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EXISTENCE OF SOLUTIONS FOR A NON-VARIATIONAL
SYSTEM OF ELLIPTIC PDE’S VIA TOPOLOGICAL METHODS

FETHI SOLTANI, HABIB YAZIDI

Abstract. In this article, we prove the existence of solutions for a non-
variational system of elliptic PDE’s. Also we study a system of bi-Laplacian

equations with two nonlinearities and without variational assumptions. First,

we prove a priori solution estimates, and then we use fixed point theory, to
deduce the existence of solutions. Finally, to complement of the existence

theorem, we establish a non-existence result.

1. Introduction

We consider the problem

∆2u = g(v), v > 0 in B,

∆2v = f(u), u > 0 in B,

u = 0,
∂u

∂ν
= 0, v = 0,

∂v

∂ν
= 0 on ∂B,

(1.1)

where B is the unit ball in RN (N > 4), the functions f and g are continuous and
positive on (0,∞) satisfying f(0) = 0 and g(0) = 0.

Existence results for elliptic nonlinear systems have earned a lot of interest in
recent years, especially when the nonlinear term appears as a source in the equation,
supplemented by the boundary conditions of Dirichlet or Neumann. There are
two broad classes of systems, the first one with a variational structure, namely
Hamiltonian or gradients systems; see [1, 12, 13]. The second one is the class of
non-variational problems, which can be treated via topological arguments. For this
type of results see [2, 3, 5, 6].

In this work, we address the existence problem for a given system without a
variational assumption. More precisely we consider the non-variational case of
f and g. Using a topological method (a fixed-point argument), some sufficient
conditions for the study of this problem were established. It was shown that a
priori estimate of positive solutions for elliptic equations provides a great deal of
information about the existence and the structure set of positive solutions [4], [5],
[14] and [15]. Our objective is to prove existence of results and a priori estimate of
solutions.

This type of question was addressed in several works dealing with the Laplacian
problem. One of the pioneering studies in this direction was [19]. In this work,
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we consider the bi-Laplacian operator. In recent years several authors studied
polyharmonic problems and a lot of interesting and significant results were obtained
see [7], [11], [18] the references therein, see also [20] for more general operator,
namely nonhomogeneous differential operator with variable exponents.

The rest of the article is divided into two sections. In Section 2, we establish
preliminary results which are helpful to study the bi-Laplacian system (1.1). Section
3 was devoted to present and prove the main results of this work.

2. Preliminary Results

Consider the problem (1.1) for radially symmetric solutions, let r = |x|, u = u(r)
and v = v(r),

u(4) +
2(N − 1)

r
u(3) +

(N − 1)(N − 3)
r2

u′′ − (N − 1)(N − 3)
r3

u′ = g(v),

v > 0 for r ∈ (0, 1),

v(4) +
2(N − 1)

r
v(3) +

(N − 1)(N − 3)
r2

v′′ − (N − 1)(N − 3)
r3

v′ = f(u),

u > 0 for r ∈ (0, 1),

u′(0) = 0 = v′(0), u(3)(0) = 0 = v(3)(0),

u(1) = 0 = v(1), u′(1) = 0 = v′(1).

(2.1)

We remark that any solution (u(r), v(r)) ∈
(
C4(0, 1)

)2 of (2.1) is a radial symmetric
solution of (1.1).

We recall the following result from [16, Lemma 2], which gives more information
concerning the eigenvalue problem for the operator ∆2.

Lemma 2.1. There is a µ1 > 0 such that the problem

∆2v = µ1v in B, v =
∂v

∂ν
on ∂B

possesses a positive, radial symmetric solution ϕ1(x) which satisfies, for some pos-
itive constants C1 and C2,

C1(1− |x|)2 ≤ ϕ1(x) ≤ C2(1− |x|)2, x ∈ B. (2.2)

We recall from [16], see also [11], that the Green function G(r, s) for the linear
problem corresponding to (2.1) is defined, for N > 4, by

G(r, s) =

{
aN (s) + r2bN (s), for 0 ≤ r ≤ s ≤ 1
( sr )N−1(aN (r) + s2bN (r)), for 0 ≤ s ≤ r ≤ 1,

(2.3)

where

aN (t) =
t3

4(N − 2)(N − 4)
[2 + (N − 4)tN−2 − (N − 2)tN−4]

and
bN (t) =

t

4N(N − 2)
[NtN−2 − (N − 2)tN − 2].

The kernel G(r, s) has the following properties (see [16]). There exists a positive
constant C such that

0 ≤ G(r, s) ≤ CsN−1(1− s)2
(

max(r, s)
)4−N

, (2.4)



EJDE-2016/309 EXISTENCE OF SOLUTIONS 3

∂

∂r
G(r, s)(r, s) ≤ 0, (2.5)

∂2

∂r2
G(r, s)

∣∣
r=1

=
1
2
sN−1(1− s2). (2.6)

Therefore, problem (2.1) is transformed into

u(r) =
∫ 1

0

G(r, s)g(v(s))ds,

v(r) =
∫ 1

0

G(r, s)f(u(s))ds.
(2.7)

It is well known that problem (2.1) and problem (2.7) are equivalent.
In the study of the problem (1.1), we need the following eigenvalue problem

∆2φ = λ2ψ in B,

∆2ψ = λ1φ in B,

φ = 0 =
∂φ

∂ν
, ψ = 0 =

∂ψ

∂ν
on ∂B,

(2.8)

where λ1, λ2 > 0.
Let ϕ1 be the corresponding eigenfunction of µ1 which is the first eigenvalue of

∆2 on the unit ball B, we have the following result.

Lemma 2.2. Assume that λ1λ2 = µ2
1, then the problem (2.8) has a positive solution

(φ, ψ) satisfying (modulo a constant) φ = 1√
λ1
ϕ1 and ψ = 1√

λ2
ϕ1.

Proof. According to the idea developed in [21] for a Laplacian eigenvalue problem,
we define

w1 =
√
λ1φ, (2.9)

w2 =
√
λ2ψ. (2.10)

We replace (2.9) and (2.10) in the problem (2.8), we obtain

∆2w1 =
√
λ1λ2w2 in B,

∆2w2 =
√
λ1λ2w1 in B,

w1 = 0 =
∂w1

∂ν
, w2 = 0 =

∂w2

∂ν
on ∂B.

(2.11)

Adding the two first equations of (2.11), we write

∆2(w1 + w2) =
√
λ1λ2(w1 + w2) in B,

w1 + w2 = 0,
∂(w1 + w2)

∂ν
= 0 on ∂B.

(2.12)

Subtracting the two first equations of (2.11), we write

∆2(w1 − w2) =
√
λ1λ2(w2 − w1) in B,

w1 − w2 = 0,
∂(w1 − w2)

∂ν
= 0 on ∂B.

(2.13)

We multiply (2.13) by w1 −w2 and we make a two integration by parts, we obtain∫
B

|∆(w1 − w2)|2dx = −
√
λ1λ2

∫
B

|w1 − w2|2dx,
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which proves that w1 = w2 in B. Since
√
λ1λ2 = µ1 and looking at the properties

of the eigenvalue problem for the bi-Laplacian, we have that the problem (2.12) has
the first eigenfunction ϕ1 as the only solution. Then, for a positive constant C, we
have w1 = w2 = Cϕ1 therefore φ = C 1√

λ1
ϕ1 and ψ = C 1√

λ2
ϕ1. �

We end this section by giving the following identity which plays an important
role in the study of our problem. Let F and G be, respectively, the primitives of f
and g such that F (0) = 0 and G(0) = 0.

Lemma 2.3. Let (u, v) a solution of the system (1.1) and α, β are some positive
constants. We have the identity∫

∂B

(∆u,∆v)(x.ν)dσx =
∫
B

(NF (u) +NG(v)− αuf(u)− βvg(v)) dx

+ (N − 4− (α+ β))
∫
B

(∆u,∆v)dx.
(2.14)

Proof. According to [19, Proposition 4], [21, Theorem 2.1] and by easy computation,
the following identity holds

∂

∂xi

[
xiL−

(
xk
∂ul
∂xk

+ alul

)(
L− pi −

∂

∂xj
Lrij

)
− ∂

∂xj

(
xk
∂ul
∂xk

+ alul

)
Lrij

]
= NL+ xiLxi − alulLul − (al + 1)

∂ul
∂xi

Lpi − (al + 2)
∂2ul
∂xi∂xj

Lrij ,

(2.15)

where L = L(x, U, p, r) is a lagrangian with U = (u1, u2), p = (pki ), pki = ∂uk
∂xi

,
r = (rij), i = 1, . . . , N and a1, a2 are some constants. We apply the last identity to
the Lagrangian associate with problem (1.1); L = L(x, U,∇U,∆U) = (∆u,∆v) +
F (u) + G(v), a1 = α, a2 = β. We integrate (2.15) over B and use the condition
u = 0 = v, ∂u

∂ν = 0 = ∂v
∂ν on ∂B, we obtain (2.14). �

Remark 2.4. Looking at (2.14), if we take α+ β = N − 4, we see that the critical
conditions on f and g are NF (u)−αuf(u) = 0 and NG(v)− (N −4−α)vg(v) = 0,
then

f(u)
F (u)

=
N/α

u
and

g(v)
G(v)

=
N/(N − 4− α)

v
.

An easy computation gives, for some positive constants c1 and c2,

f(u) = c1u
N
α −1 and g(v) = c2v

N
N−4−α−1.

3. Main results and their proofs

Let F and G be, respectively, the primitives of f and g such that F (0) = 0 and
G(0) = 0. We introduce the following critical exponents associate to the system
(1.1) by

p? =
N − α
α

, q? =
4 + α

N − 4− α
, where α ∈ ((N − 4)/2, N/2). (3.1)

Easily, we see that
1

p∗ + 1
+

1
q∗ + 1

=
N − 4
N

.

Our main results are the following.
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Theorem 3.1. Suppose that f and g satisfy the following hypothesis
(i) lim infs→∞ f(s)s−1 > λ1 and lim sups→0 f(s)s−1 < λ1,

lim infs→∞ g(s)s−1 > λ2 and lim sups→0 g(s)s−1 < λ2.
(ii) NF (s) − αsf(s) ≥ θ1sf(s), s > 0, for some θ1 ≥ 0, NG(s) − βsg(s) ≥

θ2sg(s), s > 0, for some θ2 ≥ 0, and α and β are positive reals satisfying
α+ β = N − 4.

We suppose that
(H1) there exists a constant C > 0 such that for every positive solution (u, v) of

problem (1.1) verifies ‖u‖∞ ≤ C and ‖v‖∞ ≤ C.
Then the system (1.1) has a positive solution.

Theorem 3.2. Under conditions (i) and (ii) on f and g, the condition (H1) is
satisfied, namely, every positive solution of system (1.1) is bounded in L∞.

The non-existence result is the following.

Theorem 3.3. Suppose that f and g satisfy

NF (t)− αtf(t) ≤ 0 and NG(t)− βt g(t) ≤ 0 for t > 0.

Then problem (1.1) has no nontrivial solution (u, v) ∈
(
C4(B̄)

)2.

Remark 3.4. Under conditions (i) and (ii) on f and g of Theorem 3.1 we have

lim
t→∞

f(t)
tp∗

= 0 and lim
t→∞

g(t)
tq∗

= 0.

Indeed, from condition (i), we see that there exists t0 > 0 such that f(t) > 0
and g(t) > 0 for t > t0. Hence, for t > t0, from condition (ii) we write

NF (t) ≥ −θ1 + ηtf(t) and NG(t) ≥ −θ2 + µtg(t), (3.2)

where η = α+ θ1 and µ = β + θ2. Therefore,

F ′(t)− N

ηt
F (t) ≤ θ1

ηt
and G′(t)− N

µt
G(t) ≤ θ3

µt
.

Multiplying the two last inequalities by t−
N
η and t−

N
µ , respectively, we obtain

d
dt

(
t−

N
η F (t)

)
≤ θ1

η
t−1−Nη and

d
dt

(
t−

N
µ G(t)

)
≤ θ1

η
t−1−Nµ .

We deduce, for some positive constants C1 and C2, that

F (t) ≤ C1t
N/η and G(t) ≤ C2t

N/µ.

We replace into (3.2), we obtain, for t large enough, that for some positive constant
C and C̄,

f(t) ≤ Ct
N
η −1 and g(t) ≤ C̄t

N
µ −1.

Or α + β = N − 4, then, since η = α + θ1, µ = β + θ2 and θ1, θ2 > 0, we have
η + µ > N − 4.

Now, we return to the proofs of Theorem 3.1 and Theorem 3.2. The proof of
Theorem 3.1 is based on a topological argument. More precisely, we apply the
following fixed point theorem [9], see also [17].

Theorem 3.5 ([9]). Let C be a cone in a Banach space X and Φ : C → C a
compact map such that Φ(0) = 0. Assume that there exist numbers 0 < r < R such
that
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(a) x 6= λΦ(x) for 0 ≤ λ ≤ 1 and ‖x‖ = r,
(b) there exists a compact map F : BR × [0, ∞)→ C such that

F (x, 0) = Φ(x) if ‖x‖ = R,

F (x, µ) 6= x if ‖x‖ = R and 0 ≤ µ <∞,

F (x, µ) 6= x if x ∈ BR and µ ≥ µ0.

Then if U = {x ∈ C : r < ‖x‖ < R} and Bρ = {x ∈ C : ‖x‖ < ρ}, we have

iC(Φ, BR) = 0, iC(Φ, Br) = 1, iC(Φ, U) = −1,

where iC(Φ,Ω) denotes the index of Φ with respect to Ω. In particular, Φ has a
fixed point in U .

Proof of Theorem 3.1. We apply Theorem 3.5, then consider the Banach space
X =

(
C∗(0, 1)

)2, where C∗(0, 1) denote the space of continuous bounded func-
tions defined on (0, 1), endowed with the norm ‖u‖ := supt∈(0,1) |u(t)|. We define
the cone C by

C :=
{
w ∈ X : w(t) ≥ 0, for all t ∈ (0, 1)

}
,

where w = (y, z) ≥ 0 means that y ≥ 0 and z ≥ 0. We define the compact map
Φ : X → X by

Φ(w)(r) =
∫ 1

0

G(r, s)h(w(s)) ds, h(w) = (g(v), f(u)).

We observe that a fixed point of Φ is a solution of (2.7) and then a solution of (1.1).
Now we shall verify the conditions of Theorem 3.5.

Verification of condition (a): From condition (i) of Theorem 3.1 there exists
positive constants q1 < 1 and q2 < 1 such that f(u(x)) ≤ q1λ1u(x) and g(v(x)) ≤
q2λ2v(x). Then we have

λ2

∫
vψdx =

∫
v∆2φdx =

∫
∆2vφdx

=
∫
f(u)φdx ≤ q1λ1

∫
uφdx.

On the other hand,

λ1

∫
uφdx =

∫
u∆2ψdx =

∫
∆2uψdx

=
∫
g(v)ψdx ≤ q2λ2

∫
vψdx.

Combining these two inequalities, we write

λ2

∫
vψdx ≤ q1λ1

∫
uφdx ≤ q1q2λ2

∫
vψdx, (3.3)

λ1

∫
uφdx ≤ q2λ2

∫
vψdx ≤ q2q1λ1

∫
uφdx. (3.4)

Or q1q2 < 1 then (3.3) and (3.4) give a contraction since the integrals are nonzero.
Moreover, if u and v are replaced respectively by λu and λ v in, respectively, (3.3)
and (3.4), for λ ∈ [0, 1], then a contradiction also follows and therefore

w(t) 6= λΦ(w(t)) with λ ∈ [0, 1], ‖w‖ = r, w ∈ C.
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Verification of condition (b): Define the compact mapping F : C × [0,∞)→ C
by

F (w, µ)(r) = Φ(w + µ)(r) (3.5)
Easily, we see that F (w, 0) = Φ(w). The condition (i) of Theorem 3.1 gives the
existence of constants k1 > λ1, k2 > λ2 and µ0 > 0 such that f(y + µ) ≥ k1y and
g(z + µ) ≥ k2z if µ ≥ µ0 for all (y, z) ≥ (0, 0). We have

λ2

∫
vψdx =

∫
v∆2φdx =

∫
∆2vφdx

=
∫
f(u)φdx ≥ k1

∫
uφdx ≥ λ1

∫
uφdx.

Or

λ1

∫
uφdx =

∫
u∆2ψdx =

∫
∆2uψdx

=
∫
g(v)ψdx ≥ k2

∫
vψdx,

then

λ2

∫
vψdx ≥ k2

∫
vψdx. (3.6)

In the same way, we have

λ1

∫
uφdx =

∫
u∆2ψdx =

∫
∆2uψdx

=
∫
g(v)ψdx ≥ k2

∫
vψdx ≥ λ2

∫
vψdx.

Or

λ2

∫
vψdx =

∫
v∆2φdx =

∫
∆2vφdx

=
∫
f(u)φdx ≥ k1

∫
uφdx,

then

λ1

∫
uφdx ≥ k1

∫
uφdx. (3.7)

Since the integrals
∫
uφdx and

∫
vψdx are nonzero and k1 > λ1, k2 > λ2, the

inequalities (3.6) and (3.7) give a contradiction. Therefore, there exists a constant
µ0 > 0 such that

w(t) 6= F (w, µ)(t), for all w ∈ C and µ ≥ µ0. (3.8)

This prove the third condition of (b). Now, to prove the second condition of (b),
we choose the family of nonlinearities (f(y + µ), g(z + µ)) for µ ∈ [0, µ0], using the
a priori estimates (H1) which does not depend on µ. Thus, choosing R > r large
enough, we have

w(r) 6= F (w, µ)(r), for all µ ∈ [0, µ0], w ∈ C, ‖w‖ = R. (3.9)

The relations (3.8) and (3.9) prove the second condition of (b).
Now, since all conditions of Theorem 3.5 are satisfied, we apply Theorem 3.5

and we conclude the existence of a nontrivial positive solution of problem (2.7) and
so the existence of positive solution of problem (1.1). �
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Proof of Theorem 3.2. We give this proof in four steps.
Step 1. We claim that there exist positive constants C1, . . . , C4 such that∫

B

f(u)φdx ≤ C1,

∫
B

g(v)ψdx ≤ C2, (3.10)∫
B

uφdx ≤ C3,

∫
B

vψdx ≤ C4. (3.11)

Indeed, using the first and second equations of (1.1), we write∫
B

f(u)φdx =
∫
B

∆2vφdx =
∫
B

v∆2φdx = λ2

∫
B

vψdx.

From condition (i) of Theorem 3.1, there exist k2 > λ2 and A > 0 such that
g(v) ≥ k2v −A. Thus, for a positive constant C, we have∫

B

f(u)φdx = λ2

∫
B

vψdx ≤ C +
λ2

k2

∫
B

g(v)ψdx. (3.12)

In the same way, we have∫
B

g(v)ψdx =
∫
B

∆2uψdx =
∫
B

u∆2ψdx = λ1

∫
B

vφdx.

Again, from condition (i) of Theorem 3.1, there exist k1 > λ1 and D > 0 such that
f(u) ≥ k1u−D. Thus, for a positive constant C̄, we have∫

B

g(v)ψdx = λ1

∫
B

uφdx ≤ C̄ +
λ1

k1

∫
B

f(u)φdx. (3.13)

Combining (3.12) and (3.13), for positive constants M1 and M2, we obtain∫
B

f(u)φdx ≤M1 +
λ1λ2

k1k2

∫
B

f(u)φdx,∫
B

g(v)ψdx ≤M2 +
λ1λ2

k1k2

∫
B

g(v)ψdx.

Since λ1λ2
k1k2

< 1, we deduce (3.10). Using, again, condition (i) of Theorem 3.1 and
(3.10) we easily deduce (3.11).
Step 2. We claim that there exist positive constants C1,. . . , C4 such that

u(r) ≤ C1, v(r) ≤ C2, for
2
3
≤ r ≤ 1, (3.14)

u′′(1) ≤ C3, v′′(1) ≤ C4. (3.15)

Indeed, we see that

u(r) =
∫ 1

0

G(r, s)g(v(s))ds,

v(r) =
∫ 1

0

G(r, s)f(u(s))ds.

Using the fact that r → G(r, s) is decreasing (see (2.5) and (2.4)), we deduce that
u(r) and v(r) are decreasing in r and, for arbitrary 2

3 ≤ r ≤ 1,

u(r) ≤ u(
2
3

) ≤ 3
∫ 2/3

1/3

u(s)ds
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≤ C
∫ 1

0

sN−1(1− s)2u(s)ds ≤ C +
∫ 1

0

sN−1(1− s)2u(s)ds.

Looking at (2.2) and Lemma 2.2, we write

u(r) ≤ C
(

1 +
∫ 1

0

sN−1(1− s)2u(s)ds
)
≤ C

(
1 +

∫
B

φudx
)
.

We conclude by (3.11) that u(r) ≤ C1, for 2
3 ≤ r ≤ 1 and by the same way that

v(r) ≤ C2 for 2
3 ≤ r ≤ 1.

Now, we prove (3.15). We have

u(r) =
∫ 1

0

G(r, s)g(v(s))ds, v(r) =
∫ 1

0

G(r, s)f(u(s))ds.

We differentiate the two previous relations two times with respect to r, we obtain

u′′(r) =
∫ 1

0

∂2G(r, s)
∂r2

g(v(s))ds, v′′(r) =
∫ 1

0

∂2G(r, s)
∂r2

f(u(s))ds.

Since the integrals converge, we take the limit when r approaches 1, we write

u′′(1) =
∫ 1

0

∂2G(r, s)
∂r2

∣∣
r=1

g(v(s))ds v′′(1) =
∫ 1

0

∂2G(r, s)
∂r2

∣∣
r=1

f(u(s))ds.

Using (2.6), we obtain

u′′(1) =
1
2

∫ 1

0

sN−1(1− s2)g(v(s))ds, v′′(1) =
1
2

∫ 1

0

sN−1(1− s2)f(u(s))ds.

From (2.2) and Lemma 2.2, we see, for some positive constant C, that

u′′(1) ≤ C
∫
B

ψg(v)dx, v′′(1) ≤ C
∫
B

φf(u)dx.

Finally, we obtain (3.15) by (3.10).
Step 3. Under conditions (i) and (ii) of Theorem 3.1, we claim that, for a small
number 0 < l < 1, there exist positive constants C1, . . . , C4 such that∫ l

0

sN−1f(u(s))ds ≤ C1,

∫ l

0

sN−1g(v(s))ds ≤ C2, (3.16)∫
B

uf(u)dx ≤ C3,

∫
B

vg(v)dx ≤ C4. (3.17)

Indeed, for the proof of (3.16), looking at proof of Step 1, namely at (3.10) and
(3.11), and using Lemma 2.1 and Lemma 2.2 we obtain, for small 0 < l < 1,∫ l

0

sN−1f(u(s))ds ≤
∫ l

0

sN−1 (1− s)2

(1− l)2
f(u(s))ds

≤ 1
(1− l)2

∫ l

0

sN−1(1− s)2f(u(s))ds

≤ C
∫ 1

0

sN−1φ(s)f(u(s))ds

= C

∫
B

f(u)φdx ≤M1,
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and ∫ l

0

sN−1g(v(s))ds ≤
∫ l

0

sN−1 (1− s)2

(1− l)2
g(v(s))ds

≤ 1
(1− l)2

∫ l

0

sN−1(1− s)2g(v(s))ds

≤ C̄
∫ 1

0

sN−1ψ(s)g(v(s))ds

= C̄

∫
B

g(v)ψdx ≤M2,

where C, C̄, M1 and M2 are some constants. This gives (3.16).
For the proof of (3.17), we rewrite the identity (2.14) of Lemma 2.3, considering

the fact that α+ β = N − 4, as∫
B

NF (u)− αuf(u)dx+
∫
B

NG(v)− βvg(v)dx =
∫
∂B

(∆u,∆v)(x.ν)dσx.

Using condition (ii) of Theorem 3.1 for the left hand side of the last equality and
after easy computation on the right hand side, we obtain

θ1

∫
B

uf(u)dx+ θ2

∫
B

vg(v)dx ≤ Cu′′(1)v′′(1),

where C is a generic constant and θ1, θ2 are the constants given by hypothesis of
Theorem 3.1. Therefore

θ1

∫
B

u f(u)dx+ θ2

∫
B

v g(v)dx ≤ C.

Since the two both left hand sides are positive we obtain directly (3.17).
Step 4. Under conditions (i) and (ii) of Theorem 3.1, we claim that there exist
positive constants C1 and C2 such that, for any solution (u, v) of problem (1.1),

‖u‖∞ ≤ C1, ‖v‖∞ ≤ C2. (3.18)

Indeed, for u, we have

‖u‖∞ ≤ u(0) ≤
∫ 1

0

G(0, s) g(v(s))ds

≤ C
∫ 1

0

s3(1− s)2 g(v)ds ≤ C
∫ 1

0

s3 g(v)ds

≤ C
∫ t

0

s3 g(v(s))ds+ C

∫ 1

t

s3 g(v)ds,

where t ∈ (0, 1) is arbitrary and C denotes a positive constant whose value may
vary from line to line.

Let g(m) := maxs∈[0,m] g(s) for m ∈ (0,∞), applying Hölder’s inequality, we
obtain

‖u‖∞ ≤ Ct4g(‖v‖∞) + C
(∫ 1

t

sγ1(q
∗+1)ds

) 1
q∗+1

(∫ 1

t

sN−1(g(v(s)))
q∗+1
q∗ ds

) q∗
q∗+1

≤ Ct4 g(‖v‖∞) + C
(∫ 1

t

sγ1(q
∗+1)ds

) 1
q∗+1
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×
(∫ 1

t

sN−1g(v(s))(g(v(s)))
1
q∗ ds

) q∗
q∗+1

,

where γ1 = 3− (N − 1) q∗

q∗+1 . Or from Remark 3.4, there exists a positive constant
M such that

g(s) < M(1 + s)q
∗
, for all s ≥ 0,

f(s) < M(1 + s)p
∗
, for all s ≥ 0.

(3.19)

Then

‖u‖∞ ≤ Ct4g(‖v‖∞) +M
1
q∗ C

(∫ 1

t

sγ1(q
∗+1)ds

) 1
q∗+1

×
(∫ 1

t

sN−1g(v(s)) (1 + v(s))ds
) q∗
q∗+1

≤ Ct4g(‖v‖∞) +M
1
q∗ C

(∫ 1

t

sγ1(q
∗+1)ds

) 1
q∗+1

×
(∫

B

g(v)dx+
∫
B

g(v) v(x)dx
) q∗
q∗+1

.

Using (3.16) and (3.17), we obtain

‖u‖∞ ≤ Ct4 g(‖v‖∞) + C
(∫ 1

t

sγ1(q
∗+1)ds

) 1
q∗+1

.

In a similar way, for v, we have

‖v‖∞ ≤ Ct4f(‖u‖∞) + C
(∫ 1

t

sγ2(p
∗+1)ds

) 1
p∗+1

,

where γ2 = 3− (N − 1) p∗

p∗+1 .
In all the next inequalities C will always represent a positive constant, not nec-

essarily the same in each occurrence. After some computations, we obtain

‖u‖∞ ≤ Ct4g(‖v‖∞) + Ct
4+(4−N)q∗

q∗+1 , (3.20)

‖v‖∞ ≤ Ct4f(‖u‖∞) + Ct
4+(4−N)p∗

p∗+1 . (3.21)

Note that if g and f are bounded then (3.18) comes immediately. However, if g is
not bounded then, by Remark 3.4, there exists a positive K, see (3.19), such that
g(r) ≤ Krq∗ , for r ≥ 1. Therefore, we can write (3.20) as

‖u‖∞ ≤ Ct4(‖v‖∞)q
∗

+ Ct
4+(4−N)q∗

q∗+1 . (3.22)

Now, inserting (3.21) into (3.22), and using the inequality (a+b)m ≤ Cm(am+ bm)
for a, b,m ≥ 0 where Cm is a positive constant depending of m, we obtain

‖u‖∞ ≤ Ct4(q
∗+1) (f(‖u‖∞))q

∗
+ Ct

[4+(4−N)p∗]q∗
p∗+1 +4 + Ct

4+(4−N)q∗
q∗+1 . (3.23)

Easy computations show that

[4 + (4−N)p∗]q∗

p∗ + 1
+ 4 =

4 + (4−N)q∗

q∗ + 1
= − N

p∗ + 1
= 4− Nq∗

q∗ + 1
.

Therefore,

‖u‖∞ ≤ Ct4(q
∗+1)(f(‖u‖∞))q

∗
+ Ct4−

Nq∗
q∗+1 . (3.24)
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Let r = 4q∗
[
1 + 1

(p∗+1)(q∗+1)

]
. Since t ∈ [0, 1], we write (3.24) as

‖u‖∞ ≤ Ctr (f(‖u‖∞))q
∗

+ Ct4−
Nq∗
q∗+1 .

Let h(t) = tr(f(‖u‖∞))q
∗

+ t4−
Nq∗
q∗+1 . The function h attains its infimum at

t0 = C(f(‖u‖∞))−
q∗(q∗+1)

(r−4)(q∗+1)+Nq∗

and we have

‖u‖∞ ≤ C (f(‖u‖∞))
−q∗(q∗+1)r

(r−4)(q∗+1)+Nq∗+q∗ + C(f(‖u‖∞))
−q∗(q∗+1)

(r−4)(q∗+1)+Nq∗ (4− Nq∗
q∗+1 ).

Some computation show that
−q∗(q∗ + 1)r

(r − 4)(q∗ + 1) +Nq∗
+ q∗ =

−q∗(q∗ + 1)
(r − 4)(q∗ + 1) +Nq∗

(4− Nq∗

q∗ + 1
) =

1
p∗
.

Therefore
‖u‖∞ ≤ C(f(‖u‖∞))1/p

∗
.

Or Remark 3.4 implies that f(x) = o(xp
∗
) for x → ∞ then the last inequality

becomes
‖u‖∞ ≤ C(1 + o(‖u‖∞)),

which proves that ‖u‖∞ is bounded and then implies, by (3.21), that ‖v‖∞ is
bounded. This completes Step 4. �

Proof of Theorem 3.3. In the identity (2.14), we take α + β = N − 4. Since u =
0 = ∂u

∂ν and v = 0 = ∂v
∂ν , we have (∆u,∆v) = ∂2u

∂ν2
∂2v
∂ν2 . If (u, v) is a non trivial

solution of (1.1), since B is star-shaped domain about 0, then x.ν ≥ 0 on ∂B and
the identity (2.14) gives a contradiction when

NF (s)− αsf(s) ≤ 0 and NG(s)− βsg(s) ≤ 0.

The proof is complete. �
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