Abdelhamid Bezia, Anouar Ben Mabrouk, Kamel Betina
Abstract:
This article studies a technique for solving a two-dimensional Boussinesq
equation discretized using a finite difference method. It consists of an
order reduction method into a coupled system of second-order equations,
and to formulate the fully discretized, implicit time-marched system
as a Lyapunov-Sylvester matrix equation. Convergence and stability is
examined using Lyapunov criterion and manipulating generalized
Lyapunov-Sylvester operators. Some numerical implementations are provided
at the end to validate the theoretical results.
Submitted February 8, 2016. Published October 7, 2016.
Math Subject Classifications: 65M06, 65M12, 65M22, 15A30, 37B25.
Key Words: Boussinesq equation; finite difference method; Numerical solution;
Lyapunov-Sylvester operators.
Show me the PDF file (288 KB), TEX file for this article.
Abdelhamid Bezia Algebra and Number Theory Laboratory Faculty of Mathematics University of Sciences and Technology Houari Boumediene BP 32 EL-Alia 16111, Bab Ezzouar, Algiers, Algeria email: abdelhamid.bezia@gmail.com | |
Anouar Ben Mabrouk Département de Mathématiques Institut Supérieur de Mathámatiques Appliquées et Informatique de Kairouan Avenue Assad Ibn Al-Fourat, Kairouan 3100, Tunisia email: anouar.benmabrouk@fsm.rnu.tn | |
Kamel Betina Algebra and Number Theory Laboratory Faculty of Mathematics University of Sciences and Technology Houari Boumediene BP 32 EL-Alia 16111, Bab Ezzouar, Algiers, Algeria email: kamelbetina@gmail.com |
Return to the EJDE web page