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NODAL SOLUTIONS FOR SCHRODINGER-POISSON TYPE
EQUATIONS IN R?

JIN DENG, JIANFU YANG

ABSTRACT. In this article, we consider the existence of nodal solutions for the
Schrodinger-Poisson type problem

—(a + b/ |Vu? d:r;) Au+ V(z)u + pu = [u|P"2u, in RS,
R3
—Ap =u?, lim ¢(x) =0,
|z|— o0

where a,b are positive constants, p € (4,6) and V(z) is a radial smooth func-
tion. For each k € N4, we show the existence of to nodal solution changing
sign exactly k times.

1. INTRODUCTION

In this article, we consider the existence of nodal solutions for the Schrodinger-
Poisson type problem

- (a + b/ |Vul? dm)Au +V(|lz))u + ou = [ulP"?u, in R,
R? (1.1)
7A§0 - U2, | l‘lm 90(33) = Oa
where a,b > 0 are a positive constants, p € (4,6) and V € C(R3,R) is a radial
function. The nonlocal operator (a + b [5s |[Vul?dz)A appears in the Kirchhoff
Dirichlet problem

— (a + b/ |Vul? dm)Au = |ulP"%u, in Q,
Q
u=0, on )

(1.2)

for a domain  C R3. In one dimensional case, such a problem arises in the investi-
gation of the existence of classical D’Alembert’s wave equations for free vibration of
elastic strings, see [14] for details. After the work of Lions [16], higher dimensional
problem attracts attention of researchers. Various results have been appeared
for Kirchhoff type problems in [Tl 4, 5], 8, 12} 17, 19, 24] and references therein.
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Taking a =1, b= 0 in (1.1]), we obtain the Schréinger-Poisson equation
—Au+ V(|z))u+ ou = [ulP"?u, in R3,

—Ap = u?, | l‘im o(x) = 0. (1.3)
where )
u”(y)
- [ W
o) = [

for all z € R3. Therefore, also involves in a nonlocal term. This problem
with p = 5/3 stems from the Slater approximation of the exchange term in the
Hartree-Fock model, see [22]. For the general exponent p, there is an interesting
competition between local and nonlocal nonlinearities. This interaction yields new
phenomena, and then problem has been extensively studied in the literature,
see [2, 13} 20, 211, 25, 26] and references therein.

In this paper, we intend to show the existence of radial solutions for with
prescribed k nodal for every fixed integer k.

In the case k = 2, solutions with two nodal domains were studied in [3, 6], 1], 25]
etc. The argument generally used is to modify the method developed in [I§], first
one seeks a minimizer u of the minimizing problem inf x4 J(u), where

M={ueN :ut#0,(J(u),u") = (J (u),u) =0}

is a subset of the Nehari manifold A'. Then, one needs to show u is a critical point
of J. For problem , it was proved in [3] 25] by such an argument that the
problem has a sign-changing solution. Because problem contains a nonlocal
term, the corresponding functional J does not have the decomposition

J(u) = J(u®) + J(u”),

it brings difficulties to construct a nodal solution. On the other hand, for the
Kirchhoff Dirichlet problem (1.2)), besides other things, a sign-changing solution was
found in [6] [I1], some technique was developed in treating the nonlocal operator in
the problem.

For every integer k > 0, it was proved in [7] and [9] independently that, there is
a pair of solutions u,f of

—Au+V(jzl)u = f(lz],u), inR

u e HY(RY). (14)

Such solutions of are obtained by gluing solutions of the equation in each
annulus, including every ball and the complement of it. However, this approach
cannot be applied directly to problems with nonlocal terms, such as problems —
, because nonlocal terms need the global information of u. This difficulty was
overcome by regarding the problem as a system of k£ 4+ 1 equations with k£ + 1
unknown functions u;, each w; is supported on only one annulus and vanishes at
the complement of it. In this way, Kim and Seok [I5] found infinitely many nodal
solutions for Schréinger-Poisson system , and then Deng et at [I0] treated
Kirchhoff problems in R3 in a similar way. Inspired by [10, [15], we establish the
existence of infinitely many nodal solutions for . Since problem contains
both nonlocal operator and nonlocal nonlinear term, the construction of nodal
solutions become technically complicated.
We assume in this paper that, the potential function V satisfies the condition
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(A1) V(r) € C(]0,+00),R) is bounded from below by a positive constant Vj.

Our main result is as follows.

Theorem 1.1. Suppose condition (Al) holds and 4 < p < 6. For every k € N,
there exists a radial solution uy of (1.1), which changes sign exactly k times.

This theorem is proved by variational approach. Denote by H!(R3) the set of
radially symmetric functions in the Sobolev space H'(R?). We define

H:{ueHA(R?’);/

(a|Vul? + V(|z|)u?) dz < +oo}
R3

with the norm

Jul* = /R (a|Vul? + V(|z|)u?) da.

By assumption (A1) and the fact a > 0, the inclusion H — H}(R?) is continuous,
and H — L4(R3) is compact for 2 < ¢ < 6, by the well known result of Strauss[23].
Weak solutions of (|1.1)) will be found as critical points of the functional

B(u) = %/R (a|Vul + V(|a])u?) dz + Z(/R IVul? dx>2

1 2(z)u? 1
+,/ / Mdmm_,/ (ul? da
4 Jps Jrs Arlz —y| D Jrs

defined on H. The functional E belongs to C?(H,R), its Fréchet derivative is given
by

(E'w¥) = |

R3

+/ gam/zdxf/ |ulP~2ue) da
R3 R?

for any w,v € H. Hence, critical points of E(u) are weak solutions of (|1.1)), and
necessarily contained in the Nehari manifold

N ={ue H \{0}: (E'(w), ) = 0}.

In constructing nodal solutions of problem (L.1)), we will modify the variational
framework in accordance to fixed nodes of expected solutions. Dividing R? into
k + 1 parts, we reformulate functionals and Nehari sets correspondingly. The proof
of Theorem [L.1| consists of verifying the Nehari set is a manifold and finding a
minimizer of the related functional on the manifold.

This paper is organized as follows. In Section 2, we present a suitable variational
framework for our problem, then we prove Theorem [I.1]in Section 3.

(aVuVe + V(|z])wp) d:c+b/ |Vu|2dsc/ VuVi dz
R R (1.5)

2. PRELIMINARIES

In this section, we develop the variational construction. Decomposing R? into
k + 1 parts, we consider a system defined on k + 1 parts. Precisely, for k£ € N, we
define
Dp={rr="(r,...,7) ERF:0=rg <7 < <1 <1pp1 =00},
B; :B:‘k = {.’ﬂ ERSITi,1 < |£L’| < 7’2'}
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for each ¢ = 1,...,k + 1. By the definition, Bj is a ball, By, ..., By are annuli and
By41 is the complement of a ball. Fix ry = (r1,...,7%) € Tk, there is family of
{B;}*1. We denote

H; = {u € Hy(B;) : u(z) = u(|z|),u(x) =0 if z ¢ B;}
for each ¢ = 1,..., k. H; is Hilbert space with the norm

Jul? = / (alVul? + V (Jal)?) di.
B;

Furthermore, we set Hy, = H1 X Ho X+ - - X Hy 11 and define the functional I : Hi — R
by

I(ula"'7uk+1)
k+1 k+1 kil
1 5 b ) 2} , ,

k+1 k+1

2.1)
1 / / u (z)u3 (y) 1 / / u? (x)u?(y) (
+ — T e dy + ~ LY e dy
4; B; JB; 47T|£L‘—y| 4; B; JB; 47T|£L'—y|

1
—f/ |u;|P de,
P JB;

where u; € H;, 1 =1,...,k+ 1. It is readily to verify that

k+1
I(uy, ... ugy1) = E(Zul)
i=1
If (uy,...,ux+1) is a critical point of I, then it satisfies
<Il(u1a s auk'+1)7w>
k+1 k+1
= / (a Z Vulv) Vi de + V(|z|) Z ;Y
RS oy i=1
k+1 ) k+1 k+1
+b/ ZVW‘ / (Zvuj)v¢dx +/ 3wy de
= R =1 Bi =1

k+1

— / Z \ui|p72uiw =0.
R3 1

2
for ¢ € H}(B;), where —Ayp = (Zf:ll ui) . That is, (u1,...,ug+1) is a solution
of the system

k+1
*(a + bZ/ |Vu;|? dx) Au; + V(|z))ui + pui = [ui|P~ 2y, in By,
j=1"5Bi

(2.2)
k+1 2
—Ap = (;ul> , |a:1|i£>noo p(z) = 0.

Now, we define the Nehari set

Ne ={(u1,...,ups1) € Hg :u; # 0,0, I(uy, ..., upy1)u; =0fori=1,... . k+1}
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where
aui-[(ul, O 7uk+l)ui
k+1
:||ui||?+b(/ |Vul|2da:) +b/ |Vul|2dx2/ V2 da
i#]

k+1
_ P
/ / 47r|a:—y\ d dy +Z/ / 47T|m d dy /Bih“' da.

Next, we show that the N}, is nonempty manifold in H},, then we seek a minimizer
of the functional I constraint on N}. Apparently, the minimizer is a weak solution
of . Finally, one needs to prove the minimizer has nonzero component. We
commence with a proof of manifold for Nj.

Lemma 2.1. Suppose that (A1) holds and p € (4,6). For (u1,...,ur+1) € Hy with
u; #0 fori=1,...,k+1, there exists a unique (k + 1)-tuple (a1,...,ars1) with
positive components such that (ajuy, ..., apr1uk+1) € Ni.

Proof. For a fixed (uq,...,uxt1) € Hi with u; # 0, (ajuq,...,ak+1Uk41) is con-
tained in N} if and only if
k+1

Hu1||22+ba22(/ |Vul\2dx> +b/ |Vul|2dmz / Vu;|* dx

i#]
k+1

(2.3)
+a// 47r|x—y| dmdy—i—z // 47r|:c,
—af_z/ |u;|P dx =0

B.

forv=1,...,k+ 1. Hence, the problem is reduced to verify that there is only one
solution (ai,...,ak4+1) of such that a; > 0,i=1,...,k+ 1.
Fix a parameter 0 < a < 1, we consider the solvability of the system of (k+ 1)
equations
k+1

||uiH2+ba2</ |Vuz|2dm) +ab/ |Vuz|2dmz / Vu;|? dx
B; B; vy
i#]
kt1 (2.4)
d d :
T / / 47r|:r— wdytad o / / 47r\x—y\
i#]
a7 [ oo,
i=1,...,k+ 1. Define
D={a:0<a<1and (2.4) is uniquely solvable in (]R>0)k+1}. (2.5)

We claim that D = [0,«]. This will be done by showing that D is not empty,
and D is both open and closed in [0, 1].
Firstly, we show that D contains 0. Let

2 2( )2
filt) = ||ui||§+bt2(/ \Vui|2dx) +t2/ / Mdmdy—tp_z/ |u;|? dz,
B; B; JB; 47r|z—y\ B;
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fori=1,...,k+ 1. Without loss of generality, we need only to prove that there is
a unique to > 0 such that fi(tg) = 0.

Since uy # 0, we have fi(t) > 0 if ¢ > 0 small, and f1(¢) < 0 if ¢ > 0 large.
Therefore, there exists ¢y > 0 such that fi(to) = 0.

Now we show tg is unique. Indeed, were it not the case, we would have 0 < tg < t
such that fi(tg) = f1(f) = 0. That is, the equality

1
f||u1||%+b</ qu1|2d:L' / / dxdy tp74/ |up|? dx =0,
t B, /B, 47r|x—y| Bi

holds for tg and %. It yields

1 1 _ e
0< (=Dl = @ -2 [ upas <o
0 B,

which is contradiction. Hence, 0 € D.
Next, we prove that D is open in [0, 1]. Suppose that ag € D and (ay,...,ax+1) €
(R > 0)**+1 is the unique solution of (2.4) with o = . Therefore,

kt1
||u1||3+bci(/ |V, |2 dm) +aob/ |V, |? dec]/ Vu;|? dx

i#j
k+1

dxd +« c// (2.6)
// 47r|xfy| 4 0; J 47r|mfy|
—c?/ |u; [P dz =0

B;

foreachi=1,...,k+1, where ¢; = a2,q = b= 2 > 1. To apply the implicit function
theorem at ag, we calculate the matrix

M = (Mij) = (9¢;Gi)ij=1,... k+1,

where G; = Gi(cy, ..., ckt1,00) denotes the left-hand side of (2.6). Hence, each
component of the matrix M can be represented by

2 2 2
Mii:b(/ |Vui|2dx) +/ / Mdmdy—ch_l/ |ui|pd$,
B; B, /B, 4mlz —y| B;
u? (x)u?
M, Zaob/ |Vui|2dx/ |Vuj|2dx+a0/ / Mdmdy.
B; B; B; JB; 4|z —y|

By (2.6),

M;; == —c; M;;
2 2()dy)

== - 2 — . . 2 K3 2

= qllui|? + (g 1)c1[b(/ V| d:c) +/B /B oyl dxdy]
k+1

+qa0b/ [V de/ |Vu;|2dx
B

i#]

k+1

d
+qach]/ / 47r|:v—y| dx dy

i#]
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and

Mij = —c;My; = —Oéoij/ \Vui|2d$/ |V [*da

J

u?(z)u?
_aocj/ / de dy.
B; JB; drlx — y|

It readily verifies that

. (_1)k+1

Mij S 0, det(M”) = det M

C1...Ck41
and

~ ktl ~ 9 9 2
Wit 3 3t = gl + (g = Dpes( [ [Vl da)
B;

i#£]
2 2
B; JB; 4|z — y|

k+1

+(q— 1)aob/ |Vui\2da:2/ Vu,|? dx
]
k+1 2 2
u; (z)uj(y)
+(g—1Dag c-/ / —— I dx dy.
21 Jy o, ixl— ]
Since ¢ > 1, we obtain
k+1
M;; + Z Mij >0 and det M # 0
i#]
which implies
e
0 7é det(Mij) = det M.
Cl...Ck+1

The implicit function theorem yields that there exist a neighborhood Uy of o and
a neighborhood By C (R > 0)**! of (@y,...,ar1) such that the equation of
is uniquely solvable in Uy x By.

Now we show that is uniquely solvable in Uy x (Rs)**!, this means Uy C D.
Suppose, on the contrary, that there is ag € Uy such that there exists the second
solution (a1, ...,ax41) € (Rsg)**+1\ By of . By the implicit function theorem,
we can find a solution curve (a, (@1, ...,a,+1)) in (ag — €, +¢) x (Rso)* 1\ By.
Assume oy < a7 for a while and extend this curve as much as possible. Since
it cannot be defined at g and enter into Uy X By, there should have a point
ag € [ag, a1) such that (a1(w),...,art1(e)) exists in o € (ag, ;] and blows up as
a — aj . However, this is impossible, since if (a1, ..., agr;1) has sufficiently large
norm, the left-hand side of is strictly negative for at least one 7. This gives a
contradiction. Thus, Uy C D. The case ag > a1 can be proved in the same way.

Next, we prove that D is closed in [0, 1]. Let {c,} be a sequence in D converging
to ag € [0,1] and (af,...,a}, ;) € (Rs0)"™ be the solution of corresponding

to an. By the preceding argument, the sequence (af,...,a} ;) € (Rsg)*+! s
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bounded above. Thus we may assume that (af,...,ap, ;) converges to a solution
(af,...,a%,,) € (R>0)" of ([2.4) for ag. Since H; — LP, we obtain

(a7 )? [l I3 S/ ot ui|Pda < C(af)P [Juill7,

k3

which implies that 0 < C; < a uniformly in n. Thus a? > (C; >0forieN. So

(af,...,a%,,) € (R50)*™'. By the implicit function theorem again, (af,...,a) )
is the unique solution in (Rsq)**!. Hence, D is closed. The conclusion of Lemma
211 then follows. 0O

Now, we show that A/, is a differentiable manifold.

Lemma 2.2. N} is a differentiable manifold in Hy. Moreover, all critical points
of the restriction I|n,, of I to Ny are critical point of I with no zero component.

Proof. We observe that
Ni = {(u1, ..., upi1) € Myt ui # 0, F(u, ..., upq1) = 0},
where F = (F, ..., Fyy1) : Hp — RFFL is given by

Fi(ui,. .. ug41)
k41
:||ul|\12+b(/ |Vuz\2da: —I—b/ |Vu,|2dx2/ \Vu;|? dx
i#] (2.7)

k+1

) du dy ) dedy - P da,
// 4w|x—y| v +Z// 47r|a: /B.‘“‘ v

k3

i=1,...,k+ 1. To prove that N}, is a differentiable manifold in Hj, it suffices to
verify that the matrix

N = (N;j) = (0w, Fj(u1, .o, Uks1), Wi)ij=1,... k+1s

is nonsingular at each point (uy, ..., uxy1) € N, since it implies that 0 is a regular
value of F. Straightforwardly, we have
k+1

Nii:2||u,»Hf+4b(/ \Vuz|2dx) +2b/ |Vuz|2dz2/ IV |? da

i#]
k+1

4 d d 2 d d
+// 47r|z vayT Z// 4vr|a:— S
—p/ |u;|P da

B

i

w2 (x)u?
B; B, B; J B; dr|z — y|

J
By , we have
2
Ni= @l + (0= ) [ 19l )

and

k+1

+(2b—bp)/ |Vul|2dac2/ (V|2 da

i#]
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k+1

(4- d d (2 -
p// 47r|m—y| dy + pZ// 47T|37_y|

Let N“ = _Nii and Nij = _Nij' Then
k41

2
Nt 35 = =Dl + b= ([ [Vuif da)
i#£] i
k+1
+b(p — )/ |Vul|2dx2/ |Vu,|? da
Z#J
—4 bl ASatat A4
T )/ / 47T|w—y| dagdy
k+1
4) )t
- ;// 4w\x— v=0

provided 4 < p < 6. Hence,
det(N) #£0, detN = (=1)*!det(N) # 0,

and the matrix N is invertible at each (u,...,ug+1) € Ngx. So Hy, is a differential
manifold.
If (uq,...,uky1) is a critical point of I|; , then there are Lagrange multipliers

U1y fkt1 satisfying
pF (s ) - e Fg (uns - uegn) = Tua, o uggn). (2.8)
Inserting (u1,0,...,0), (0,u2,...,0), ..., (0,0,...,0,ugp+1) into (2.8), we obtain

1 0
N =
Ph+1 0
Because N is nonsingular, we find that g1 = po = -+ = g1 = 0and (ug, ..., ug41)

is a critical point of 1.
Next, by the Sobolev embedding H; < LP, the inequality

]2 < / jul? < Cllu? (2.9)

implies that u; # 0 for all 4. Thus, all components of critical points of I in N}, are
nontrivial. This completes the proof. O

Lemma 2.3. For fized (uq,...,uxt+1) € Hi with nonzero component, the vector
(a1,...,ak41) which is obtained in Lemma is the unique maximum point of the
function 1 : (Rs)kTt — R defined as n(dy,. .., dgr1) = I((dius, ... diy1ups1))-

Proof. By the proof of Lemma (a1, ...,ak+1) is the unique critical point of 1
in (Rso)k*1. If |(dy, ..., dry1)| — oo, it is readily to verify that ¢(dy,. .., dry1) —

—00, so it is sufficient to show that (ai,...,axs+1) is not on the boundary of
(R>O)k+1_
Choose (d},...,d},,) € O(Rs)**, without loss of generality, we may assume

that df = 0. Since
77(757 dg s 7d2+1)
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= I((tuy, dyus ..., dj, jupi1))

bt N
u1||1+4(/31 Vel dr) -+

d dy +
/B1 /131 47T|x—

o k+1

Zd02/ |Vui|2dx/ \Vu;|? do
Bq Bj

2]{)+1 5
d° / / dxdy
By 47r|x—y|

k+1 k+1

tP 2 b 2
=5 b s Sl + Z @) [ Vulds [ Vufdo
p =2 B B;
= 1kl
d?d9) // dd—f dop/ P d
+3 Z s 47T|x > fusl? da
is increasing if ¢ > 0 is small enough, ( yeee 7dk+1) is not a maximum point of 7 in
R>Ok+1. The proof is complete. (I
Next, we have existence results.
Lemma 2.4. For fitedry = (r1,...,7k+1) € Tk, there is a minimizer (vy, ..., Vp+1)

of its corresponding energy I|n;,, on Ny such that (—1)"1v; is positive on B; for
i=1,...,k+ 1. Moreover, (v1,...,vp+1) satisfies (2.2)).

Proof. For (u1,...,ugs1) € Nk, we have
k+1 b k+1 )
I, uen) = (5 - ) >l + (- )3 [ 1vul as)
i=1 B;
b k+1
+ (Z Z/ \Vuz|2dx/ |Vu,|? da
k+1
1 1
+(i73) Z/ / 4m . y| (2.10)
G2 )
p 47Tlm - yl
Ea2!
= Z g |7
i=1
Let {(uf,...,up, 1)} C Ni be a minimizing sequence of I|u; ; that is,
lim I(uf,...,ul )= inf I(uy,...,u .
oy ( 1 k+1) (1renestin 1) EN ( 1 k+1)
By (2.10)), {u?} is bounded. Hence, we may assume that
(ul, .. ooufyg) = (ul,. . uf,,) weakly in H.

We claim that u # 0 in ‘H; for i = 1,...,k + 1. Indeed, if u?* — u? in H;, we may
show as (2.9) that

22 < / 2P dir < Cfju?|?,

i

which implies ||u?||; > C; > 0, and the strongly convergence yields u? # 0.
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If u? — uf in H;, but u* A u? in H;, we have

ud|l; < lim inf [|ul);. (2.11)
Therefore,
k+1
e M R MR oY M
Bi i#]

// 47T|.T—y)| dxdy+]§:l/ / 47rq:—y)|2(y)dzdy

< / [ul P du.
B.

k3

This and the Sobolev embedding HL(R3) — LP(R?) yield

< [ 1l do < Clad)e.
Thus, u) # 0 for each i.

Next we prove that (uf,...,uf, ;) — (uf,...,uf, ;) in Hy as n — oo . Suppose
on the contrary that (uf,...,uf ;) converges weakly to (ud, ... ,ugﬂ) but does
not converge strongly in Hjy as n — oo. Thus, there exists at least one ¢ such that

luflli < lim inf [|ui];
n—oo
and |[ul| # 0. By Lemma there exists a unique (af,...,a) ;) # (1,...,1) €

(Rso)**! such that (afu?,... Laf ul ) € N
If (a1,...,ak+1) = (1,...,1), we have

inf I'(uy,. .., ugs1) :7}LH;oian(u¥,...,uZ+l)
ZI(u?,...,uiH)
>inf I(uq,. .., uks1),
which implies
I, .. upq) = inf I(ug,. .., upgr).

On the other hand, Lemma [2.3] leads to

inf I(uy,...,u
(w1,eeesureg 1) ENG, (w1, ukt1)
< I(a?u?,...,ag+lu2+1)
k+1 bk+1 2
. . ni2 ONd e .
<z Z llnnl{,%f||uz|h +12(ai) llnnigf(/B |Vl dx)
= K3
k+1
i Z i inf |W?I2d:ﬂ/ |V |? da
#J B, B,

k+1

2
+ = Z linmiorolf/ / 47r|x—y) ) dx dy
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11 (u})?(y)
4 Z hr{rilo%f/ / 471'\1‘ -y dz dy

i#]
s
—fz thlnf/ |ui'|P dz
<hm1nf[u ce UL ) = inf T(uy, ..., u .
P ( 1> ) k+1) (U1,~»-7uk+1)€Nk ( 1, ) k-‘rl)
This is a contradiction. Therefore, (uf,...,ujl ;) — (u?,...,ugﬂ) in Hg, and
(ul, ..., up ) is a minimizer of Iy, .
Let (v, ..., vp41) = (Juf], —[ud], ..., (1) |uf ,|), we can check that
(U1, Ops1) €N and  T(vr,...,vp41) = 1(ud, ... ud ).

Hence (v1,...,vUk41) is a minimizer of I|y;. By the Lemma2.1] (v1,...,v541) is a
critical point of I|ar,, and it satisfies . By the strong maximum principle, each
(=) 1| is positive in By, i = 1,...,k + 1. Hence, (vq,...,vgy1) is the solution
we want. (]

3. EXISTENCE OF SIGN-CHANGING RADIAL SOLUTIONS

It is known that for any ry = (r1,...,7%x) € Ik, there is a solution v™* =
(V1% .. uphy) of which consists of sign changing components. We shall find
aty = (f1,...,7) € T such that v™ = (vf*,...,v,) is a solution of
which is characterized as a least energy solution among all elements in I'y with
nonzero components. Using this solution as a building block, we will construct
a radial solution of that changes sign exactly k times. Denote by Bfk the
nodal domain and by I™* the functional related to ¥4. Note that v}* is C2(B*) by
standard elliptic regularity results. Hence it is enough to match the first derivative
with respect to the radial variable, of adjacent components v;* and v} ir1 at the
point 7; to ensure the existence of a solutlon of . with & tnnes sign changing.

To find a least energy radial solution of (2.2)) among elements in I'y, with nonzero
components, we need to estimate the energy of the solution (vi*,... 71),1;’_11) of .
To this end, we first define the function y : I'y — R by

X(rk) :X(Tl,...,’rk) :Irk('l)ll‘k,...,’();;il) = - lI’}i}; I(ui’“,...,ui’fi_l).
ul',...,uk+1)€Nk
(3.1)

Lemma 3.1. For any positive integer k, let vy, = (r1,...,7%) € Tx. Then
(i) ifr; —riz1 — 0 for some i € {1,...,k}, then x(ry) — +o0.
(i) if ry — oo, then x(rg) — +oo.
(iil) x 4s continuous in T'k.
In particular, there is a Ty, = (T1,...,Tx) € Ty such that

x(tx) = rklggk x(rx)

Proof. (i) Suppose r;, —r;,—1 — 0 for some ig € {1,...,k}, by the Holder inequality
and Sobolev inequality, we obtain
p/6
< [ wipdes ([ medn)mroE < ol Bt
B’ B
20

lvis 17, <

ig
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that is,
|Bir[E " < CHU [
Since 4 < p < 6, |[v;*|li, — oo. Inequality (2.10) implies

k+1
I, vl) 2 (5 -~ Z li* (17 — oo,
and then
x(rr) = x(r1,...,rk) = L (o™, ..., 0™ ) — oo.

Thus the first item holds.
(ii) By the Strauss inequality [6], that is, for u € H}(R?), there exists C > 0,
such that

lu(z)| < c|||1::|”’ a.e. in R?,
we obtain
[y /B”k R [P dz < O/Brk - ]T1||1|’]€Jrl < Ol s ”
k+1 k+1
Therefore,

< C||”k+1||k+1

yielding x(ry) — oco. The conclusmn follows.
(iii) Take a sequence {r} = {(r7,...,7})} C I'; such that

T — T = (771,...777‘;@) eTy.
The assertion follows by showing that
x(Tx) > lim supx(ry), x(Tx) < lim inf x(rg). (3.2)
We first prove x(Tk) > lim, .o sup x(r}). Define 5:2 c[rq,r?] — R by
fr: = an’ufk (

fori=1,...,k, and

i — Tl
T (

t— 7“?,1) + 771‘,1)

o
Ti—1

v _on ome (T
§k+1 = 041V, (Tn t)v
k

where 7§ =0, TZ_H =00 and each (af,...,a}, ) is the unique positive vector such
that (£1*,...,&, ) € Ni.**. By the definition of (v*, ... ,vp), we have
o — o
I (& ,...,{kil)zlrk(vl’“,...,vkil):X(rg).

Therefore, for n large enough we have

1€ 12 e = @107 ez +0(1),

L IVERPde | |VEE P da
Bk B.k

i J

— (@) (a)? /B Vo2 da /B Vo 2 da + o(1),
i J
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(@)(€57)2(y)

' dz d
/Bk/Bk 47r|33—y| v

/ / D dr dy + o(1),

471'\1‘ -y

/B €5 P dz = (a7 /B [0 7 dz + of1).

Since (5{27 e ,fzal) € N, we have
k+1
n\21,,Ck |2 n\2 T2 n F19
(ai') ||Uzk||B:;3 + b(a;’) / [Vo*| dxz;( )? /B& |Voi|® do
? J
k+1 JF . 33
n n 2 i U] ) (y) _ n p/ Tr|p (
—l—;(ai /rk/rk 47r\ac—y\ dx dy — (ay) ” |v;*|P da

=o(1)

and
k+1

o741 +b/ |er"\2da:2/ Vo™ 2 da
k+1 rr\2
z)(v;*)*(y) 7/ Feip g
JrZ/ / 47T\x—y| dx dy o |v;* P dx = o(1)

fori=1,...,k+ 1. From and (3.4), we deduce that lim,,_,o a = 1. Thus,

(3.4)

X(Fg) = I™ (Uf’“, . ,v,i’_j_l) = lim sup I™* (0%, . .. »”Z’ll)
n—oo
> limsup I™* (7%, ..., &% 1) = limsup x(r}).
n—oo n—o00

This also implies

lim sup ||v; 3 H2 gy < 00,
limsup/ |Vur’“ |2dx/ |erk % dx < oo,
n—00 ’ (3.5)

rZ 2

’U»
limsup/ / 1 W) dx dy < oo.
n—oo JB'* Bk 47T|x—y|

Next, we prove x(Fj) < liminf, . x(r}). As above, we define 6;‘2 o1, T —
R by

P pn
k _ n l‘k ( 1 i—1 t— 7, +Tn )
5 v, T — i1 ( 1—1) i—1

fori=1,...,k+1and

Tk
€k+1 = ak+1”k+1( = )t7
where 7 = 0,7, ; = oo and each (af,...,a}, ) is the unique (k + 1)-tuple of
positive real numbers such that (&, ... ,f;’_j_l) € N5, Then, from (13.5) it also
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follows that
k41

r; 2 n re |2 n rn,2
(@21 +b<ai>/n|vw\ dlem [ 190 s
J J
k+1 T2 (3.6)
IZ.} n

I B PR

oy B 47r|x —y| B
= o(1)

as well as

k+1

||virg||23rz —|—b/ \Vurk|2dx2/ |er"\2dac
k41 FZ 2
) (v;*)*(y) /
dx dy —
*Z/ / 47r|a:—y| YT L

i#j
fori=1,...,k+ 1.
From (3.6), (3.7) and liminf, ||v:’“'||Brn > 0 we deduce that lim,_,,a} =1

Ufz‘p dx = o(1)

ok
for all i. So we have '
X(ER) = I (o, vphy) < lminf I (o1 o)
= hnnlmf I (51 e ,f;il) = hnrgio%f x(rg).

We completed the proof of (iii).
As a result, from (i)—(iii) we deduce that there is a minimum point rp =

(F1,...,7) € Ty of x. O
Next, we show that (v}*, ... ,v,f;’ll) found in the previous lemma, corresponding
to (71,...,7%) € Ty for every k € N, is a k-times sign-changing and radial solution

of (L.1).

Proof of Theorem[I.1. Suppose to the contrary that Zf? v;* is not a solution of
(1.1)), there would exist I € {1,...,k} such that

£, £,
Fix a positive number § small enough and set
v (r), for r € (r1_1,7 — 0),
G(r) = w(F — 8) + 2t TR0 - for ¢ (7 — 6,711 + 6)
v (r), for r € (71 + 0, 7141).

There exists §; € (f1_1, 74+1) such that
Q(T)L:gl =0
Define the k + 1-tuple of functions (%, ..., Zk+1),
zi(r) =g(r), forre (fi-1,31),
zZi(r)y =wvi(r), forre (Fi—1,7iy1), 1#LI+1
Zip1(r) = g(r), forr e (5, 7i41).
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By Lemma there exists (a, ..., ans1) € (Rso)* ™ such that

(21, 2k41) = (@121, . . ., Qg1 2k41) € NTF
with 7, = (F1,...,77, 8, 7141 - - - 7). On the other hand, we can verify that
(Gt rps1) = (L 1) (3.8)

as 0 — 0. Let W(r) = Zfill vi(r) € H and Z(r) = Zfill z;(r) € H. Then
I(W) = I (uf%, .. v ) < T (2, 2k ) = 1(2). (3.9)

On the other hand, for any u € H, the solution of —A¢p = u? is radial and it can
be expressed as

1

p(t) = : /000 u?(s)smin{s,t} ds

for t > 0. Therefore,

ﬁfzi o0 1
nzy—1w)= (/ +/ (32’24— ~V(r)z? — f\z|p>r2dr
0 7146
1
+ 2

71+
/ (gz’Q—i— ~V(r)z? —f|z|p)r dr

76

> [ 2\, .2 é * e 2
/0 (21) +2V(r)v )7’ dr+4(/0 2'r dr)
9(/00 / / )st min{s, £} ds dt
1 )st min{s s
—7/ / (t)stmin{s, t} dsdt.

Since 117|u|” is convex,

1 1 -2
el 2 ol + %vuﬂ (3.10)
for zv > 0, and we have

71+ a
[ (327 4 V() — L Py dr
o P (3.11)

ute 1 1 1 1
< /ﬁ—é (gz’2 + 51/(7"),22 + §|v\p — §|v|p — ;|z|p)r2 dr.

By the definition of W, we have
/ (v + V(r)vu?)r? dr + b(/ v'r?dr)?
0
/ / t)st min{s,t} dsdt (3.12)

—/ |v[Pr? dr.
0
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Set A = [~ v*r?dr. By (3.10)-(3.11), we have

I(Z)—I(W)< A1 + Ay + A3 + = / / (t)st min{s,t} dsdt

/ / t)st min{s,t} dsdt,

(3.13)

where

Flfé oo
_ at+bA , 1 o 1. p—2),.2
= (/0 +/ﬁ+é)( 5 % —|—§V(r)z —§|z| |v] )r dr,

7+6
a+bA 2
A:/ 27+ V z_,zp vl )2 dr,
=) (55 ()32 = =P+ JJol?)

Az = — /2 _,/ /.2 / /.2 Y / /2 .
3 4</0 Z'r dr) 3/, v'redr ; Z'r dr—|—4(0 v'r dr)

From

v — hm ’U(’Fl — (S) — ’U(’Fl)
5—0 —(S

we deduce that v(7; — §) = —dv_ + o(9), and using that v is a solution of (1.1),
that is v satisfies

2
a + b/ V22 dr U "+ 71/) + (V(r)v + po)r® = r?jo[P~?v,
(3.14)
—A(p =2, lim o(x) =0,

| |—>OO
we obtain
(7 — 0)%V (71 — 6) = Fv_ + 0(9).

Integrating by part, we find

) A
/ atb4 272 dr
O 2

bA
a4 +2 (v’vr2

71—0 =4
_ d /,..2
. /0 vd(v'r ))

- ‘”;’A (1 — 8)o(Fy — 8) (7t — §) — “*;’A/
0

[ 2 //+27’1}]d (315)

2

1 T — 1 77[—6
—5 / / t)stmin{s,t} dsdt + = / |v[P~2vr? dr.
0

T —0
_ ““’A V(7 = 8)o(Fy — 8)(F1 — 8)? — 1/0 V(r)o?r? dr



18 J. DENG, J. YANG EJDE-2016/277

We deduce from ([3.13)—(3.15) that

"0 a4 bA o' 1, p—2\,.2
/0 ( 5 + V( Jo? — 5 [v] >r dr

= TV bt — 0)( — 0)?

Fim (3.16)
- f/ / t)st min{s,t} dsdt
bA =
= _a—|—2 7226 + o(d) — 7/ / (t)stmin{s, t} dsdt.
By (3.8), we obtain
"0 ra+bA 2 L o p—2).2
/0 ( 5 + V( )22 ~ 5% 2] )r dr
n=o bA 1 1
=1+ 0(1))/ (LU/Q + =V (r)v? — 7v2|v\p*2)r2 dr
o 2 2 2
” (3.17)
_ a + .,2 2 5 + (6)
2
71 —0
—|— o( / / t)st min{s, t} dsdt.
In the same way, we have
* (a+bA 2 Lo ) 2
+ V( )22 — =22 |2P72 ) r dr
bA
= _7a+2 Fiv36 + o(6) (3.18)
+ o( / / t)stmin{s,t} dsdt.
T1+6
Equations (3.17) and (| - lead to
bA
A = —%F?d(@i + v%) + 0(9)
- (3.19)
1) (/ / / v?(t)st min{s, t} ds dt.
0 T1+6
Next, we estimate A,. It is readily to verify that
1490 1 9 1 1 9
—V(r)z® — =|z|P + =|v|P)r* dr = o(6). 3.20
GV = i = ot (320)

If r € [/ — 6,7 + 6], we have
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Therefore,
bA [T
ot / ¥ (t)r? dr
2 -6
A [Tt = o S)2
_ a+b / [v(F1 + 8) — (7 — 0)] 2 dr (3.21)
2 Jis 407
_ a+bA o +6) — (@ + O (7 +6)° — (71— 0)°
8 52 30 '
Since
71+ 9) — v(F F) —o(fp— 90
vy = lim 2OFO) =V gy YR =V =)
5—0 ) 5—0 )
we have
2 _ o [o(F 4 68) —v(F — 0))?
(v +v_)* = (]s.lir(l) 52 . (3.22)
Obviously,
. (B — (=0 . 3R +6)2+3(FH -6 .,
limy 30 = lim 3 - (3:23)
Hence, by (3.21)), (3.22)) and (3.23)), for 6 — 0 we obtain
71+
+ bA + bA
| e = iR 0+ 0o + 0(0),
rTI—
By (3.8),
T g 4 bA a+bA
/ ——2(r)ridr = 67 (vy 4+ v_)% 4 0(6). (3.24)
=5 2 4
Finally, we claim that
@ =14+ 0(5?)
asd — 0 fori=1,...,k+ 1. Suppose by a contradiction, for some i, that
Sim 5™ 2 (a5, — 1)| = | Jnax  lim |57 2 (@i, — 1)| = B #0.
Since (v1,...,vk+1) € ngk, (@171, ..., ak41%k+1) € NI* and ¥y — Tj as 6 — 07,

we have

—1
0= lim o~ 2( ((1121, ey &k+1§k+1) — Fio (21, ey 2k+1))(57%(&10 — 1))

6—0+
k+1

2
< 2[|vi, |12, +4b(/B;k |Vvi0|2d$c) +4b/ |vvm|2dxz/ |V, |? dz
o

Jj#io0
k+1

4 20 d dy +4
* /‘"k/rk 47r|as * Z/‘"k/"k 47T|:L'7y|

J#io
_p/- |vi0|(p—1) de,
Bk

20
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where F;, is given by (2.7). This leads to a contradiction since (vy,...,v541) € ./\/,f
and p > 4. Thus,

oo oo 2
As = é</ v'r? dr—/ 2'r? dr)
4\ Jo 0
7:1—5 oo 1
55)(/ +/ )v’2r2 dr + =(vy +v_)*776 (3.25)
0 7146 2

—v_ %76 — v, 7"125} = 0(0).
By the estimates on A, As and A3, we obtain
I(Z) —1(W)

A
CH_b ————(vy —v_ )76 + 0(6) / / (t)st min{s,t} dsdt

/ / t)st min{s,t}dsdt

5 + 0(1))(/;[ + /:;)U/QTQCZT) /000 v%(s)v%(t)st min{s, t} ds dt

bA
- —%m — 0 )5+ 0(5)
T1+0
—|— o( / / t)stmin{s,t} dsdt
=
Tl+§
+0 / / 2(t)st min{s, t} ds dt.
TI—
So we obtain I(Z) < I(W) if § > 0 is sufficiently small, which is a contradiction to
the definition of W. Consequently, v_ = v, and then v, = Zfﬂl v, " is a solution
of (1.1) changing sign exactly k times. The proof is complete. O
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