Electron. J. Differential Equations, Vol. 2016 (2016), No. 275, pp. 1-8.

Bifurcation for non linear ordinary differential equations with singular perturbation

Safia Acher Spitalier, Rachid Bebbouchi

Abstract:
We study a family of singularly perturbed ODEs with one parameter and compare their solutions to the ones of the corresponding reduced equations. The interesting characteristic here is that the reduced equations have more than one solution for a given set of initial conditions. Then we consider how those solutions are organized for different values of the parameter. The bifurcation associated to this situation is studied using a minimal set of tools from non standard analysis.

Submitted July 10, 2016. Published October 17, 2016.
Math Subject Classifications: 34A26, 34C05, 34D15, 34F10.
Key Words: Singular perturbation; reduced equation with non-uniqueness; bifurcation; non-standard analysis.

Show me the PDF file (431 KB), TEX file for this article.

Safia Acher Spitalier
Université des Sciences et de la Technologie Houari Boumediene
Faculté des Mathématiques
BP 32 EL ALIA 16111 Bab Ezzouar Alger, Algérie
email: safia.acher.spitalier@gmail.com
Rachid Bebbouchi
Université des Sciences et de la Technologie Houari Boumediene
Faculté des Mathématiques
BP 32 EL ALIA 16111 Bab Ezzouar Alger, Algérie
email: rbebbouchi@hotmail.com

Return to the EJDE web page