality with (3.46),

−
∫
Bρ(x0)

Φp0(|Du− (Du)ρ|) dx ≤
(
−
∫
Bρ(x0)

[Φp0(|Du− (Du)ρ|)]
1

2p0 dx
)2p0t0

×
(
−
∫
Bρ(x0)

[Φp0(|Du− (Du)ρ|)]1+
σh
2 dx

) 1−t0
1+

σh
2 ,

where t0 := tp0 . From Jensen’s inequality for the convex functionG(t) := Φ−1
p0 (t2p0),

we have

−
∫
Bρ(x0)

[Φp0(|Du− (Du)ρ|)]
1

2p0 dx ≤ G−1
(
−
∫
Bρ(x0)

|Du− (Du)ρ| dx
)

< G−1(s) = [Φp0(s)]
1

2p0

≤ (2sp0)
1

2p0 .
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On the other hand, using Jensen’s inequality for the convex map t 7→ [Φ(t)]1+
σh
2 ,

(2.13) and (3.49), we have

−
∫
Bρ(x0)

[Φp0(|Du− (Du)ρ|)]1+
σh
2 dx ≤ c−

∫
Bρ(x0)

[Φp0(|Du|)]1+
σh
2 dx

≤ c
{(
−
∫
B2ρ(x0)

Φ(x, |Du|) dx
)1+

σh
2

+ 1
}

< c(Mx0 + 2)1+
σh
2 .

Therefore, we have

−
∫
Bρ(x0)

Φp0(|Du− (Du)ρ|) dx < csp0t0(Mx0 + 2)1−t0 ≤ c1(Mx0 + 2)sγ1tm ,

where c1 > 0 depends only on n,N, γ1, γ2, ν,Λ, and so by (3.47),

−
∫
Bρ(x0)

Φp0(|Du− (Du)ρ|) dx <
(ε2

2
)γ2/2

.

On the other hand, by (3.48) and (3.49), we have

ρ−
∫
Bρ(x0)

|Du|2 dx ≤ ρ
(

2n −
∫
B2ρ

Φ(x, |Du|) dx+ 1
)
< δ1.

In addition, by the continuity of integrals, there exists % > 0 such that (3.49) with
x0 replaced by y holds for every y ∈ B%(x0). Without loss of generality, we can
assume that % ≤ ρ. We note that using Jensen’s inequality for the convex function
Ψp(y)(t) := Φp(y)(

√
t), for y ∈ B%(x0) we have

C(y, ρ) ≤ Ψ−1
p(y)

(
−
∫
Bρ(y)

Φp0(|Du− (Du)ρ|) dx
)

+−
∫
Bρ(y)

Φp(y)(|Du− (Du)ρ|) dx

≤ Ψ−1
p(y)

((ε2
2
)γ2/2)+

(ε2
2
)γ2/2

≤
(ε2

2
) γ2

2
2

p(y) +
(ε2

2
)γ2/2

≤ ε2
2

+
ε2
2
≤ ε2,

where Ψp(t) = t
p
2 log(e+ t) hence Ψ−1

p(y)(t) ≤ t
2
γ1 . Therefore, in view of Step 1, we

see that (3.44) with x0 replaced by y hold for every y ∈ B%(x0) and t ≤ ρ. Therefore,
by Morrey-Campanato’s embedding theorem, we have u is Cα(B%(x0),RN ), that
is, x0 ∈ Ωu. �
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