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EXISTENCES AND UPPER SEMI-CONTINUITY OF PULLBACK
ATTRACTORS IN H1(RN ) FOR NON-AUTONOMOUS

REACTION-DIFFUSION EQUATIONS PERTURBED BY
MULTIPLICATIVE NOISE

WENQIANG ZHAO

Abstract. In this article, we establish sufficient conditions on the existence

and upper semi-continuity of pullback attractors in some non-initial spaces
for non-autonomous random dynamical systems. As an application, we prove

the existence and upper semi-continuity of pullback attractors in H1(RN ) are

proved for stochastic non-autonomous reaction-diffusion equation driven by a
Wiener type multiplicative noise as well as a non-autonomous forcing. The

asymptotic compactness of solutions in H1(RN ) is proved by the well-known
tail estimate technique and the estimate of the integral of L2p−2-norm of

truncation of solutions over a compact interval.

1. Introduction

In this paper, we consider the dynamics of solutions of the reaction-diffusion
equation on RN driven by a random noise as well as a deterministic non-autonomous
forcing,

du+ (λu−∆u)dt = f(x, u)dt+ g(t, x)dt+ εu ◦ dω(t), (1.1)

with the initial value
u(τ, x) = u0(x), x ∈ RN , (1.2)

where u0 ∈ L2(RN ), λ is a positive constant, ε is the intensity of noise, the unknown
u = u(x, t) is a real valued function of x ∈ RN and t > τ , ω(t) is a mutually
independent two-sided real-valued Wiener process defined on a canonical Wiener
probability space (Ω,F , P ).

The notion of random attractor of random dynamical system, which is introduced
in [5, 6, 7, 15] and systematically developed in [1, 4], is an important tool to study
the qualitative property of stochastic partial differential equations (SPDE) . We
can find a large body of literature investigating the existence of random attractors
in an initial space (the initial values located space) for some concrete SPDE, see
[2, 9, 30, 18, 20, 22, 24, 25] and the references therein. In particular, [18, 19, 21]
discussed the upper semi-continuity of a family of random attractors in the initial
spaces.
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As we know, the solutions of SPDE may possess some regularities, for example,
higher-order integrability or higher-order differentiability. In these cases, the the
solutions may escape (or leave) the initial space and enter into another space, which
we call a non-initial space. Thus it is interesting for us to further investigate the
existence and upper semi-continuity of random attractors in a non-initial space,
usually a higher-regularity space, e.g., Lp(p > 2) and H1.

Recently in the case of bounded domain, Li et al [12, 10] discussed the existence of
random attractor of stochastic reaction-diffusion equations in the non-initial spaces
Lp, where p is the growth exponent of the nonlinearity. Zhao [28] investigated the
existence of random attractor in H1

0 for stochastic two dimensional micropolar fluid
flows with coupled additive noises. When the state space is unbounded, Zhao and Li
[27] proved the existence of random attractors for reaction-diffusion equations with
additive noises in Lp(RN ), and for the same equation Li et al [11] obtained the upper
semi-continuity of random attractor in Lp(RN ). Most recently Zhao [26, 29] proved
the existence of random attractors for semi-linear degenerate parabolic equations in
L2p−2(D)∩H1(D), where D is a unbounded domain. By using the notion of omega-
limit compactness, Li [13] obtained the existence of random attractors in Lq(RN )
for semilinear Laplacian equations with multiplicative noise. Tang [16] considered
the existence of random attractors for non-autonomous Fitzhugh-Nagumo system
driven by additive noises in H1(RN )× L2(RN ), and his work [17] investigated the
random dynamics of stochastic reaction-diffusion equations with additive noises in
H1(RN ). However, it seems that the proofs in [16, 17] are essentially wrong, see Li
and Yin [14] for the modified proof.

In this article, we study the existence and upper semi-continuity of pullback
(random) attractors in H1(RN ) for stochastic reaction diffusion equations with
multiplicative noise as well as a non-autonomous forcing. The nonlinearity f and
the deterministic non-autonomous function g satisfy almost the same conditions as
in [18], in which the author obtained the existence and upper-continuity of pullback
attractors in the initial space L2(RN ). Here, we develop their results and show that
such attractors are also compact and attracting in H1(RN ). Furthermore, we find
that the upper continuity can also happen in H1(RN ). We recall that the existence
of pullback attractors in an initial space for a non-autonomous SPDE is established
in [19, 20], where the measurability of such attractors is proved. The applications
we may see [9, 18, 19, 20] and so forth. For the theory of the upper semi-continuity
of attractors, we may refer to [18, 19, 21] for the stochastic case and to [3, 8] for
the deterministic case.

To solve our problem, we establish a sufficient criteria for the existence and upper
semi-continuity of pullback attractors in a non-initial space. It is showed that a
family of such attractors obtained in an initial space are compact, attracting and
upper semi-continuous in a non-initial space if some compactness conditions of the
cocycle are satisfied, see Theorems 2.6–2.8. This implies that the continuity (or
quasi-continuity [12], norm-weak continuity [32]) and absorption in the non-initial
space are unnecessary things. This result is a meaningful and convenient tool for us
to consider the existence and upper semi-continuity of pullback attractors in some
related non-initial spaces for SPDE with a non-autonomous forcing term.

Considering that the stochastic equation (1.1) is defined on unbounded domains,
the asymptotic compactness of solution in H1(RN ) can not be derived by the tra-
ditional technique. The reasons are as follows. On the one hand, the equation (1.1)
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is stochastic and the Wiener process ω is only continuous in t but not differen-
tiable. This leads to some difficulties for us to estimate the norm of derivative ut
by the trick employed in [31, 32] in the deterministic case. Then the asymptotic
compactness in H1(RN ) can not be proved by estimate of the difference of ∇u as
in [31]. On the other hand, the estimate of ∆u is not available for our problem (To
our knoledge, actually we do not know how to estimate the norm ∆u of problem
(1.1) and (1.2), although this can be achieved by estimate ut in the deterministic
case, see [32]). Hence the Sobolev compact embeddings of H2 ↪→ H1 on bounded
domains is unavailable.

Here we give a new method to prove the asymptotical compactness of solutions
in H1(RN ). We first prove that the solutions vanish outside a ball centred at zero
in the state space RN in the topology of H1 when both the time and the radius
of ball are large enough, see Proposition 4.4. Second by a new developed estimate
(where the minus or plus sign of nonlinearity is not required) we show that the
integral of L2p−2-norm of truncation of solutions over a compact interval is small
for a large time, see Proposition 4.5. From these facts and along with some spectral
arguments the asymptotic compactness of solutions on bounded domains is followed,
and then the obstacles encountered in [16, 17] are overcome. The technique used
here (without assumption that ψ1 ∈ L∞, see (3.1)) is different from that in [14]
and thus is optimal.

In the next section, we recall some notions and prove a sufficient standard for
the existence and upper semi-continuity of pullback attractors of non-autonomous
system in a non-initial space. In section 3, we give the assumptions on g and f ,
and define a continuous cocycle for problem (1.1) and (1.2). In section 4 and 5, we
prove the existence and upper semi-continuity for this cocycle in H1(RN ).

2. Preliminaries and abstract results

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two completely separable Banach spaces with
Borel sigma-algebras B(X) and B(Y ), respectively. X ∩ Y 6= ∅. For convenience,
we call X an initial space (which contains all initial values of a SPDE) and Y the
associated non-initial space (usually the regular solutions located space).

In this section, we give a sufficient standard for the existence and upper semi-
continuity of pullback attractors in the non-initial space Y for random dynamical
system (RDS) over two parametric spaces. The readers may refer to [26, 27, 28,
10, 11, 12, 13, 23] for the existence and semi-continuity of such type attractors in
the non-initial space Y for a RDS over one parametric space. The existence of
random attractors in the initial space X for the RDS over one parametric space,
the good references are [1, 2, 5, 15, 7, 6]. However, here we recall from [20] some
basic notions for RDS over two parametric spaces, one of which is a real numbers
space and the other of which is a measurable probability space.

2.1. Preliminaries. The basic notion in RDS is a metric dynamical system (MDS)
ϑ ≡ (Ω,F , P, {ϑt}t∈R), which is a probability space (Ω,F , P ) incorporating a group
ϑt, t ∈ R, of measure preserving transformations on (Ω,F , P ). Sometimes, we call
ϑ ≡ (Ω,F , P, {ϑt}t∈R) a parametric dynamical system, see [18].

A MDS ϑ is said to be ergodic under P if for any ϑ-invariant set F ∈ F , we
have either P (F ) = 0 or P (F ) = 1, where the ϑ-invariant set is in the sense that
ϑtF = F for F ∈ F and all t ∈ R.



4 W. ZHAO EJDE-2016/294

Definition 2.1. Let (Ω,F , P, {ϑt}t∈R) be a metric dynamical system. A family of
measurable mappings ϕ : R+×R×Ω×X → X is called a cocycle on X over R and
(Ω,F , P, {ϑt}t∈R) if for all τ ∈ R, ω ∈ Ω and t, s ∈ R+, the following conditions are
satisfied:

ϕ(0, τ, ω, ·) is the identity on X,

ϕ(t+ s, τ, ω, ·) = ϕ(t, τ + s, ϑsω, ·) ◦ ϕ(s, τ, ω, ·).

In addition, if ϕ(t, τ, ω, ·) : X → X is continuous for all t ∈ R+, τ ∈ R, ω ∈ Ω, then
ϕ is called a continuous cocycle on X over R and (Ω,F , P, {ϑt}t∈R).

Definition 2.2. Let 2X be the collection of all subsets of X. A set-valued mapping
K : R× Ω→ 2X is called measurable in X with respect to F in Ω if the mapping
ω ∈ Ω 7→ distX(x,K(τ, ω)) is (F ,B(R))-measurable for every fixed x ∈ X and
τ ∈ R, where distX is the Haustorff semi-metric in X. In this case, we also say
the family {K(τ, ω); τ ∈ R, ω ∈ Ω} is measurable in X with respect to F in Ω.
Furthermore if the value K(τ, ω) is a closed nonempty subset of X for all τ ∈ R
and ω ∈ Ω, then {K(τ, ω); τ ∈ R, ω ∈ Ω} is called a closed measurable set of X
with respect to F in Ω.

In this article, the cocycle ϕ acting on X is further assumed to take its values
into the non-initial space Y in the following sense:

(H1) For every fixed t > 0, τ ∈ R and ω ∈ Ω, ϕ(t, τ, ω, ·) : X → Y .
We use D to denote a collection of some families of nonempty subsets of X

parametrized by τ ∈ R and ω ∈ Ω such that

D =
{
B = {B(τ, ω) ∈ 2X ;B(τ, ω) 6= ∅, τ ∈ R, ω ∈ Ω

}
;

fB satisfies certain conditions}.

In particular, for B1, B2 ∈ D we say that B1 = B2 if B1(τ, ω) = B2(τ, ω) for all
τ ∈ R and ω ∈ Ω. The collection D is called inclusion closed if B̃(τ, ω) ⊂ B(τ, ω)
and B ∈ D for every τ ∈ R and ω ∈ Ω, then B̃ ∈ D.

Definition 2.3. Let D be a collection of some families of nonempty subsets of X
and K = {K(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D. Then K is called a D-pullback absorbing
set for a cocycle ϕ in X if for every τ ∈ R, ω ∈ Ω and B ∈ D there exists a absorbing
time T = T (τ, ω,B) > 0 such that

ϕ(t, τ − t, ϑ−tω,B(τ − t, ϑ−tω)) ⊆ K(τ, ω) for all t ≥ T.
If in addition K is measurable in X with respect to F in Ω, then K is said to a
measurable pullback absorbing set for ϕ.

Definition 2.4. Let D be a collection of some families of nonempty subsets of X.
A cocycle ϕ is said to be D-pullback asymptotically compact in X (resp. in Y ) if
for each τ ∈ R, ω ∈ Ω

{ϕ(tn, τ − tn, ϑ−tnω, xn)} has a convergent subsequence in X(resp. in Y )

whenever tn →∞ and xn ∈ B(τ − tn, ϑ−tnω) with B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈
D.

Definition 2.5. Let D be a collection of some families of nonempty subsets of X
and A = {A(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D. A is called a D-pullback attractor for a
cocycle ϕ in X (resp. in Y ) over R and (Ω,F , P, {ϑt}t∈R) if
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(i) A is measurable in X with respect to F , and A(τ, ω) is compact in X (resp.
in Y ) for each τ ∈ R, ω ∈ Ω;

(ii) A is invariant, that is, for each τ ∈ R, ω ∈ Ω,

ϕ(t, τ, ω,A(τ, ω)) = A(τ + t, ϑtω), ∀ t ≥ 0;

(iii) A attracts every element B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D in X (resp. in
Y ), that is, for each τ ∈ R, ω ∈ Ω,

lim
t→+∞

distX(ϕ(t, τ − t, ϑ−tω,B(τ − t, ϑ−tω)),A(τ, ω)) = 0

(resp. lim
t→+∞

distY (ϕ(t, τ − t, ϑ−tω,B(τ − t, ϑ−tω)),A(τ, ω)) = 0).

2.2. Existence of random attractors in a non-initial space. This subsection
is concerned with the existence of D-pullback attractor of the cocycle ϕ in the non-
initial space Y . The continuity of ϕ in Y is not clear, and the embedding relation
of X and Y is also unknown except that the following hypothesis (H2) holds:

(H2) If {xn}n ⊂ X ∩ Y such that xn → x in X and xn → y in Y respectively,
then x = y.

Theorem 2.6. Let D be a collection of some families of nonempty subsets of
X which is inclusion closed. Let ϕ be a continuous cocycle on X over R and
(Ω,F , P, {ϑt}t∈R). Assume that

(i) ϕ has a closed and measurable D-pullback bounded absorbing set K =
{K(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D in X;

(ii) ϕ is D-pullback asymptotically compact in X.

Then the cocycle ϕ has a unique D-pullback attractor AX = {AX(τ, ω); τ ∈ R, ω ∈
Ω} ∈ D in X, structured by

AX(τ, ω) = ∩s≥0∪t≥sϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
X
, τ ∈ R, ω ∈ Ω, (2.1)

where the closure is taken in X.
If further (H1), (H2) hold and

(iii) ϕ is D-pullback asymptotically compact in Y ,

Then the cocycle ϕ has a unique D-pullback attractor AY = {AY (τ, ω); τ ∈ R, ω ∈
Ω} in Y , given by

AY (τ, ω) = ∩s>0∪t≥sϕ(t, τ − t, ϑ−tω,K(τ − t, ϑ−tω))
Y
, τ ∈ R, ω ∈ Ω. (2.2)

In addition, we have AY = AX ⊂ X ∩Y in the sense of set inclusion, i.e., for each
τ ∈ R, ω ∈ Ω, AY (τ, ω) = AX(τ, ω).

Proof. The first result is well known and thus we are interested in the second result.
Indeed, (2.2) makes sense by (H1) and AY 6= ∅ by the asymptotic compactness of
the cocycle ϕ in Y . In the following, we show that AY satisfies Definition 2.5 in
the space Y .

Step 1. We claim that the set AY is measurable in X (with respect to F in Ω) and
AY ∈ D is invariant by proving that AY = AX since AX is measurable (w.r.t F in
Ω) and AX ∈ D is invariant (the measurability of AX is proved by [19, Theorem
2.14]).
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For each fixed τ ∈ R and ω ∈ Ω, taking x ∈ AX(τ, ω), by (2.1), there exist two
sequences tn → +∞ and xn ∈ K(τ − tn, ϑ−tnω) such that

ϕ(tn, τ − tn, ϑ−tnω, xn)
‖·‖X−−−−→
n→∞

x. (2.3)

Since ϕ is D-asymptotically compact in Y , then there is a y ∈ Y such that up to a
subsequence,

ϕ(tn, τ − tn, ϑ−tnω, xn)
‖·‖Y−−−−→
n→∞

y. (2.4)

It implies from (2.2) that y ∈ AY (τ, ω). Then by (H2), along with (2.3) and (2.4),
we have x = y ∈ AX(τ, ω) and thus AX(τ, ω) ⊆ AY (τ, ω) for every fixed τ ∈ R and
ω ∈ Ω. The inverse inclusion can be proved in the same way then we omit it here.
Thus AX = AY as required.

noindentStep 2. We prove the attraction of AY in Y by a contradiction argu-
ment. Indeed, if there exist δ > 0, xn ∈ B(τ−tn, ϑ−tnω) with B ∈ D and tn → +∞
such that

distY
(
ϕ(tn, τ − tn, ϑ−tnω, xn),AY (τ, ω)

)
≥ δ. (2.5)

By the asymptotic compactness of ϕ in Y , there exists y0 ∈ Y such that up to a
subsequence,

ϕ(tn, τ − tn, ϑ−tnω, xn)
‖·‖Y−−−−→
n→∞

y0. (2.6)

On the other hand, by condition (i), there exists a large time T > 0 such that
yn = ϕ(T, τ − tn, ϑ−tnω, xn)

= ϕ(T, (τ − tn + T )− T, ϑ−Tϑ−(tn−T )ω, xn)

∈ K(τ − tn + T, ϑ−(tn−T )ω).
(2.7)

Then by the cocycle property in Definition 2.1, with (2.6) and (2.7), we infer that
as tn →∞,

ϕ(tn, τ − tn, ϑ−tnω, xn) = ϕ(tn − T, τ − (tn − T ), ϑ−(tn−T )ω, yn)→ y0 in Y.

Therefore by (2.2), y0 ∈ AY (τ, ω). This implies

distY
(
ϕ(tn, τ − tn, ϑ−tnω, xn),AY (τ, ω)

)
→ 0 (2.8)

as tn →∞, which is a contradiction to (2.5).
Step 3. It remains to prove the compactness of AY in Y . Let {yn}∞n=1 be a
sequence in AY (τ, ω). By the invariance of AY (τ, ω) which is proved in Step 1, we
have

ϕ(t, τ − t, ϑ−tω,AY (τ − t, ϑ−tω)) = AY (τ, ω).
Then it follows that there is a sequence {zn}∞n=1 with zn ∈ AY (τ − tn, ϑ−tnω) such
that for every n ∈ Z+,

yn = ϕ(tn, τ − tn, ϑ−tnω, zn). (2.9)

Note that AY ∈ D. Then by the asymptotic compactness of ϕ in Y , {yn} has a
convergence subsequence in Y , i.e., there is a y0 ∈ Y such that

lim
n→∞

yn = y0 in Y.

But AY (τ, ω) is closed in Y , so y0 ∈ AY (τ, ω).
The uniqueness is easily followed by the attraction property of ϕ and AY ∈ D.

This completes the total proofs. �
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2.3. Upper semi-continuity of random attractors in a non-initial space.
Assume that (H1) and (H2) hold. Given the indexed set I ⊂ R, for every ε ∈ I,
we use Dε to denote a a collection of some families of nonempty subsets of X. Let
ϕε(ε ∈ I) be a continuous cocycle on X over R and (Ω,F , P, {ϑt}t∈R). We now
consider the upper semi-continuous of pullback attractors of a family of cocycle ϕε
in Y .

Suppose first that for every t ∈ R+, τ ∈ R, ω ∈ Ω, εn, ε0 ∈ I with εn → ε0, and
xn, x ∈ X with xn → x, there holds

lim
n→∞

ϕεn(t, τ, ω, xn) = ϕε0(t, τ, ω, x) in X. (2.10)

Suppose second that there exists a map Rε0 : R× Ω→ R+ such that the family

B0 = {B0(τ, ω) = {x ∈ X; ‖x‖X ≤ Rε0(τ, ω)} : τ ∈ R, ω ∈ Ω} (2.11)

belongs to Dε0 . And further for every ε ∈ I, ϕε has Dε-pullback attractor Aε ∈ Dε

in X ∩ Y and a closed and measurable Dε-pullback absorbing set Kε ∈ Dε in X
such that for every τ ∈ R, ω ∈ Ω,

lim sup
ε→ε0

‖Kε(τ, ω)‖ ≤ Rε0(τ, ω), (2.12)

where ‖S‖X = supx∈S ‖x‖X for a set S. We finally assume that for every τ ∈ R,
ω ∈ Ω,

∪ε∈IAε(τ, ω) is precompact in X, and (2.13)

∪ε∈IAε(τ, ω) is precompact in Y. (2.14)

Then we have the upper semi-continuity in Y .

Theorem 2.7. If (2.10)–(2.13) hold, then for each τ ∈ R, ω ∈ Ω,

lim
ε→ε0

distX(Aε(τ, ω),Aε0(τ, ω)) = 0.

If further (H1)-(H2) hold and conditions (2.10)-(2.14) are satisfied. Then for each
τ ∈ R, ω ∈ Ω,

lim
ε→ε0

distY (Aε(τ, ω),Aε0(τ, ω)) = 0.

Proof. If (2.10)-(2.13) hold, the upper-continuous in X is proved in [18]. We only
need to prove the upper semi-continuity of Aε at ε = ε0 in Y .

Suppose that there exist δ > 0, εn → ε0 and a sequence {yn} with yn ∈ Aεn(τ, ω)
such that for all n ∈ N,

lim
ε→ε0

distY (yn,Aε0(τ, ω)) ≥ 2δ. (2.15)

Note that yn ∈ Aεn(τ, ω) ⊂ A(τ, ω) = ∪ε∈IAε(τ, ω). Then by (2.13) and (2.14)
and using (H2), there exists a y0 ∈ X ∩ Y such that up to a subsequence,

lim
n→∞

yn = y0 in X ∩ Y. (2.16)

It suffices to show that distY (y0,Aε0(τ, ω)) < δ. Given a positive sequence {tm}
with tm ↑ +∞ as m → ∞. For m = 1, by the invariance of Aεn , there exists a
sequence {y1,n} with y1,n ∈ Aεn(τ − t1, ϑ−t1ω) such that

yn = ϕεn(t1, τ − t1, ϑ−t1ω, y1,n), (2.17)
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for each n ∈ N. Since y1,n ∈ Aεn(τ − t1, ϑ−t1ω) ⊂ A(τ − t1, ϑ−t1ω), then by by
(2.13) and (2.14) and using (H2), there is a z1 ∈ X ∩Y and a subsequence of {y1,n}
such that

lim
n→∞

y1,n = z1 in X ∩ Y. (2.18)

Then (2.10) and (2.18) imply

lim
n→∞

ϕεn(t1, τ − t1, ϑ−t1ω, y1,n) = ϕε0(t1, τ − t1, ϑ−t1ω, z1) in X. (2.19)

Thus by combining (2.16), (2.17) and (2.19) we obtain

y0 = ϕε0(t1, τ − t1, ϑ−t1ω, z1). (2.20)

Note that Kεn as a Dεn-pullback absorbing set in X absorbs Aεn ∈ Dεn , i.e., there
is a T = T (τ, ω,Aεn) such that for all t ≥ T ,

ϕ(t, τ − t, ϑ−tω,Aεn(τ − t, ϑ−tω)) ⊆ Kεn(τ, ω). (2.21)

Then by the invariance of Aεn(τ, ω), it follows from (2.21) that

Aεn(τ, ω) ⊆ Kεn(τ, ω). (2.22)

Since y1,n ∈ Aεn(τ − t1, ϑ−t1ω) ⊆ Kεn(τ − t1, ϑ−t1ω), then by (2.18) and (2.12),
we obtain

‖z1‖X = lim sup
n→∞

‖y1,n‖X

≤ lim sup
n→∞

‖Kεn(τ − t1, ϑ−t1ω)‖X

≤ Rε0(τ − t1, ϑ−t1ω).

(2.23)

By an induction argument, for each m ≥ 1, there is zm ∈ X ∩ Y such that for all
m ∈ N,

y0 = ϕε0(tm, τ − tm, ϑ−tmω, zm), (2.24)

‖zm‖X ≤ Rε0(τ − tm, ϑ−tmω). (2.25)

Thus from (2.11) and (2.25), for each m ∈ N,

zm ∈ B0(τ − tm, ϑ−tmω). (2.26)

We consider that the pullback attractor Aε0 attracts every element in Dε0 in the
topology of Y and connection with B0 ∈ Dε0 . Then Aε0 attracts B0 in the topology
of Y . Therefore by (2.24) and (2.26) we have

distY (y0,Aε0(τ, ω)) = distY (ϕε0(tm, τ − tm, ϑ−tmω, zm),Aε0(τ, ω))→ 0, (2.27)

as m → ∞. That is to say, distY (y0,Aε0(τ, ω)) = infu∈Aε0 (τ,ω) ‖y0 − u‖Y = 0 and
thus we can choose a u0 ∈ Aε0(τ, ω) such that

‖y0 − u0‖Y ≤ δ. (2.28)

Therefore, by (2.16) and (2.28), as n→∞,

distY (yn,Aε0(τ, ω)) ≤ ‖yn − u0‖Y ≤ ‖yn − y0‖Y + δ → δ,

which is a contradiction to (2.15). This concludes the proof. �

We next consider a special case of Theorem 2.7, in which case the limit cocycle
ϕε0 is independent of the parameter ω ∈ Ω. We call such ϕε0 a deterministic non-
autonomous cocycle on X over R. That is to say, ϕε0 satisfies the following two
statements:

(i) ϕ0(0, τ, ·) is the identity on X;
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(ii) ϕ0(t+ s, τ, ·) = ϕ0(t, τ + s, ·) ◦ ϕ0(s, τ, ·).
If ϕ0(t, τ, .) : X → X is continuous for every t ∈ R+ and τ ∈ R, then ϕε0 is called
a deterministic non-autonomous continuous cocycle on X over R.

Let Dε0 be a collection of some families of nonempty subsets of X denoted by

Dε0 = {B = {B(τ) 6= ∅;B(τ) ∈ 2X , τ ∈ R}; fB satisfies certain conditions}.

A family Aε0 ∈ Dε0 is called a Dε0 -pullback attractor of ϕε0 in X (resp. in Y ) if
(i) for each τ ∈ R, Aε0(τ) is compact in X(resp. of Y );
(ii) ϕε0(t, τ,Aε0(τ)) = Aε0(τ + t) for all t ∈ R+ and τ ∈ R;

(iii) Aε0 pullback attracts every element of Dε0 under the Hausdorff semi-metric
of X (resp. of Y).

To obtain the convergence at ε = ε0 in Y , we make some modifications of the
conditions used in random case. We assume that for every t ∈ R+, τ ∈ R, ω ∈
Ω, εn ∈ I with εn → ε0, and xn, x ∈ X with xn → x, it holds

lim
n→∞

ϕεn(t, τ, ω, xn) = ϕε0(t, τ, x) in X. (2.29)

There exists a map R′ε0 : R→ R such that the family

B′0 = {B′0(τ) = {x ∈ X; ‖x‖X ≤ R′ε0(τ)}; τ ∈ R} belongs to Dε0 . (2.30)

For every ε ∈ I, ϕε has a closed measurable Dε-pullback absorbing set Kε =
{Kε(τ, ω);ω ∈ Ω} ∈ Dε in X such that for every τ ∈ R, ω ∈ Ω,

lim sup
ε→ε0

‖Kε(τ, ω)‖ ≤ R′ε0(τ). (2.31)

Then we have the following, which can be proved by a similar argument as
Theorem 2.7 and so the proof is omitted.

Theorem 2.8. If (2.13) and (2.29)-(2.31) hold, then for each τ ∈ R, ω ∈ Ω,

lim
ε→ε0

distX(Aε(τ, ω),Aε0(τ)) = 0.

If further (H1)-(H2) hold and conditions (2.14) and (2.29)-(2.31) are satisfied, then
for each τ ∈ R, ω ∈ Ω,

lim
ε→ε0

distY (Aε(τ, ω),Aε0(τ)) = 0. (2.32)

3. Non-autonomous reaction-diffusion equation on RN with
multiplicative noise

For the non-autonomous reaction-diffusion equations (1.1) and (1.2), the nonlin-
earity f(x, s) satisfies almost the same assumptions as in [18], i.e., for x ∈ RN and
s ∈ R,

f(x, s)s ≤ −α1|s|p + ψ1(x), (3.1)

|f(x, s)| ≤ α2|s|p−1 + ψ2(x), (3.2)
∂f

∂s
f(x, s) ≤ α3, (3.3)∣∣∣∂f

∂x
f(x, s)

∣∣∣ ≤ ψ3(x), (3.4)
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where αi > 0 (i = 1, 2, 3) are determined constants, p ≥ 2, ψ1 ∈ L1(RN )∩Lp/2(RN ),
ψ2 ∈ L2(RN ) and ψ3 ∈ L2(RN ). And the non-autonomous term g satisfies that for
every τ ∈ R and some δ ∈ [0, λ),∫ τ

−∞
eδs‖g(s, ·)‖2L2(RN )ds < +∞, (3.5)

where λ is as in (1.1), which implies that∫ 0

−∞
eδs‖g(s+ τ, ·)‖2L2(RN )ds < +∞, g ∈ L2

Loc(R, L2(RN )). (3.6)

For the probability space (Ω,F , P ), we write Ω = {ω ∈ C(R,R);ω(0) = 0}. Let
F be the Borel σ-algebra induced by the compact-open topology of Ω and P be the
corresponding Wiener measure on (Ω,F). We define a shift operator ϑ on Ω by

ϑtω(s) = ω(s+ t)− ω(t), for every ω ∈ Ω, t, s ∈ R.

Then (Ω,F , P, {ϑt}t∈R) which is the model for random noise is called a metric dy-
namical system. Furthermore (Ω,F , P, {ϑt}t∈R) is ergodic with respect to {ϑt}t∈R
under P , which means that every ϑt-invariant set has measure zero or one, t ∈ R.
By the law of the iterated logarithm (see [5]), we know that

ω(t)
t
→ 0, as |t| → +∞. (3.7)

For ω ∈ Ω, put z(t, ω) = zε(t, ω) = e−εω(t). Then we have dz + εz ◦ dω(t) = 0.
Put v(t, τ, ω, v0) = z(t, ω)u(t, τ, ω, u0), where u is a solution of problem (1.1) and
(1.2) with the initial value u0. Then v solves the non-autonomous equation

dv

dt
+ λv −∆v = z(t, ω)f(x, z−1(t, ω)v) + z(t, ω)g(t, x), (3.8)

with the initial value
v(τ, x) = v0(x) = z(τ, ω)u0(x). (3.9)

As pointed out in [18], for every v0 ∈ L2(RN ) we may show that the prob-
lem (3.8)-(3.9) possesses a continuous solution v(·) on L2(RN ) such that v(·) ∈
C([τ,+∞), L2(RN )) ∩ L2loc((τ,+∞), H1(RN )) ∩ Lploc((τ,+∞), Lp(RN )). In ad-
dition, the solution v is (F ,B(L2(RN )))-measurable in Ω. Then formally u(·) =
z−1(., ω)v(·) is a (F ,B(L2(RN )))-measurable and continuous solution of problem
(1.1) and (1.2) on L2(RN ) with u0 = z−1(τ, ω)v0.

Define the mapping ϕ : R+ × R× Ω× L2(RN )→ L2(RN ) such that

ϕ(t, τ, ω, u0) = u(t+ τ, τ, ϑ−τω, u0)

= z−1(t+ τ, ϑ−τω)v(t+ τ, τ, ϑ−τω, z(τ, ϑ−τω)u0),
(3.10)

where u0 = uτ ∈ L2(RN ) and t ∈ R+, τ ∈ R, ω ∈ Ω. Then by the measurability
and continuity of v in v0 ∈ L2(RN ) and t ∈ R+, we see that the mappings ϕ is
(B(R+)×F×B(L2(RN )))→ B(L2(RN ))-measurable. That is to say, the mappings
ϕ defined by (3.10) is a continuous cocycle on L2(RN ) over R and (Ω,F , P, {ϑt}t∈R).
Furthermore, from (3.10) we infer that

ϕ(t, τ − t, ϑ−tω, u0) = u(τ, τ − t, ϑ−τω, u0)

= z(−τ, ω)v(τ, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0),
(3.11)

where u0 = uτ−t.
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We define the collection D as

D = {B = {B(τ, ω) ⊆ L2(RN ); τ ∈ R, ω ∈ Ω};

lim
t→+∞

e−λtz2(−t, ω)‖B(τ − t, ϑ−tω)‖2 = 0 for τ ∈ R, ω ∈ Ω} (3.12)

where ‖B‖ = supv∈B ‖v‖L2(RN ) and λ is in (3.8). Note that this collection D is much
larger that the collection defined by [18]. That is to say, the collection D defined
above includes all tempered families of bounded nonempty subsets of L2(RN ).

We can show that all the results in [18] hold for the collection D defined by
(3.12). Thus, the existence and upper semi-continuous of D-pullback attractors for
the cocycle ϕε in the initial space L2(RN ) have been proved by [18].

Theorem 3.1 ([18]). Assume that (3.1)-(3.5) hold. Then the cocycle ϕε has a
unique D-pullback attractor Aε = {Aε(τ, ω), τ ∈ R, ω ∈ Ω} in L2(RN ), given by

Aε(τ, ω) = ∩s≥0∪t≥sϕ(t, τ − t, ϑ−tω,Kε(τ − t, ϑ−tω))
L2(RN )

, (3.13)

for τ ∈ R and ω ∈ Ω, where Kε is a closed and measurable D-pullback bounded ab-
sorbing set of ϕε in L2(RN ). Furthermore, Aε is upper semi-continuous in L2(RN )
at ε = 0.

Note that in most cases, we write v (resp. ϕ and z) as the abbreviation of vε
(resp. ϕε and zε). Next, we consider some applications of Theorems 2.6–2.8 to
the non-autonomous stochastic reaction-diffusions (1.1) and (1.2). We emphasize
that the result of Theorem 3.1 holds in the smooth functions space H1(RN ). In
particular, we prove the upper semi-continuity of the obtained attractors Aε in
H1(RN ).

4. Existence of pullback attractor in H1(RN )

In this section, we apply Theorem 2.6 to prove the existence of D-pullback at-
tractors in H1(RN ) for the cocycle defined in (3.10). To this end, we need to
prove the uniform smallness of solutions outside a large ball under H1(RN ) norm
(see Proposition 4.4), and in the bounded ball of RN we will prove the asymptotic
compactness of solutions by space-splitting and function-truncation techniques (see
Proposition 4.5 and Lemma 4.6).

We consider that e−|ω(s)| ≤ z(s, ω) = e−εω(s) ≤ e|ω(s)| for ε ∈ (0, 1], and that
ω(s) is continuous function in s. Then there exist two positive random constants
E = E(ω) and F = F (ω) depending only on ω such that for all s ∈ [−2, 0] and
ε ∈ (0, 1].

0 < E ≤ z(s, ω) ≤ F, ω ∈ Ω. (4.1)

Hereafter, we denote by ‖ · ‖, ‖ · ‖p and ‖ · ‖H1 the norms in L2(RN ), Lp(RN )
and H1(RN ), respectively. The numbers c and C(τ, ω) are two generic positive
constants which may have different values in different places even in the same line.
The first one depends only on p, λ and αi(i = 1, 2, 3), and the second one depends
on τ, ω, p, λ and αi(i = 1, 2, 3). We always assume p > 2 in the following discussions.

4.1. H1-tail estimate of solutions. This can be achieved by a series of previously
proved lemmas. First we stress that [18, Lemma 5.1] holds on the compact interval
[τ − 1, τ ], which is necessary for us to estimate of the tail of solutions in H1(RN ).
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Lemma 4.1. Assume that (3.1) and (3.3)-(3.5) hold. Let τ ∈ R, ω ∈ Ω, B =
{B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D and u0 ∈ B(τ − t, ϑ−tω). Then there exists a constant
T = T (τ, ω,B) ≥ 2 such that for all t ≥ T , the solution v of problem (3.8) and
(3.9) satisfies that for every ζ ∈ [τ − 1, τ ],

‖v(ζ, τ − t, ϑ−τω, v0)‖2H1(RN ) ≤ L1(τ, ω, ε), (4.2)∫ τ

τ−2

‖v(s, τ − t, ϑ−τω, v0)‖ppds ≤ L1(τ, ω, ε), (4.3)

where v0 = z(τ − t, ϑ−τω)u0 and L1(τ, ω, ε) =: cz−2(−τ, ω)
∫ 0

−∞ eλsz2(s, ω)(‖g(s+
τ, ·)‖2 + 1)ds.

The proof of the above lemma is similar to that of [18, Lemma 5.1], with a small
modification, using ζ ∈ [τ − 1, τ ] instead of τ .

Lemma 4.2. Assume that (3.1) and (3.3)-(3.5) hold. Let τ ∈ R, ω ∈ Ω and
B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D. Then for every η > 0, there exist two constants
T = T (τ, ω, η,B) ≥ 2 and R = R(τ, ω, η) > 1 such that the weak solution v of (3.8)
and (3.9) satisfies that for all t ≥ T and k ≥ R,∫

|x|≥k
|v(τ, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)|2dx

+
∫ τ

τ−1

∫
|x|≥k

|∇v(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)|2 dx ds ≤ η,

where u0 ∈ B(τ − t, ϑ−tω), R and T are independent of ε.

The proof of the above lemma is a simple modification of the proof of [18, Lemma
5.5].

Lemma 4.3. Assume that (3.1) and (3.3)-(3.5) hold. Let τ ∈ R, ω ∈ Ω and
B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D. Then there exists T = T (τ, ω,B) ≥ 2 such that
the weak solution v of problem (3.8)-(3.9) satisfies that for all t ≥ T ,∫ τ

τ−1

‖v(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)‖2p−2
2p−2ds ≤ L2(τ, ω, ε), (4.4)∫ τ

τ−1

‖vs(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)‖2ds ≤ L2(τ, ω, ε), (4.5)

where vs = ∂v
∂s , u0 ∈ B(τ − t, ϑ−tω) and

L2(τ, ω, ε) =: C(τ, ω)
∫ 0

−∞
eλs(z2(s, ω) + zp(s, ω))(‖g(s+ τ, ·)‖2 + 1)ds. (4.6)

Proof. In the sequel, we always regard v as a solution at the time t with the initial
value v0 = vτ−t at the initial time τ − t. We multiply (3.8) by |v|p−2v and then
integrate over RN to yield that

1
p

d

dt
‖v‖pp + λ‖v‖pp

≤ z(t, ω)
∫

RN
f(x, z−1v)|v|p−2v dx+ z(t, ω)

∫
RN
|v|p−2vgdx.

(4.7)
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By using (3.1), we see that

z(t, ω)
∫

RN
f(x, z−1v)|v|p−2v dx

≤ −α1z
2−p(t, ω)

∫
RN
|v|2p−2dx+ z2(t, ω)

∫
RN

ψ1(x)|v|p−2dx

≤ −α1z
2−p(t, ω)

∫
RN
|v|2p−2dx+

λ

2
‖v‖pp +

( 2
λ

)− p−2
2
zp(t, ω)‖ψ1‖p/2p/2,

(4.8)

where the ε-Young’s inequality are repeatedly used:

|ab| ≤ ε|a|m + ε−q/p|b|n, ε > 0, m > 1, n > 1,
1
m

+
1
n

= 1. (4.9)

At the same time, the last term on the right hand side of (4.7) is bounded as

z(t, ω)
∫

RN
|v|p−2vgdx

≤ 1
2
α1z

2−p(t, ω)
∫

RN
|v|2p−2dx+

1
2α1

zp(t, ω)‖g(t, ·)‖2.
(4.10)

By a combination of (4.7)-(4.10), noticing that p > 2, we obtain that

d

dt
‖v‖pp + λ‖v‖pp + α1z

2−p(t, ω)‖v‖2p−2
2p−2 ≤ czp(t, ω)(‖g(t, ·)‖2 + 1), (4.11)

where c only depends p, λ and α1. Applying [26, Lemma 5.1](or [29]) over the
interval [τ − 2, ζ], ζ ∈ [τ − 1, τ ], along with ω being replaced by ϑ−τω, we deduce
that

‖v(ζ, τ − t, ϑ−τω, v0)‖pp

≤ eλ

ζ − τ + 2

∫ τ

τ−2

eλ(s−τ)‖v(s, τ − t, ϑ−τω, v0)‖ppds

+ ceλz−p(−τ, ω)
∫ 0

−∞
eλszp(s, ω)(‖g(s+ τ, ·)‖2 + 1)ds.

(4.12)

Since eλ

ζ−τ+2 ≤ 1 for ζ ∈ [τ −1, τ ], then by (4.3) and (4.12) we find that there exists
T > 2 such that for all t ≥ T ,

‖v(ζ, τ − t, ϑ−τω, v0)‖pp

≤ C(τ, ω)
∫ 0

−∞
eλs(z2(s, ω) + zp(s, ω))(‖g(s+ τ, ·)‖2 + 1)ds.

(4.13)

Integrating (4.11) over the interval [τ − 1, τ ], with ω replaced by ϑ−τω, yields

α1

∫ τ

τ−1

z2−p(s, ϑ−τω)‖v(s, τ − t, ϑ−τω, v0)‖2p−2
2p−2ds

≤ ‖v(τ − 1, τ − t, ϑ−τω, v0)‖pp + c

∫ τ

τ−1

zp(s, ϑ−τω)(‖g(s, ·)‖2 + 1)ds

≤ ‖v(τ − 1, τ − t, ϑ−τω, v0)‖pp

+ ce−λ
∫ τ

τ−1

eλ(s−τ)zp(s, ϑ−τω)(‖g(s, ·)‖2 + 1)ds.

(4.14)
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Then from (4.1), (4.13) and (4.14) we deduce for all t ≥ T ,∫ τ

τ−1

‖v(s, τ − t, ϑ−τω, v0)‖2p−2
2p−2ds

≤ C(τ, ω)
∫ 0

−∞
eλs(z2(s, ω) + zp(s, ω))(‖g(s+ τ, ·)‖2 + 1)ds,

which proves (4.4).
To estimate the derivative vt in L2loc(R, L2(RN )), we multiply (3.8) by vt and

integrate over RN to produce

‖vt‖2 +
1
2
d

dt
(λ‖v‖2 + ‖∇v‖2)

= z(t, ω)
∫

RN
f(x, z−1v)vtdx+ z(t, ω)

∫
RN

gvtdx

≤ 1
2
‖vt‖2 + cα2

2z
4−2p(t, ω)‖v‖2p−2

2p−2 + cz2(t, ω)‖ψ2‖2 + cz2(t, ω)‖g(t, ·)‖2,

i.e., we have

‖vt‖2 +
d

dt
(λ‖v‖2 + ‖∇v‖2)

≤ cz4−2p(t, ω)‖v‖2p−2
2p−2 + cz2(t, ω)(‖g(t, ·)‖2 + ‖ψ2‖2).

(4.15)

Integrate (4.15) over the interval [τ − 1, τ ] to obtain∫ τ

τ−1

‖vs(s, τ − t, ϑ−τω, v0)‖2ds

≤ c
∫ τ

τ−1

z4−2p(s, ϑ−τω)‖v(s, τ − t, ϑ−τω, v0)‖2p−2
2p−2ds

+ c

∫ τ

τ−1

z2(s, ϑ−τ )(‖g(s, ·)‖2 + 1)ds+ c‖v(τ − 1, τ − t, ϑ−τω, v0)‖2H1 .

(4.16)

Then by (4.1), (4.2), (4.4) and (4.16) we get that for all t ≥ T ,∫ τ

τ−1

‖vs(s, τ − t, ϑ−τω, v0)‖2ds

≤ C(τ, ω)
∫ 0

−∞
eλs(z2(s, ω) + zp(s, ω))(‖g(s+ τ, ·)‖2 + 1)ds,

(4.17)

where T is as in Lemma 4.1. This completes the proof. �

We now can give the H1-tail estimate of solutions of problem (3.8) and (3.9),
which is one crucial condition for proving the asymptotic compactness in H1(RN ).

Proposition 4.4. Assume that (3.1)-(3.5) hold. Let τ ∈ R, ω ∈ Ω and B =
{B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D. Then for every η > 0, there exist two constants
T = T (τ, ω, η,B) ≥ 2 and R = R(τ, ω, η) > 1 such that the weak solution v of (3.8)
and (3.9) satisfies that for all t ≥ T ,∫

|x|≥R

(
|v(τ, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)|2

+ |∇v(τ, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)|2
)
dx ≤ η,

where u0 ∈ B(τ − t, ϑ−tω) and R, T are independent of ε.
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Proof. We first need to define a smooth function ξ(·) on R+ such that

ξ(s) =


0, if 0 ≤ s ≤ 1,
0 ≤ ξ(s) ≤ 1, if 1 ≤ s ≤ 2,
1, if s ≥ 2,

which obviously implies that there is a positive constant C1 such that the |ξ′(s)|+
|ξ′′(s)| ≤ C1 for all s ≥ 0. For convenience, we write ξ = ξ( |x|

2

k2 ).
We multiply (3.8) by −ξ∆v and integrate over RN to find that

1
2
d

dt

∫
RN

ξ|∇v|2dx+
∫

RN
(∇ξ.∇v)vtdx+ λ

∫
RN

ξ|∇v|2dx

+ λ

∫
RN

(∇ξ.∇v)v dx+
∫

RN
ξ|∆v|2dx

= −z(t, ω)
∫

RN
f(x, z−1v)ξ∆v dx− z(t, ω)

∫
RN

gξ∆v dx.

(4.18)

Now, we estimate each term in (4.18) as follows. First we have

∣∣∣ ∫
RN

(∇ξ.∇v)vtdx+ λ

∫
RN

(∇ξ.∇v)v dx
∣∣∣ =

∣∣∣ ∫
RN

(vt + λv)(
2x
k2
.∇v)ξ′dx

∣∣∣
≤ c

k
(‖vt‖2 + ‖v‖2H1).

(4.19)

For the nonlinearity in (4.18), we see that

− z
∫

RN
f(x, z−1v)ξ∆v dx

= z

∫
RN

f(x, z−1v)(∇ξ.∇v)dx+ z

∫
RN

(
∂

∂x
f(x, z−1v).∇v)ξdx

+
∫

RN

∂

∂u
f(x, z−1v)|∇v|2ξdx.

(4.20)

On the other hand, by using (3.2), (3.3) and (3.4), respectively, we calculate that

∣∣∣z ∫
RN

f(x, z−1v)(∇ξ.∇v)dx
∣∣∣ ≤ 2z

√
2C1

k

∫
k≤|x|≤

√
2k

|f(x, z−1v)||∇v|dx

≤ c

k
(z4−2p‖v‖2p−2

2p−2 + z2‖ψ2‖2 + ‖∇v‖2),
(4.21)

∫
RN

∂

∂u
f(x, z−1v)|∇v|2ξdx ≤ α3

∫
RN

ξ|∇v|2dx, (4.22)∣∣∣z ∫
RN

(
∂

∂x
f(x, z−1v).∇v)ξdx

∣∣∣ ≤ ∣∣∣z ∫
RN
|ψ3||∇v|ξdx

∣∣∣
≤ λ

2

∫
RN

ξ|∇v|2dx+ cz2

∫
RN

ξ|ψ3|2dx.
(4.23)
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Then from 4.20)-(4.23) it follows that

− z
∫

RN
f(x, z−1v)ξ∆v dx

≤ c

k
(z4−2p‖v‖2p−2

2p−2 + z2‖ψ2‖2 + ‖∇v‖2)

+
λ

2

∫
RN

ξ|∇v|2dx+ cz2

∫
RN

ξ|ψ3|2dx+ α3

∫
RN

ξ|∇v|2dx.

(4.24)

For the last term on the right-hand side of (4.18), we have∣∣∣z ∫
RN

gξ∆v dx
∣∣∣ ≤ λ

2

∫
RN

ξ|∆v|2dx+
1

2λ
z2

∫
RN

ξ|g|2dx. (4.25)

Then we use (4.19) and (4.24)–(4.25) in (4.18) to find that

d

dt

∫
RN

ξ|∇v|2dx+ λ

∫
RN

ξ|∇v|2dx

≤ c

k
(‖vt‖2 + ‖v‖2H1 + z4−2p‖v‖2p−2

2p−2 + z2‖ψ2‖2)

+ 2α3

∫
RN

ξ|∇v|2dx+ cz2

∫
RN

ξ(|ψ3|2 + |g|2)dx.

(4.26)

Applying [26, Lemma 5.1] to (4.26) over the interval [τ − 1, τ ], along with ω being
replaced by ϑ−τω, we deduce that∫

RN
ξ|∇v(τ, τ − t, ϑ−τω, v0)|2dx

≤ c

k

∫ τ

τ−1

eλ(s−τ)
(
‖vs(s)‖2 + ‖v(s)‖2H1 + z4−2p(s, ϑ−τω)‖v(s)‖2p−2

2p−2

+ z2(s, ϑ−τω)‖ψ2‖2
)
ds+ c

∫ τ

τ−1

eλ(s−τ)
∫
|x|≥k

|∇v(s)|2 dx ds

+ cz−2(τ, ω)
∫ 0

−1

eλsz2(s, ω)
∫
|x|≥k

(|ψ3|2 + |g(s+ τ, x)|2) dx ds,

(4.27)

where v(s) = v(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0). Our task in the following is to
show that each term on the right hand side of (4.27) vanishes when t and k are
larger. First, by Lemma 4.2, there are two constants T1 = T1(τ, ω,B, η) ≥ 2 and
R1 = R1(τ, ω, η) ≥ 1 such that for all t ≥ T1 and k ≥ R1,

c

∫ τ

τ−1

eλ(s−τ)
∫
|x|≥k

|∇v(s)|2 dx ds

≤ c
∫ τ

τ−1

∫
|x|≥k

|∇v(s, τ − t, ϑ−τω, v0)|2 dx ds ≤ η

6
.

(4.28)

By (4.2) in Lemma 4.1, there exist T2 = T2(τ, ω,B) ≥ 2 and R2 = R2(τ, ω, η) ≥ 1
such that for all t ≥ T2 and k ≥ R2,

c

k

∫ τ

τ−1

eλ(s−τ)‖v(s, τ − t, ϑ−τω, v0)‖2H1ds

≤ c

k

∫ τ

τ−1

‖v(s, τ − t, ϑ−τω, v0)‖2H1ds ≤
η

6
.

(4.29)
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By Lemma 4.3, there exist T3 = T3(τ, ω,B) ≥ 2 and R3 = R3(τ, ω, η) ≥ 1 such that
for all t ≥ T3 and k ≥ R3,

c

k

∫ τ

τ−1

eλ(s−τ)z4−2p(s, ϑ−τω)‖v(s, τ − t, ϑ−τω, v0)‖2p−2
2p−2ds

≤ c

k
z2p−4(−τ, ω)E4−2pL2(τ, ω, ε) ≤ η

6
,

(4.30)

and

c

k

∫ τ

τ−1

eλ(s−τ)‖vs(s, τ − t, ϑ−τω, v0)‖2ds ≤ c

k
L2(τ, ω, ε) ≤ η

6
. (4.31)

By the assumptions on ψ3 and g, we deduce that there exist R4 = R4(τ, ω, η) such
that for all k ≥ R4,

cz−2(τ, ω)
∫ 0

−1

eλsz2(s, ω)
∫
|x|≥k

(|ψ3|2 + |g(s+ τ, x)|2) dx ds ≤ η

6
. (4.32)

Obviously, there exists R5 = R5(τ, ω, η) such that for all k ≥ R5,

c

k

∫ τ

τ−1

eλ(s−τ)z2(s, ϑ−τω)‖ψ2‖2ds

≤ c

k
‖ψ2‖2z−2(−τ, ω)

∫ 0

−1

z2(s, ω)ds ≤ η

6
,

(4.33)

where
∫ 0

−1
z2(s, ω)ds < +∞. Finally, take

T = {T1, T2, T3}, R = max{R1, R2, R3, R4, R5}.

It is obvious that R and T are independent of the intension ε. Then (4.28)-(4.33)
are integrated into (4.27) to get that for all t ≥ T and k ≥ R,∫

|x|≥
√

2k

|∇v(τ, τ − t, ϑ−τω, v0)|2dx ≤ η. (4.34)

Then in connection with Lemma 4.2, the desired result is achieved. �

4.2. Estimate of the truncation of solutions in L2p−2. Given u the solution
of problem (1.1) and (1.2), for each fixed τ ∈ R, ω ∈ Ω, we write M = M(τ, ω) > 1
and

RN (|u(τ, τ − t, ϑ−τω, u0)| ≥M) = {x ∈ RN ; |u(τ, τ − t, ϑ−τω, u0)| ≥M |}. (4.35)

We introduce the truncation version of solutions of problem (3.8)-(3.9). Let
(v −M)+ be the positive part of v −M , i.e.,

(v −M)+ =

{
v −M, if v > M ;
0, if v ≤M.

The next lemma shows that the integral of L2p−2-norm of |u| over the interval
[τ − 1, τ ] vanishes on the state domain RN (|u(τ, τ − t, ϑ−τω), u0)| ≥ M) for M
large enough, which is the second crucial condition for proving the asymptotic
compactness of solutions in H1(RN ).
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Proposition 4.5. Assume that (3.1)-(3.5) hold. Let τ ∈ R, ω ∈ Ω,

B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D

and u0 ∈ B(τ − t, ϑ−tω). Then for any η > 0, there exist constants M̃ =
M̃(τ, ω, η) > 1 and T = T (τ, ω,B) ≥ 2 such that the solution u of problem (3.8)
and (3.9) satisfies that for all t ≥ T and all ε ∈ (0, 1],∫ τ

τ−1

e%̃(s−τ)
∫
O
|v(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)|2p−2 dx ds ≤ η,

where p > 2, M̃ and T are independent of ε,

O = RN (|v(s, τ − t, ϑ−τω, z(τ − t, ϑ−τω)u0)| ≥ M̃)

and
%̃ = %̃(τ, ω, M̃) = α1F

2−pe−(p−2)|ω(−τ)|M̃p−2.

Proof. First, we replace ω by ϑ−τω in (3.8) to see that

v = v(s) =: v(s, τ − t, ϑ−τω, v0), s ∈ [τ − 1, τ ],

is a solution of the SPDE
dv

ds
+ λv −∆v =

z(s− τ, ω)
z(−τ, ω)

f(x, u) +
z(s− τ, ω)
z(−τ, ω)

g(s, x), (4.36)

with the initial data v0 = z(τ − t, ϑ−τω)u0, where we have used z(s, ϑ−τω) =
z(s−τ,ω)
z(−τ,ω) > 0.

We multiply (4.36) by (v−M)p−1
+ and integrate over RN to obtain that for every

s ∈ [τ − 1, τ ],

1
p

d

ds

∫
RN

(v −M)p+dx+ λ

∫
RN

v(v −M)p−1
+ dx−

∫
RN

∆v(v −M)p−1
+ dx

=
z(s− τ, ω)
z(−τ, ω)

∫
RN

f(x, u)(v −M)p−1
+ dx+

z(s− τ, ω)
z(−τ, ω)

∫
RN

g(s, x)(v −M)p−1
+ dx.

(4.37)
We now need to estimate every term in (4.37). First, it is obvious that

−
∫

RN
∆v(v −M)p−1

+ dx = (p− 1)
∫

RN
(v −M)p−2

+ |∇v|2dx ≥ 0, (4.38)

λ

∫
RN

v(v −M)p−1
+ dx ≥ λ

∫
RN

(v −M)p+dx. (4.39)

If v > M , then u = z−1(s, ϑ−τω)v > 0. Therefore by assumption (3.1), we have

f(x, u) ≤ −α1u
p−1 +

ψ1(x)
u

= −α1

(z(s− τ, ω)
z(−τ, ω)

)1−p
vp−1 +

z(s− τ, ω)
z(−τ, ω)

ψ1(x)
v

.

(4.40)

Since s ∈ [τ − 1, τ ] and p > 2, then by (4.1) we have

F 2−p ≤ z2−p(s− τ, ω) ≤ E2−p,

from which and (4.40) it follows that

z(s− τ, ω)
z(−τ, ω)

f(x, u)



EJDE-2016/294 EXISTENCES AND UPPER SEMI-CONTINUITY 19

≤ −α1

(z(s− τ, ω)
z(−τ, ω)

)2−p
vp−1 +

z2(s− τ, ω)
z2(−τ, ω)

ψ1(x)
v

= −α1

2

(z(s− τ, ω)
z(−τ, ω)

)2−p
vp−1 − α1

2

(z(s− τ, ω)
z(−τ, ω)

)2−p
vp−1 +

z2(s− τ, ω)
z2(−τ, ω)

ψ1(x)
v

≤ −α1

2
F 2−p

z2−p(−τ, ω)
Mp−2(v −M)− α1

2
F 2−p

z2−p(−τ, ω)
(v −M)p−1

+
F 2

z2(−τ, ω)
|ψ1(x)|(v −M)−1,

which by the nonlinearity in (4.37) is estimated as

z(s− τ, ω)
z(−τ, ω)

∫
RN

f(x, u)(v −M)p−1
+ dx

≤ −α1

2
F 2−p

z2−p(−τ, ω)
Mp−2

∫
RN

(v −M)p+dx−
α1

2
F 2−p

z2−p(−τ, ω)

×
∫

RN
(v −M)2p−2

+ dx+
F 2

z2(−τ, ω)

∫
RN
|ψ1(x)|(v −M)p−2

+ dx

≤ −α1

2
F 2−p

z2−p(−τ, ω)
Mp−2

∫
RN

(v −M)p+dx−
α1

2
F 2−p

z2−p(−τ, ω)

×
∫

RN
(v −M)2p−2

+ dx+
1
2
λ

∫
RN

(v −M)p+dx

+
cF p

zp(−τ, ω)

∫
RN (v≥M)

|ψ1(x)|p/2dx,

(4.41)

where the last term the ε-Young’s inequality (4.9) is used. The second term on the
right-hand side of (4.37) is bounded as

F

z(−τ, ω)

∣∣∣ ∫
RN

g(s, x)(v(s)−M)p−1
+ dx

∣∣∣
≤ α1

4
F 2−p

z2−p(−τ, ω)

∫
RN

(v −M)2p−2
+ dx

+
1
α1

F p

zp(−τ, ω)

∫
RN (v(s)≥M)

g2(s, x)dx.

(4.42)

By a combination of (4.37)–(4.42), we obtain

d

ds

∫
RN

(v(s)−M)p+dx+
α1F

2−p

z2−p(−τ, ω)
Mp−2

∫
RN

(v(s)−M)p+dx

+
α1F

2−p

z2−p(−τ, ω)

∫
RN

(v −M)2p−2
+ dx

≤ cF p

zp(−τ, ω)

(
‖g(s, ·)‖2 + ‖ψ1‖p/2p/2

)
,

(4.43)

where the positive constant c is independent of ε, τ, ω and M . Note that for each
τ ∈ R and ε ∈ (0, 1],

e−|ω(−τ)| ≤ z(−τ, ω) = e−εω(−τ) ≤ e|ω(−τ)|. (4.44)

Here for convenience, we put

% = %(τ, ω,M) = α1F
2−pe−(p−2)|ω(−τ)|Mp−2 > 0,
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d = d(τ, ω) = α1F
2−pe−(p−2)|ω(−τ)| > 0,

where d is unchanged and %→ +∞ as M → +∞. Then from (4.43) and (4.44) we
infer that

d

ds

∫
RN

(v(s)−M)p+dx+ %

∫
RN

(v(s)−M)p+dx+ d

∫
RN

(v −M)2p−2
+ dx

≤ cF pep|ω(−τ)|
(
‖g(s, ·)‖2 + 1

)
,

(4.45)

where s ∈ [τ − 1, τ ] and %,E, F are independent of ε and t. By using [26, Lemma
5.1] to (4.45) over the interval [τ − 1, τ ], we find that∫ τ

τ−1

e%(s−τ)
∫

RN
(v(s)−M)2p−2

+ dx ds

≤ 1
d

∫ τ

τ−1

e%(s−τ)
∫

RN

(
v(s, τ − t, ϑ−τω, v0)−M

)p
+
dx ds

+
cF pep|ω(−τ)|

d

∫ τ

τ−1

e%(s−τ)
(
‖g(s, ·)‖2 + 1

)
ds.

(4.46)

First by (4.13), there exists T1 = T1(τ, ω,B) ≥ 2 such that for all t ≥ T1,

1
d

∫ τ

τ−1

e%(s−τ)
∫

RN

(
v(s, τ − t, ϑ−τω, v0)−M

)p
+
dx ds

≤ 1
d

∫ τ

τ−1

e%(s−τ)‖v(s, τ − t, ϑ−τω, v0)‖ppds

≤ N(τ, ω)
1
d%
→ 0,

(4.47)

as %→ +∞, where N(τ, ω) is the bound of the right hand side of (4.13). We then
show that the second term on the right hand side of (4.46) is also small as %→ +∞.
Indeed, choosing % > δ(where δ ∈ (0, λ) is in (3.5)) and taking ς ∈ (0, 1), we have∫ τ

τ−1

e%(s−τ)
(
‖g(s, ·)‖2 + 1

)
ds

=
∫ τ−ς

τ−1

e%(s−τ)(‖g(s, ·)‖2 + 1)ds+
∫ τ

τ−ς
e%(s−τ)(‖g(s, ·)‖2 + 1)ds

= e−%τ
∫ τ−ς

τ−1

e(%−δ)seδs(‖g(s, ·)‖2 + 1)ds+ e−%τ
∫ τ

τ−ς
e%s(‖g(s, ·)‖2 + 1)ds

≤ e−%ςeδ(ς−τ)
∫ τ

−∞
eδs(‖g(s, ·)‖2 + 1)ds+

∫ τ

τ−ς
(‖g(s, ·)‖2 + 1)ds.

By (3.5), the first term above vanishes as % → +∞, and by g ∈ L2loc(R, L2(RN ))
we can choose ς small enough such that the second term is small. Hence when
%→ +∞, we have

cF pep|ω(−τ)|

d

∫ τ

τ−1

e%2(s−τ)
(
‖g(s, ·) + ‖2 + 1

)
ds→ 0. (4.48)

Then by (4.46)–(4.48), there exist two large positive constants M1 = M1(τ, ω) and
T1 = T1(τ, ω,B) ≥ 2 such that all t ≥ T1,∫ τ

τ−1

e%1(s−τ)
∫

RN
(v(s)−M1)2p−2

+ dx ds ≤ η, (4.49)
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where %1 = α1F
2−pe−(p−2)|ω(−τ)|M1. Note that v −M1 ≥ v

2 for v ≥ 2M1. Then
(4.49) gives that for all t ≥ T1,∫ τ

τ−1

e%1(s−τ)
∫

RN (v(s)≥2M1)

|v(s)|2p−2 dx ds

≤ 22p−2

∫ τ

τ−1

e%1(s−τ)
∫

RN
(v(s)−M1)2p−2

+ dx ds ≤ 22p−2η.

(4.50)

By a similar argument, we can show that there exist two large positive constants
M2 = M2(τ, ω) and T2 = T2(τ, ω,B) ≥ 2 such that for all t ≥ T2,∫ τ

τ−1

e%2(s−τ)
∫

RN (v(s)≤−2M2)

|v(s)|2p−2 dx ds ≤ 22p−2η, (4.51)

where %2 = α1F
2−pe−(p−2)|ω(−τ)|M2. Put M̃ = 2 × max{M1,M2} and T =

max{T1, T2}. Then (4.50) and (4.51) together imply the desired. �

4.3. Asymptotic compactness on bounded domains. In this subsection, by
using Proposition 4.5, we prove the asymptotic compactness of the cocyle ϕ defined
by (3.10) in H1

0 (OR) for any R > 0, where OR = {x ∈ RN ; |x| ≤ R}. For this
purpose, we define φ(·) = 1− ξ(·), where ξ is the cut-off function as in (4.16). Then
we know that 0 ≤ φ(s) ≤ 1, and φ(s) = 1 if s ∈ [0, 1] and φ(s) = 0 if s ≥ 2. Fix a
positive constant k, we define

ṽ(t, τ, ω, v0) = φ(
x2

k2
)v(t, τ, ω, v0), ũ(t, τ, ω, u0) = φ(

x2

k2
)u(t, τ, ω, u0), (4.52)

where v is the solution of problem (3.8)-(3.9) and u is the solution of problem
(1.1)-(1.2) with v = z(t, ω)u. Then we have

ũ(t, τ, ω, u0) = z−1(t, ω)ṽ(t, τ, ω, v0). (4.53)

It is obvious that ṽ solves the following equations:

ṽt + λṽ −∆ṽ = φzf(x, z−1v) + φzg − v∆φ− 2∇φ.∇v,
ṽ|∂Ok√2

= 0,

ṽ(τ, x) = ṽ0(x) = φv0(x),

(4.54)

where φ = φ(x2/k2).
It is well-known that the eigenvalue problem on bounded domains Ok√2 with

Dirichlet boundary condition:

−∆ṽ = λṽ,

ṽ|∂Ok√2
= 0

has a family of orthogonal eigenfunctions {ej}+∞=1 in both L2(Ok√2) and H1
0 (Ok√2)

such that the corresponding eigenvalue {λj}+∞j=1 is non-decreasing in j.
Let Hm = Span{e1, e2, . . . , em} ⊂ H1

0 (Ok√2) and Pm : H1
0 (Ok√2)→ Hm be the

canonical projector and I be the identity. Then for every ũ ∈ H1
0 (Ok√2), ũ has a

unique decomposition: ũ = ũ1 + ũ2, where ũ1 = Pmũ ∈ Hm and ũ2 = (I − Pm)ũ ∈
H⊥m, i.e., H1

0 (Ok√2) = Hm ⊕H⊥m.

Lemma 4.6. Assume that (3.1)–(3.5) hold. Let τ ∈ R, ω ∈ Ω and

B = {B(τ, ω); τ ∈ R, ω ∈ Ω} ∈ D.
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Then for every η > 0, there are N0 = N0(τ, ω, k, η) ∈ Z+ and T = T (τ, ω,B, η) ≥ 2
such that for all t ≥ T and m > N0,

‖(I − Pm)ũ(τ, τ − t, ϑ−τω, ũ0)‖H1
0 (Ok√2)

≤ η,

where ũ0 = φu0 with u0 ∈ B(τ − t, ϑ−τω). Here ũ is as in (4.53) and N,T are
independent of ε.

Proof. By (4.53), we start at the estimate of ṽ. For ṽ ∈ H1
0 (Ok√2), we write

ṽ = ṽ1 + ṽ2 where ṽ1 = Pmṽ and ṽ2 = (I − Pm)ṽ. Then naturally, we have a
splitting about ũ = ũ1 + ũ2 where ũ1 = Pmũ and ũ2 = (I − Pm)ũ. Multiplying
(4.47) by ∆ṽ2 we get that

1
2
d

dt
‖∇ṽ2‖2L2(Ok√2)

+ λ‖∇ṽ2‖2L2(Ok√2)
+ ‖∆ṽ2‖2L2(Ok√2)

= −z
∫
Ok√2

φf(x, z−1v)∆ṽ2dx+
∫
Ok√2

(φzg − v∆φ− 2∇φ.∇v)∆ṽ2dx,
(4.55)

where z is the abbreviation of z(t, ω). By (3.2), we deduce that

z

∫
Ok√2

φf(x, z−1v)∆ṽ2dx ≤
1
4
‖∆ṽ2‖2L2(Ok√2)

+ cz4−2p‖v‖2p−2
L2p−2(Ok√2)

+ z2‖ψ2‖2.

(4.56)
On the other hand,∫

Ok√2

(φzg − v∆φ− 2∇φ.∇v)∆ṽ2dx

≤ 1
4
‖∆ṽ2‖2L2(Ok√2)

+ c(z2‖g‖2 + ‖v‖2 + ‖∇v‖2).

(4.57)

Then by (4.55)–(4.57) we find that
d

dt
‖∇ṽ2‖2L2(Ok√2)

+ ‖∆ṽ2‖2L2(Ok√2)

≤ c(z4−2p‖v‖2p−2
L2p−2(Ok√2)

+ z2‖ψ2‖2 + z2‖g‖2 + ‖v‖2H1).

from which and Poincaré’s inequality

‖∆ṽ2‖2L2(Ok√2)
≥ λm+1‖∇ṽ2‖2L2(Ok√2)

,

it follows that
d

dt
‖∇ṽ2‖2L2(Ok√2)

+ λm+1‖∇ṽ2‖2L2(Ok√2)

≤ c(z4−2p‖v‖2p−2
L2p−2(Ok√2)

+ z2‖ψ2‖2 + z2‖g‖2 + ‖v‖2H1).
(4.58)

Applying [26, Lemma 5.1] to (4.58) over the interval [τ − 1, τ ], along with ω being
replaced by ϑ−τω, we find that

‖∇ṽ2(τ, τ − t, ϑ−τω, ṽ0)‖2L2(Ok√2)

≤
∫ τ

τ−1

eλm+1(s−τ)‖∇ṽ2(s, τ − t, ϑ−τω, ṽ0)‖2L2(Ok√2)
ds

+ c

∫ τ

τ−1

eλm+1(s−τ)z4−2p(s, ϑ−τω)‖v(s, τ − t, ϑ−τω, ṽ0)‖2p−2
L2p−2(Ok√2)

ds

+ c

∫ τ

τ−1

eλm+1(s−τ)z2(s, ϑ−τω)(‖ψ2‖2 + ‖g(s, ·)‖2)ds
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+ c

∫ τ

τ−1

eλm+1(s−τ)‖v(s, τ − t, ϑ−τω, ṽ0)‖2H1ds

≤ c
∫ τ

τ−1

eλm+1(s−τ)z4−2p(s, ϑ−τω)‖v(s, τ − t, ϑ−τω, ṽ0)‖2p−2
L2p−2(Ok√2)

ds

+ c

∫ τ

τ−1

eλm+1(s−τ)‖v(s, τ − t, ϑ−τω, ṽ0)‖2H1ds

+ c

∫ τ

τ−1

eλm+1(s−τ)z2(s, ϑ−τω)
(
‖g(s, ·)‖2 + 1

)
ds

= I1 + I2 + I3. (4.59)

We next to show that I1, I2 and I3 converge to zero as m increases to infinite. First
since by (4.1), z4−2p(s− τ, ω) ≤ E4−2p for s ∈ [−1, 0], then we have

I1

= z2p−4(−τ, ω)
∫ τ

τ−1

eλm+1(s−τ)z4−2p(s− τ, ω)

× ‖v(s, τ − t, ϑ−τω, ṽ0)‖2p−2
L2p−2(Ok√2)

ds

≤ z2p−4(−τ, ω)E4−2p

∫ τ

τ−1

eλm+1(s−τ)‖v(s, τ − t, ϑ−τω, ṽ0)‖2p−2
L2p−2(Ok√2)

ds

≤ z2p−4(−τ, ω)E4−2p
(∫ τ

τ−1

eλm+1(s−τ)

×
∫
Ok√2(|v(s)|≥M)

|v(s, τ − t, ϑ−τω, ṽ0)|2p−2 dx ds

+
∫ τ

τ−1

eλm+1(s−τ)
∫
Ok√2(|v(s)|≤M)

|v(s, τ − t, ϑ−τω, ṽ0)|2p−2 dx ds
)
.

(4.60)

By Proposition 4.5, there exist T1 = T1(τ, ω,B, η) ≥ 2, M̃ = M̃(τ, ω, η) such that
for all t ≥ T1,

z2p−4(−τ, ω)E4−2p

∫ τ

τ−1

e%̃(s−τ)

×
∫
Ok√2(|v(s)|≥M̃)

|v(s, τ − t, ϑ−τω, ṽ0)|2p−2 dx ds ≤ η.
(4.61)

But λm+1 → +∞, then there exists N ′ = N ′(τ, ω, η) > 0 such that for all m > N ′,
λm+1 > %̃. Hence by (4.61) it gives us that for all t ≥ T1 and m > N ′ there holds

z2p−4(−τ, ω)E4−2p

∫ τ

τ−1

eλm+1(s−τ)

×
∫
Ok√2(|v(s)|≥M̃)

|v(s, τ − t, ϑ−τω, ṽ0)|2p−2 dx ds ≤ η.
(4.62)

For the second term on the right hand side of (4.60), since Ok√2(|v(s)| ≤ M̃) is a
bounded domain, then there exists N ′′ = N ′′(τ, ω, η) > 0 such that for all m > N ′′,
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z2p−4(−τ, ω)E4−2p

∫ τ

τ−1

eλm+1(s−τ)

×
∫
Ok√2(|v(s)|≤M̃)

|v(s, τ − t, ϑ−τω, ṽ0)|2p−2 dx ds

≤ z2p−4(−τ, ω)E4−2p M̃
2p−2

λm+1
|(Ok√2(|v(s)| ≤ M̃))| ≤ η,

(4.63)

where |(Ok√2(|v(s)| ≤ M̃))| is the finite measure of the bounded domain
Ok√2(|v(s)| ≤ M̃). Put N1 = max{N ′, N ′′}. It follows from (4.60)-(4.63) that
for all m > N1 and t ≥ T1,

I1 ≤ 2η. (4.64)

By Lemma 4.1, there exists T2 = T2(τ, ω,B) and N2 = N2(τ, ω, η) > 0 such that
for all m > N2 and t ≥ T2,

I2 ≤
L1(τ, ω, ε)
λm+1

≤ η. (4.65)

By a same technique as (4.48), we can show that there exists N3 = N3(τ, ω, η) > 0
such that for all m > N3,

I3 = c

∫ τ

τ−1

eλm+1(s−τ)z2(s, ϑ−τω)
(
‖g(s, ·)‖2 + 1

)
ds ≤ η. (4.66)

Let N0 = max{N1, N2, N3} and T = max{T1, T2}. Then (4.64)–(4.66) are inte-
grated into (4.59) to get that for all m > N0 and t ≥ T ,

‖∇ṽ2(τ, τ − t, ϑ−τω, ṽ0)‖L2(Ok√2)
≤ 4η. (4.67)

Then by (3.11) and (4.67), we have

‖∇ũ2(τ, τ − t, ϑ−τω, ũ0)‖L2(Ok√2)

= z(−τ, ω)‖∇ṽ2(τ, τ − t, ϑ−τω, ṽ0)‖L2(Ok√2)

≤ C(τ, ω)η,

for all m > N0 and t ≥ T , which completes the proof. �

Lemma 4.7. Assume that (3.1)–(3.5) hold. Let τ ∈ R, ω ∈ Ω. Then for every
k > 0, the sequence {ũ(τ, τ−tn, ϑ−τω, φ(x

2

k2 )u0,n)}∞n=1 has a convergent subsequence
in H1

0 (Ok√2) whenever tn → +∞ and u0,n ∈ B(τ − tn, ϑ−tnω).

Proof. Given η > 0, by Lemma 4.6, there exists N0 ∈ Z+ such that as tn → +∞,

‖(I − PN0)ũ(τ, τ − tn, ϑ−τω, φ(
x2

k2
)u0,n)‖H1(Ok√2)

≤ η. (4.68)

By Lemma 4.1, we deduce that for tn large enough,

‖PN0 ũ(τ, τ − tn, ϑ−τω, φ(
x2

k2
)u0,n)‖H1(Ok√2)

≤ L1(τ, ω, ε). (4.69)

Note that
H1(Ok√2) = PN0H

1(Ok√2) + (I − PN0)H1(Ok√2),
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but PN0H
1(Ok√2) is a finite dimensional space, which is compact. Then by (4.69),

if n,m large enough,∥∥PN0 ũ(τ, τ − tn, ϑ−τω, φ(
x2

k2
)u0,n)

− PN0 ũ(τ, τ − tm, ϑ−τω, φ(
x2

k2
)u0,m

∥∥
H1(Ok√2)

≤ η.
(4.70)

Then it is easy to complete the proof using (4.68) and (4.70) and a standard argu-
ment. �

4.4. Existence of pullback attractor in H1(RN ). In this subsection, we prove
the existences of pullback attractors in H1(RN ) for problem (1.1) and (1.2) for
every ε ∈ (0, 1].

Proposition 4.8. Assume that (3.1)-(3.5) hold. Then the cocycle ϕ defined by
(3.10) is asymptotically compact in H1(RN ); i.e., for every τ ∈ R and ω ∈ Ω,
the sequence {ϕ(t, τ − tn, ϑ−tω, u0,n)}∞n=1 has a convergent subsequence in H1(RN )
whenever tn → +∞ and u0,n ∈ B = B(τ − tn, ϑ−tnω) with B ∈ D.

Proof. Given R > 0, we denote OcR = RN − OR, where OR = {x ∈ RN ; |x| ≤ R}.
By Proposition 4.4, for any η > 0, there exist R = R(τ, ω, η) > 0 and N1 =
N1(τ, ω,B, η) ∈ Z+ such that for all n ≥ N1,

‖v(τ, τ − tn, ϑ−τω, z(τ − tn, ϑ−τω)u0,n)‖H1(OcR) ≤
η

8
e−|ω(−τ)|, (4.71)

for every u0,n ∈ B = B(τ − tn, ϑ−tnω). By (3.11) and (4.71), we have

‖u(τ, τ − tn, ϑ−τω, z(τ − tn, ϑ−τω)u0,n)‖H1(OcR) ≤
η

8
. (4.72)

On the other hand, for this R, by Lemma 4.7, there exists N2 = N2(τ, ω,B, η) ≥ N1

such that for all m,n ≥ N2,∥∥u(τ, τ − tn, ϑ−τω, φ(
x2

R2
)u0,n)

− u(τ, τ − tm, ϑ−τω, φ(
x2

R2
)u0,m)

∥∥
H1

0 (OR√2)

≤ η

8
.

(4.73)

Then the desired result follows from (4.72) and (4.73) by a standard argument. �

Given ε ∈ (0, 1], by Lemma 4.1, we deduce that the D-pullback absorbing set
Kε of ϕε in L2(RN ) is defined by

Kε = {Kε(τ, ω) = {u ∈ L2(RN ); ‖u‖ ≤ Lε(τ, ω)}; τ ∈ R, ω ∈ Ω}, (4.74)

where

Lε(τ, ω) =
(
c

∫ 0

−∞
eλse−2εω(s)(‖g(s+ τ, ·)‖2 + 1)

)1/2

.

By Proposition 4.8 and Theorem 2.6, we have the following result.

Theorem 4.9. Assume that (3.1)–(3.5) hold. Then for every fixed ε ∈ (0, 1],
the cocycle ϕε defined by (3.10) possesses a unique D-pullback attractor Aε,H1 =
{Aε,H1(τ, ω); τ ∈ R, ω ∈ Ω} in H1(RN ), given by

Aε,H1(τ, ω) = ∩s>0∪t≥sϕε(t, τ − t, ϑ−tω,Kε(τ − t, ϑ−tω))
H1(RN )

, τ ∈ R, ω ∈ Ω.
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Furthermore, Aε,H1 is consistent with the D-pullback random attractor Aε in the
space L2(RN ), which is defined as in (3.13).

5. Upper semi-continuity of pullback attractor in H1(RN )

From Theorem 4.9, for every ε ∈ (0, 1], the cocycle ϕε admits a common D-
pullback attractor Aε in both L2(RN ) and H1(RN ), where D is defined by (3.11).
Then we may investigate the upper semi-continuity of Aε in both L2(RN ) and
H1(RN ). Note that [18] only proved the upper semi-continuity in L2(RN ) at ε = 0.
In this section, we strengthen this study and prove that the upper semi-continuity
of Aε may happen in the topology of H1(RN ) at ε = 0.

For the upper semi-continuity, we also give a further assumption as in [18], that
is, f satisfies that for all x ∈ RN and s ∈ R,∣∣ ∂

∂s
f(x, s)

∣∣ ≤ α4|s|p−2 + ψ4(x), (5.1)

where α4 > 0, ψ4 ∈ L∞(RN ) if p = 2 and ψ4 ∈ L
p
p−2 (RN ) if p > 2.

Let ϕ0 be the continuous cocycle associated with the problem (1.1) and (1.2) for
ε = 0. That is to say, ϕ0 is a deterministic non-autonomous cocycle over R. Denote
by D0 the collection of some families of deterministic nonempty subsets of L2(RN ):

D0 = {B = {B(τ) ⊆ L2(RN ); τ ∈ R}; lim
t→+∞

e−δt‖B(τ − t)‖ = 0, τ ∈ R, δ < λ},

where λ is as in (3.8). As a special case of Theorem 4.9, under the assumptions
(3.1)-(3.5), ϕ0 has a common D0-pullback attractor A0 = {A0(τ); τ ∈ R} in both
L2(RN ) and H1(RN ).

To prove the upper semi-continuity of Aε at ε = 0, we have to check that the
conditions (2.10)-(2.14) in Theorem 2.8 hold in L2(RN ) and H1(RN ) point by
point. But (2.10)-(2.13) have been achieved, see [18, Corollary 7.2, Lemma 7.5 and
equality (7.31)]. We only need to prove the condition (2.14) holds in H1(RN ).

Lemma 5.1. Assume that (3.1)-(3.5) hold. Then for every τ ∈ R and ω ∈ Ω, the
union ∪ε∈(0,1]Aε(τ, ω) is precompact in H1(RN ).

Proof. For any η > 0, it suffices to show that for every fixed τ ∈ R and ω ∈ Ω, the
set ∪ε∈(0,1]Aε(τ, ω) has finite η-nets in H1(RN ). Let χ = χ(τ, ω) ∈ ∪ε∈(0,1]Aε(τ, ω).
Then there exists a ε ∈ (0, 1] such that χ(τ, ω) ∈ Aε(τ, ω). By the invariance of
Aε(τ, ω), it follows that there is a u0 ∈ Aε(τ − t, ϑ−tω) such that (by (3.11))

χ(τ, ω) = ϕε(t, τ − t, ϑ−tω, u0) = uε(τ, τ − t, ϑ−τω, u0) ∀t ≥ 0 . (5.2)

Given R > 0, denote OcR = RN − OR, where OR = {x ∈ RN ; |x| ≤ R}. Note
that Aε(τ, ω) ∈ D. Then by Proposition 4.4, for every η > 0, there exist T =
T (τ, ω, η) ≥ 2 and R = R(τ, ω, η) > 1 such that the solution u of problem (1.1) and
(1.2) satisfies

‖uε(τ, τ − t, ϑ−τω, u0)‖H1(OcR) ≤ η, ∀t ≥ T . (5.3)

Then by (5.2)-(5.3), we have

‖χ(τ, ω)‖H1(OcR) ≤ η, for all χ ∈ ∪ε∈(0,1]Aε(τ, ω). (5.4)

On the other hand, by Lemma 4.6, there exist a projector PN0 and T = T (τ, ω, η) ≥
2 such that for all t ≥ T ,

‖(I − PN0)ũε(τ, τ − t, ϑ−τω, ũ0)‖H1
0 (OR√2)

≤ η, (5.5)
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where ũε is the cut-off of uε on the domain OR√2, by (4.52). Because PN0 ũε ∈ HN0 ,
where HN0 = span{e1,2 , . . . , eN0} is a finite dimension space and PN0 ũε(τ, τ −
t, ϑ−τω, ũ0) is bounded in HN0 which is compact. Therefore there exist finite points
v1, v2, . . . , vs ∈ HN0 such that

‖PN0 ũε(τ, τ − t, ϑ−τω, ũ0)− vi‖H1
0 (OR√2)

≤ η. (5.6)

Thus by (5.2), the inequalities (5.5) and (5.6) are rewritten as

‖(I − PN0)χ(τ, ω)‖H1
0 (OR√2)

≤ η, ‖PN0χ(τ, ω)− vi‖H1
0 (OR√2)

≤ η, (5.7)

for all χ ∈ ∪ε∈(0,1]Aε(τ, ω). We now define ṽi = ṽi(x) = 0 if x ∈ Oc
R
√

2
and ṽi = vi

if x ∈ OR√2. Then for every i = 1, 2, . . . , s, ṽi ∈ H1(RN ). Furthermore, by (5.4)
and (5.7), we have

‖χ(τ, ω)− ṽi‖H1(RN ) ≤ ‖χ(τ, ω)− ṽi‖H1(Oc
R
√

2
) + ‖χ(τ, ω)− ṽi‖H1

0 (OR√2)

≤ ‖χ(τ, ω)‖H1(Oc
R
√

2
) + ‖PN0χ(τ, ω)− ṽi‖H1

0 (OR√2)

+ ‖(I − PN0)χ(τ, ω)‖H1
0 (OR√2)

≤ 3η,

for all χ ∈ ∪ε∈(0,1]Aε(τ, ω). Thus ∪ε∈(0,1]Aε(τ, ω) has finite η-nets in H1(RN ),
which implies that the union ∪ε∈(0,1]Aε(τ, ω) is precompact in H1(RN ). �

Then we obtain that the family of random attractors Aε indexed by ε converges
to the deterministic A0 in H1(RN ) in the following sense.

Theorem 5.2. Assume that (3.1)-(3.5) and (5.1) hold. Then for each τ ∈ R and
ω ∈ Ω,

lim
ε↓0

distH1(Aε(τ, ω),A0(τ)) = 0,

where distH1 is the Haustorff semi-metric in H1(RN ).
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