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Lp-SUBHARMONIC FUNCTIONS IN Rn

MOUSTAFA DAMLAKHI

Abstract. We prove that if u is an Lp-subharmonic function defined outside

a compact set in Rn, it is bounded above near infinity, in particular, if the
subharmonic function u is in Lp(Rn), 1 ≤ p <∞, then u is non-positive. Some

of the consequences of this property are obtained. We discuss the properties

of subharmonic functions defined outside a compact set in Rn if they are also
Lp functions.

1. Introduction

An upper semi-continuous function u, taking the value infinity, and not identi-
cally (−∞) is called a subharmonic function in Rn if it has sub-mean value prop-
erty. The properties of functions with mean-value properties (called harmonic func-
tions) are given in Axler [2] analogous properties for subharmonic functions are also
known. In this note, we derive some properties of subharmonic functions on Rn

when they are also Lp functions. For example, we show that a subharmonic Lp

function in Rn is non-positive.
From Anandam [1] it is easy to see that if s(x) is a subharmonic function defined

outside a compact set in Rn, then s(x) = v(x) + cu(x) + b(x) near infinity, where
v(x) is subharmonic on Rn, u(x) = log |x| if n = 2 and u(x) = |x|2−n if n > 2, c
is constant and b(x) is bounded harmonic function. We obtain some properties of
s(x) if it is in addition an Lp function also.

In particular, we show that if the subharmonic function outside a compact set
is an Lp function, then s(x) tends to 0 at infinity.

2. Subharmonic functions in Lp(Rn)

In this note we consider p <∞ and n ≥ 2.

Lemma 2.1. Let s ≥ 0 be a subharmonic function in Rn. If s ∈ Lp(Rn), p ≥ 1,
then s ≡ 0.

Proof. For x0 ∈ Rn, let Bn = {x : |x − x0| = 1} and σn be the surface area of
Bn. Since s ≥ 0, sp is subharmonic and using the polar coordinates for x = (r, w)
,|x− x0| = r.

By using the expression of the sub-mean-value property of sp we have

sp(x0) ≤ 1
σn

∫
Bn

sp(r, w)dw.
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From this inequality and using that s ∈ Lp(Rn) we have

∞ >

∫ ∞
0

∫
Bn

sp(r, w)rn−1drdw ≥
∫ ∞

0

σns
p(x0)rn−1dr.

This is possible if and only if sp(x0) = 0. Since x0 is arbitrary, sp ≡ 0 in Rn. �

Theorem 2.2. If s is subharmonic function in Lp(Rn) with p ≥ 1, then s ≤ 0.

Proof. s+ = sup(s, 0) is subharmonic and is in Lp(Rn). Hence by the Lemma 2.1
s+ ≡ 0 and consequently s ≤ 0 in Rn. �

Corollary 2.3. Let s be a subharmonic function in Lp(Rn), 1 ≤ p ≤ n
n−1 . Then

s ≡ 0.

Proof. By the Theorem 2.2, s ≤ 0 for all p, 1≤ p <∞.
(1) Let n = 2. Since s is an upper bounded subharmonic function in R2, it is a

constant. If s ∈ L∞(R2), even though Theorem 2.2 does not hold, yet s is also a
constant in this case.

(2) Let n ≥ 3. Since −s a is positive supharmonic function, by Riesz decompo-
sition −s = u+ v where u is a potential and h ≥ 0 is harmonic and hence constant.
Since u ≤ −s, u ∈ Lp(Rn).

Now, if B is the unit ball in Rn, n ≥ 3, we define the function

ϑ(x) =

{
1 if x ∈ B
|x|2−n if x ∈ Rn −B

Then ϑ(x) is a potential and u(x) ≥ ( inf
x∈B

u(x))ϑ(x) ∈ Rn Consequently, ϑ(x) ∈

Lp(Rn), but this would imply∫ ∞
1

(r2−n)prn−1 dr <∞.

This is not possible if p(2 − n) + n − 1 ≥ −1 which means that if p ≤ n
n−2 , u ≡ 0

and hence s is constant. Thus, for all n ≥ 2, s ≡ A, a constant. Since s ∈ Lp(Rn),
A ≡ 0 when p <∞. �

Corollary 2.4. If s is a subharmonic function in Lp(Rn), p ≥ 1, which is asso-
ciated measure µ in a local Riesz representation, µ does not charge points; that is
µ({x}) = 0 for every x ∈ Rn.

Proof. In view of the above corollary, we assume n ≥ 3. By Theorem 2.2, it follows
that u = −s is a potential. Since µ is the measure associated with the subharmonic
function s, it is always non-positive. If we Suppose that it is strictly negative at
a point, it leads to a contradiction. In fact, we assume that µ({x0}) = α < 0 for
some x0 in Rn.

Let B = {x : |x − x0| < 1}. Since u(x) ≥ −α|x − x0|2−n in B and since u is in
Lp(B), we should have p < n/(n− 2).

In Rn−B. Since u(x) ≥ (minx∈B |x−x0|2−n) and since u ∈ Lp(Rn). We should
have p > n/(n− 2) as in the proof of Corollary 2.3.

Thus, for any choice of p ≥ 1, u /∈ Lp(Rn). This contradiction shows that
µ({x0}) = 0. �

Recall that a C∞ function q(x) in an open set in Rn is called a quasiharmonic
function if ∆q = −1.
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Corollary 2.5 ([3, pp. 120-122]). Let s be subharmonic in Rn such that ∆s = A, a
constant (with ∆ in the sense of distributions). Suppose s ∈ Lp(Rn), p ≥ 1. Then
s ≡ 0.

Proof. Since s is subharmonic, A = ∆s ≥ 0. Suppose A > 0. Note by the Theorem
2.2. s ≤ 0. Since

∆s = A, ∆
(
s(x)− A|x|2

2n

)
= 0

and hence there exists a harmonic function h(x) ∈ Rn such that s(x) = A
2n |x|

2

+h(x) a.e.
If two subharmonic functions are equal a.e., they are equal every where; hence

s(x) = A
2n |x|

2 +h(x). Since h(x) ≤ s(x) ≤ 0, h is a constant which leads to a
contradiction since s ≤ 0 and A|x|2 tends to ∞. Hence ∆s = 0. Thus s is a
harmonic function in Lp(Rn). In this case, the Theorem 2.2. implies that s ≡ 0. �

3. Lp Subharmonic function outside a compact set in Rn

Let u be subharmonic function outside a compact set in Rn. We say that u
extends subharmonically in Rn if there exists a subharmonic function V in Rn,
such that V is not bounded from above by a harmonic function in Rn and V = u
outside a compact set.

Proposition 3.1. Let u be an Lp subharmonic function outside a compact set.
Then u cannot be extended subharmonically in Rn.

Proof. Let V be subharmonic function in Rn not bounded from above by a harmonic
function in Rn such that V = u outside a compact set. Then for large r, the function
s defined as

s =

{
u if |x| ≥ r
Dru if |x| < r

Where Dru is the Dirichlet solution in |x| < r with boundary values u, is subhar-
monic in Rn and s ≥ V .

If u(x) ∈ Lp in |x| ≥ r, s(x) is in the harmonic Hardy class hp in |x| < r (see [2,
page 103]) and hence there exists a harmonic function H(x) in |x| < r such that
|s|p < H. Then ∫

|x|<r

|s(x)|p dx ≤ cnH(0),

for a constant cn. That is s(x) ∈ Lp in |x| < r. Which implies that s ∈ Lp(Rn)
since s(x) = u(x) in |x| ≥ r. By Theorem 2.2, s ≤ 0 and hence V ≤ 0 in Rn, a
contradiction. �

Corollary 3.2. Let u(x) be subharmonic in an open set w containing |x| ≥ r in
Rn. Suppose u ∈ Lp(w) for some p ≥ 1. Then u(x) is upper bounded in |x| ≥ r.

Proof. By hypothesis u+(x) is an Lp subharmonic function in an open set containing
|x| ≥ r.

(1) In R2, if u+ is not upper bounded in |x| ≥ r , it can be extended subhar-
monically in R2 (see [1, Corollary 1]). This is a contradiction with Proposition 3.1,
since u+ ∈ Lp in |x| ≥ r. This means that u+(x) and hence u(x) is upper bounded
in |x| ≥ r.
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(2) In Rn, n ≥ 3, there exists a subharmonic function s(x) in Rn and some
α ≤ 0 such that u+(x) = s(x) − α|x|2−n in |x| ≥ r (see [1, Theorem 1]). Hence
s(x) ≥ α|x|2−n in |x| ≥ r.

Let M(R, s) denote the the mean-value of s(x) in |x| = R. If limR→∞M(R, s) =
∞, then limR→∞M(R, u+) = ∞. Hence u+ can be extended subharmonically in
Rn (see [1, Theorem 2]), a contradiction; thus limR→∞M(R, s) =∞.

When limR→∞M(R, s) is finite, s has a harmonic majorant h in Rn. Since h is
lower bounded, it is a constant c and c ≥ 0. (We remark in passing that c here can
be chosen as 0 if p > n

n−2 , see Corollary 2.3). Hence u+(x) is bounded in |x| ≥ r,
and consequently u(x) is upper bounded by c − α|x|2−n in |x| ≥ r. Thus, in all
cases u(x) is upper bounded in |x| ≥ r. �

Remark 3.3. In particular, we deduce that if h is an Lp subharmonic function
defined outside a compact set in Rn, then h tends to 0 at at infinity; if h is a
harmonic function defined outside a compact set in Rn, n ≥ 3. Tending to 0 at
infinity, then h is in Lp in |x| ≥ r for large r if p > n

n−2 .
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