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METHODS IN HALF-LINEAR ASYMPTOTIC THEORY

PAVEL ŘEHÁK

Abstract. We study the asymptotic behavior of eventually positive solutions

of the second-order half-linear differential equation

(r(t)|y′|α−1 sgn y′)′ = p(t)|y|α−1 sgn y,

where r(t) and p(t) are positive continuous functions on [a,∞), α ∈ (1,∞).

The aim of this article is twofold. On the one hand, we show applications of a

wide variety of tools, like the Karamata theory of regular variation, the de Haan
theory, the Riccati technique, comparison theorems, the reciprocity principle,

a certain transformation of dependent variable, and principal solutions. On
the other hand, we solve open problems posed in the literature and generalize

existing results. Most of our observations are new also in the linear case.

1. Introduction

We consider the second-order half-linear differential equation

(r(t)Φ(y′))′ = p(t)Φ(y), (1.1)

where r, p are positive continuous functions on [a,∞) and Φ(u) = |u|α−1 sgnu with
α > 1. Actually, the aim of this paper is twofold. First, we complete somehow the
study of asymptotic properties of solutions to (1.1) given in [21] and solve some
open problems posed there; see also [7, 9, 12, 13, 14, 15, 16, 19] for closely related
works. Second, we present applications of various tools in the asymptotic theory
of linear and half-linear differential equations. In particular, we deal with the
Riccati technique, the Karamata theory of regular variation, the de Haan theory,
the reciprocity principle, comparison results, a certain transformation of dependent
variable, and principal solutions.

We give conditions guaranteeing regular variation of all positive solutions of
equation (1.1) and establish asymptotic formulas for them. In several cases we
offer more than one approach. Some of the results (or at least the methods) appear
to be new even in the linear case. Our results can be understood as that they
provide a more precise description of behavior of solutions in standard asymptotic
classes. For the standard classification of nonoscillatory solutions to (1.1) and basic
existence theorems see [2, 3, 4], [5, Chapter 4], and [17].

That the theory of regular variation is well suited for the study of asymptotic
behavior of differential equations was shown in particular in the monograph [15]
which summarizes the research up to 2000. A survey of recent progress is made
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in [20]. The already mentioned papers [7, 9, 16] present applications to linear
differential equations. Half-linear differential equations in the framework of the
Karamata theory and the de Haan theory are treated in the works [12, 13, 18, 19,
22, 21].

The article is organized as follows. In the next section we recall some information
on the Karamata theory of regularly varying functions and on the de Haan theory.
Basic classification of nonoscillatory solutions to (1.1) is given in Section 3. We
will utilize results on slowly varying solutions to (1.1) established in [21]; they are
recalled and bettered in Section 4. A theorem on non-slowly varying solutions
under the same setting as in Section 4 forms the main part of Section 5. We offer
two approaches. The first one is based on the result from Section 4, the reciprocity
principle, and the Karamata theory. The second one uses the Riccati technique, the
Karamata theory, and the de Haan theory. We discuss regularly varying solutions
also under a different setting. Section 6 offers a summary, and incorporates the
results into a broader context, namely the standard classification of nonoscillatory
solutions. In Section 7 we discuss some methods that are not fully available in
the half-linear case. Some directions for a future research are indicated in the last
section. Sections 5–7 contain various examples and further comments including a
comparison with existing results.

2. Regular variation and de Haan class Π

In this section we recall basic information on the Karamata theory of regularly
varying functions and the de Haan theory; for a deeper study of this topic see the
monographs [1, 8, 10].

A measurable function f : [a,∞)→ (0,∞) is called regularly varying (at infinity)
of index ϑ if

lim
t→∞

f(λt)
f(t)

= λϑ for every λ > 0; (2.1)

we write f ∈ RV(ϑ). If ϑ = 0, then we speak about slowly varying functions; we
write f ∈ SV, thus SV = RV(0).

The so-called Uniform Convergence Theorem (see e.g. [1]) says that if f ∈
RV(ϑ), then relation (2.1) holds uniformly on each compact λ-set in (0,∞).

It follows that f ∈ RV(ϑ) if and only if there exists a function L ∈ SV such
that f(t) = tϑL(t) for every t. The slowly varying component of f ∈ RV(ϑ) will be
denoted by Lf , i.e.,

Lf (t) :=
f(t)
tϑ

.

The Representation Theorem (see e.g. [1]) says the following:

Theorem 2.1. f ∈ RV(ϑ) if and only if

f(t) = ϕ(t)tϑ exp
{∫ t

a

ψ(s)
s

ds
}
, (2.2)

t ≥ a, for some a > 0, where ϕ,ψ are measurable with limt→∞ ϕ(t) = C ∈ (0,∞)
and limt→∞ ψ(t) = 0.

A function f ∈ RV(ϑ) can alternatively be represented as

f(t) = ϕ(t) exp
{∫ t

a

ω(s)
s

ds
}
, (2.3)
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t ≥ a, for some a > 0, where ϕ, ω are measurable with limt→∞ ϕ(t) = C ∈ (0,∞)
and limt→∞ ω(t) = ϑ.

A regularly varying function f is said to be normalized regularly varying, we
write f ∈ NRV(ϑ), if ϕ(t) ≡ C in (2.2) or in (2.3). If (2.2) holds with ϑ = 0 and
ϕ(t) ≡ C, we say that f is normalized slowly varying, we write f ∈ NSV. Clearly,
if f is a C1 function and limt→∞ tf ′(t)/f(t) = ϑ, then f ∈ NRV(ϑ). Conversely,
if f ∈ NRV(ϑ) ∩ C1, then limt→∞ tf ′(t)/f(t) = ϑ.

The following Karamata Integration Theorem (see e.g. [1, 8]) will be very
helpful in the sequel. As usual, the relation f(t) ∼ g(t) (as t → ∞) means
limt→∞ f(t)/g(t) = 1.

Theorem 2.2. If L ∈ SV, then∫ ∞
t

sϑL(s) ds ∼ 1
−ϑ− 1

tϑ+1L(t) provided ϑ < −1,∫ t

a

sϑL(s) ds ∼ 1
ϑ+ 1

tϑ+1L(t) provided ϑ > −1

as t→∞. Moreover, if
∫∞
a
L(s)/sds converges, then L̃(t) =

∫∞
t
L(s)/sds is a SV

function; if
∫∞
a
L(s)/sds diverges, then L̃(t) =

∫ t
a
L(s)/sds is a SV function; in

both cases, L(t)/L̃(t)→ 0 as t→∞.

Here are further properties of RV functions that are useful in our theory.

Proposition 2.3.
(i) If f ∈ RV(ϑ), then ln f(t)/ ln t→ ϑ as t→∞. It then clearly implies that

limt→∞ f(t) = 0 provided ϑ < 0, and limt→∞ f(t) =∞ provided ϑ > 0.
(ii) If f ∈ RV(ϑ), then fα ∈ RV(αϑ) for every α ∈ R.

(iii) If fi ∈ RV(ϑi), i = 1, 2, f2(t)→∞ as t→∞, then f1 ◦ f2 ∈ RV(ϑ1ϑ2).
(iv) If fi ∈ RV(ϑi), i = 1, 2, then f1 + f2 ∈ RV(max{ϑ1, ϑ2}).
(v) If fi ∈ RV(ϑi), i = 1, 2, then f1f2 ∈ RV(ϑ1 + ϑ2).
(vi) If f1, . . . , fn ∈ RV, n ∈ N, and R(x1, . . . , xn) is a rational function with

nonnegative coefficients, then R(f1, . . . , fn) ∈ RV.
(vii) If L ∈ SV and ϑ > 0, then tϑL(t)→∞, t−ϑL(t)→ 0 as t→∞.
(viii) If f ∈ RV(ϑ), ϑ 6= 0, then there exists g ∈ C1 with g(t) ∼ f(t) as t → ∞

and such that tg′(t)/g(t) → ϑ, whence g ∈ NRV(ϑ). Moreover, g can be
taken such that |g′| ∈ NRV(ϑ− 1).

(ix) If |f ′| ∈ RV(ϑ), ϑ 6= −1, with f ′ being eventually of one sign, then f ∈
NRV(ϑ+ 1).

Proof. The proofs of (i)–(viii) are either easy or can be found in [1, 8].
(ix) By the Karamata theorem, f(t) = f(a) +

∫ t
a
f ′(s) ds ∼

∫ t
a
f ′(s) ds ∼

tf ′(t)/(ϑ+ 1) as t→∞ when ϑ > −1, resp. f(t) = −
∫∞
t
f ′(s) ds ∼ tf ′(t)/(ϑ+ 1)

as t→∞ when ϑ < −1. Hence, limt→∞ tf ′(t)/f(t) = ϑ+ 1. �

A measurable function f : [a,∞) → R is said to belong to the class Π if there
exists a function w : (0,∞)→ (0,∞) such that for λ > 0

lim
t→∞

f(λt)− f(t)
w(t)

= lnλ; (2.4)

we write f ∈ Π or f ∈ Π(w). The function w is called an auxiliary function for f .
The class Π, after taking absolute values, forms a proper subclass of SV.
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Proposition 2.4.

(i) If f ∈ Π, then for 0 < c < d < ∞ relation (2.4) holds uniformly for
λ ∈ [c, d].

(ii) Auxiliary function is unique up to asymptotic equivalence.
(iii) If f ∈ Π(v), then

v(t) ∼ f(t)− 1
t

∫ t

a

f(s) ds (2.5)

as t→∞.
(iv) If f ∈ Π, then limt→∞ f(t) =: f(∞) ≤ ∞ exists. If the limit is infinite,

then f ∈ SV. If the limit is finite, then f(∞)− f(t) ∈ SV.
(v) If f ′ ∈ RV(−1), then f ∈ Π(tf ′(t)).

Proof. The proofs of (i)–(iv) can be found in [8, 10].
(v) For every λ > 0, we have

f(λt)− f(t)
tf ′(t)

=
∫ λt

t

f ′(u)
tf ′(t)

du =
∫ λ

1

f ′(st)
f ′(t)

ds→
∫ λ

1

1
s

ds = lnλ,

as t → ∞, because f ′(st)/f ′(t) → 1/s uniformly as t → ∞ in the interval[
min{1, λ},max{1, λ}

]
. �

We write f ∈ ΠRV(ϑ;w) if t−ϑf ∈ Π(w). Then we speak about Π-regular
variation; this concept was introduced in [6].

3. Basic information on nonoscillatory solutions

It is known (see [5, Chapter 4]) that (1.1) with positive r, p is nonoscillatory, i.e.
all its solutions are eventually of constant sign. Without loss of generality, we work
just with positive solutions, i.e. with the class

S = {y : y(t) is a positive solution of (1.1) for large t}.

Because of the sign conditions on the coefficients, all positive solutions of (1.1) are
eventually monotone, therefore they belong to one of the following disjoint classes:

IS = {y ∈ S : y′(t) > 0 for large t},
DS = {y ∈ S : y′(t) < 0 for large t}.

It can be shown that both these classes are nonempty (see [5, Lemma 4.1.2]). The
classes IS,DS can be divided into four mutually disjoint subclasses:

IS∞ = {y ∈ IS : lim
t→∞

y(t) =∞}, ISB = {y ∈ IS : lim
t→∞

y(t) = b ∈ R},

DSB = {y ∈ DS : lim
t→∞

y(t) = b > 0}, DS0 = {y ∈ DS : lim
t→∞

y(t) = 0}.

Define the so-called quasiderivative of y ∈ S by y[1] = rΦ(y′). We introduce the
following convention

ISu,v = {y ∈ IS : lim
t→∞

y(t) = u, lim
t→∞

y[1](t) = v}

DSu,v = {y ∈ DS : lim
t→∞

y(t) = u, lim
t→∞

y[1](t) = v}.
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For subscripts of IS and DS, by u = B resp. v = B we mean that the value of u
resp. v is a real nonzero number. Using this convention we further distinguish the
following types of solutions which form subclasses in DS0,DSB , ISB , and IS∞:

DS0,0,DS0,B ,DSB,0,DSB,B , ISB,B , ISB,∞, IS∞,B , IS∞,∞. (3.1)

More information about (non)existence of solutions in these subclasses is recalled
in Section 6, where we include our results into the framework of the standard clas-
sification of nonoscillatory solutions. We will also make a comparison with general
existence conditions. Basic classification of nonoscillatory solutions and existence
results can be found in [2, 3, 4, 17]. For a partial survey see [5, Chapter 4]. In some
places we need to emphasize that the classes of eventually positive increasing resp.
decreasing solutions resp. their subclasses are associated to a particular equation,
say (∗). Then we write IS(∗), DS(∗), IS(∗)

∞ , etc.
No matter whether p is positive, if (1.1) is nonoscillatory, then there exists a

nontrivial solution y of (1.1) such that for every nontrivial solution u of (1.1) with
u 6= λy, λ ∈ R, we have y′(t)/y(t) < u′(t)/u(t) for large t, see [5, Section 4.2].
Such a solution is said to be a principal solution. Solutions of (1.1) which are not
principal, are called nonprincipal solutions. Principal solutions are unique up to a
constant multiple.

Let y ∈ S and take f ∈ C1 with f(t) 6= 0 for every (large) t. Denoted w =
frΦ(y′/y), it satisfies the generalized Riccati equation

w′ − f ′

f
w − fp+ (α− 1)

r1−β

Φ−1(f)
|w|β = 0, (3.2)

where Φ−1 stands for the inverse of Φ, i.e., Φ−1(u) = |u|β−1 sgnu, and β denotes
the conjugate number of α, i.e. 1/α + 1/β = 1. If f(t) ≡ 1, then (3.2) reduces to
the usual generalized Riccati equation

w′ − p(t) + (α− 1)r1−β(t)|w|β = 0. (3.3)

If f(t) = tα−1/r(t), then (3.2) takes the form

tw′ =
(
α− 1− tr′(t)

r(t)

)
w +

tαp(t)
r(t)

− (α− 1)|w|β ; (3.4)

note that w(t) = Φ(ty′(t)/y(t)). A solution of the associated generalized Riccati
equation which is generated by a principal solution is called an eventually minimal
solution. According to [5, Theorem 4.2.2.], if P (t) ≤ p(t) and 0 < R(t) ≤ r(t) for
large t, then the eventually minimal solutions w = rΦ(y′/y) and z = RΦ(x′/x) of
the generalized Riccati equations respectively associated to (1.1) and (R(t)Φ(x′))′ =
P (t)Φ(x) satisfy

w(t) ≤ z(t) (3.5)

for large t.

4. SV solutions

The following conditions appear frequently throughout this article:

p ∈ RV(δ), r ∈ RV(δ + α), (4.1)

Lp(t)
Lr(t)

→ 0 as t→∞. (4.2)
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The relation between indices of regular variation of the coefficients in (4.1) appears
to be quite natural when dealing with SV solutions of (1.1), see [21, Remark 11].
Set

G(t) =
( tp(t)
r(t)

) 1
α−1

.

If (4.1) holds, then

G(t) =
1
t

(Lp(t)
Lr(t)

)β−1

.

A substantial part of the following statement follows from [21, Theorem 5, Theo-
rem 6].

Theorem 4.1. Assume that (4.1) and (4.2) hold. If δ < −1, then DS ⊂ NSV
and −y(t) ∈ Π(−ty′(t)) for any y ∈ DS. If δ > −1, then IS ⊂ NSV and y(t) ∈
Π(ty′(t)) for any y ∈ IS. Moreover, for any y ∈ DS when δ < −1 and any y ∈ IS
when δ > −1 the following hold:

(i) If
∫∞
a
G(s) ds =∞, then

y(t) = exp
{∫ t

a

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds
}

(4.3)

as t→∞, with y ∈ DS0,0 provided y ∈ DS and δ < −1, while y ∈ IS∞,∞ provided
y ∈ IS and δ > −1.

(ii) If
∫∞
a
G(s) ds <∞, then

y(t) = N exp
{
−
∫ ∞
t

(1 + o(1))
G(s)

Φ−1(δ + 1)
ds
}

(4.4)

as t→∞, where N = limt→∞ y(t) ∈ (0,∞), with y ∈ DSB,0 provided y ∈ DS and
δ < −1, while y ∈ ISB,∞ provided y ∈ IS and δ > −1. Moreover, in any case,
|N − y| ∈ SV and

Lβ−1
p (t)

Lβ−1
r (t)(N − y(t))

= o(1) (4.5)

as t→∞.

Proof. We will prove only the last part of the theorem. The fact that |N − y| ∈ SV
follows from Proposition 2.4-(iv), since y ∈ Π. From the proofs of [21, Theorem 5,
Theorem 6], we have that

y′(t) ∼ Φ−1
( tp(t)

(δ + 1)r(t)

)
y(t) ∼ N

Φ−1(δ + 1)
· 1
t

(Lp(t)
Lr(t)

)β−1

as t→∞. Integrating from t to ∞, we obtain

N − y(t) ∼ N

Φ−1(δ + 1)

∫ ∞
t

1
s

(Lp(s)
Lr(s)

)β−1

ds

as t→∞. Formula (4.5) now follows from the latter part of Theorem 2.2. �

Thanks to the next lemma, which follows from [21, Remark 8, Remark 11], we
are dealing with all SV solutions of (1.1) in Theorem 4.1.

Lemma 4.2. Assume that (4.1) holds. If δ < −1, then S ∩ SV ⊆ DS. If δ > −1,
then S ∩ SV ⊆ IS.
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5. Non-SV solutions

This section discusses the complementary case with respect to Theorem 4.1; we
study increasing solutions when δ < −1 and decreasing solutions when δ > −1.
Under the same setting (i.e., (4.1) and (4.2)) we prove regular variation of these
solutions where the index is equal to

% :=
−1− δ
α− 1

and derive asymptotic formulas. Note that if δ = −α (which happens, for instance,
when r(t) ≡ 1 under condition (4.1)), then % = 1. Set

H(t) =
tα−1p(t)
r(t)

.

If (4.1) holds, then

H(t) =
1
t
· Lp(t)
Lr(t)

.

5.1. First approach. In this subsection, we use the existing results (presented in
Section 4) in a combination with the reciprocity principle and the Karamata theory
to study non-SV solutions.

The reciprocity principle is based on the following simple relation. If y is a
solution of (1.1), then u defined by u = CrΦ(y′), C ∈ R, is a solution of the
reciprocal equation

(r̂(t)Φ̂(u′))′ = p̂(t)Φ̂(u), (5.1)

where r̂ = p1−β , p̂ = r1−β , and Φ̂(u) = |u|bα−1 sgnu with α̂ = β. Note that
Φ̂ = Φ−1.

Theorem 5.1. Assume that (4.1) and (4.2) hold. If δ < −1, then IS ⊂ NRV(%).
If δ > −1, then DS ⊂ NRV(%). Moreover, one has y[1](t) ∈ Π(tp(t)Φ(y(t))) for
any y ∈ S ∩NRV(%). For any y ∈ IS when δ < −1 and any y ∈ DS when δ > −1
the following hold:

(i) If
∫∞
a
H(s) ds =∞, then

y(t) = A+
∫ t

a

1
rβ−1(s)

exp
{∫ s

a

(1 + o(1))
β − 1
%α−1

H(τ) dτ
}

ds (5.2)

as t→∞, for some A ∈ R, with y ∈ IS∞,∞ provided y ∈ IS and δ < −1, while

y(t) =
∫ ∞
t

1
rβ−1(s)

exp
{
−
∫ s

a

(1 + o(1))
β − 1
|%|α−1

H(τ) dτ
}

ds (5.3)

as t→∞, with y ∈ DS0,0 provided y ∈ DS and δ > −1.
(ii) If

∫∞
a
H(s) ds <∞, then

y(t) = A+
∫ t

a

Mβ−1

rβ−1(s)
exp

{
−
∫ ∞
s

(1 + o(1))
β − 1
%α−1

H(τ) dτ
}

ds (5.4)

as t→∞, for some A ∈ R, with y ∈ IS∞,B provided y ∈ IS and δ < −1, while

y(t) =
∫ ∞
t

|M |β−1

rβ−1(s)
exp

{∫ ∞
s

(1 + o(1))
β − 1
|%|α−1

H(τ) dτ
}

ds (5.5)
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as t→∞, with y ∈ DS0,B provided y ∈ DS and δ > −1, where M = limt→∞ y[1](t)
in R \ {0}. Moreover, in any case, M − y[1] ∈ SV and

Lp(t)
Lr(t)(M − y[1](t))

= o(1) (5.6)

as t→∞.

Proof. Let Ŝ, ÎS, D̂S, ÎS∞, ÎSB , D̂S0, D̂SB have the same meaning with respect to
(5.1) as S, IS,DS, IS∞, ISB ,DS0,DSB , respectively, have with respect to (1.1).
We have that p̂ ∈ RV(δ̂) and r̂ ∈ RV(δ̂ + α̂), where δ̂ := δ(1 − β) − β, thanks
to (4.1). Since Lbp/Lbr = L1−β

r /L1−β
p = (Lp/Lr)β−1 and (4.2) holds, we have

limt→∞ Lbp(t)/Lbr(t) = 0.
Assume that δ < −1 and take y ∈ IS. Let t0 ≥ a be such that y(t) > 0,

y′(t) > 0 for t ≥ t0. Set u = rΦ(y′). Then u ∈ ÎS since u′ = pΦ(y). We have
δ̂ + β = −δ(β − 1) > β − 1, and so δ̂ > −1. Note that δ̂ + 1 = %. Now we can
apply Theorem 4.1 to obtain u ∈ NSV and u ∈ Π(tu′). Hence, rΦ(y′) ∈ NSV, i.e.,
Φ(y′) ∈ RV(−δ−α), i.e., y′ ∈ RV((−δ−α)(β−1)) with (−δ−α)(β−1) > −1. Thus,
y ∈ NRV(%) by Proposition 2.3–(ix). Moreover, y[1] = u ∈ Π(tu′) = Π(tpΦ(y))
and y ∈ IS∞ since % > 0. Next we derive an asymptotic formula for y. If∫ ∞

a

Ĝ(s)ds =∞, where Ĝ(t) =
( tp̂(t)
r̂(t)

) 1bα−1
, (5.7)

then

u(t) = exp
{∫ t

a

(1 + o(1))Ĝ(s)(δ̂ + 1)
−1bα−1 ds

}
(5.8)

as t→∞ and u ∈ ÎS∞ for every u ∈ ÎS, thanks to Theorem 4.1. From u ∈ ÎS∞
and y ∈ IS∞ we obtain y ∈ IS∞,∞. Since

Ĝ(t) =
( tp̂(t)
r̂(t)

) 1bα−1
=
( tr1−β(t)
p1−β(t)

)α−1

=
tα−1p(t)
r(t)

= H(t), (5.9)

δ̂ + 1 = %, and u = r(y′)α−1, from (5.8) we obtain

y′(t) =
1

rβ−1(t)
exp

{∫ t

a

(1 + o(1))
β − 1
%α−1

H(s) ds
}

(5.10)

as t → ∞. Note that thanks to (5.9),
∫∞
a
H(s) ds = ∞ is the same as (5.7).

Integrating (5.10) from t0 to t and realizing that y(t0) can be replaced by some
A ∈ R when t0 is replaced by a, we obtain formula (5.2).

If the integral in (5.7) is convergent, i.e.,
∫∞
a
H(s) ds < ∞, then we again use

Theorem 4.1 to get

r(t)Φ(y′(t)) = u(t) = M exp
{
−
∫ ∞
t

(1 + o(1))
H(s)
%α−1

ds
}

(5.11)

as → ∞, where M = limt→∞ u(t) = limt→∞ r(t)Φ(y′(t)). Since u ∈ ÎSB and
y ∈ IS∞, we have y ∈ IS∞,B . Formula (5.4) follows from (5.11), where we first
extract y′ and then integrate from t0 to t, with replacing y(t0) by A and t0 by
a. The fact that M − y[1] ∈ SV follows from Proposition 2.4–(iv). Formula (5.6)
is obtained from (4.5) applied to u, in view of u = y[1], (α − 1)(β − 1) = 1, and
Lbp/Lbr = (Lp/Lr)β−1.



EJDE-2016/267 METHODS IN HALF-LINEAR ASYMPTOTIC THEORY 9

Assume δ > −1. Take y ∈ DS. Now we set u = −rΦ(y′). Then u ∈ D̂S.
Since δ̂ < −1, we may apply Theorem 4.1 to equation (5.1). We get that −y[1] =
u ∈ NSV and y[1] = −u ∈ Π(−tu′) = Π(tpΦ(y)). Similarly as above, we have
y ∈ NRV(%) with % = δ̂ + 1 < 0. If

∫∞
a
H(s) ds =∞, then (5.7) holds and

− r(t)Φ(y′(t)) = u(t) = exp
{
−
∫ t

a

(1 + o(1))
H(s)
|%|α−1

ds
}

(5.12)

as t → ∞ for u ∈ D̂S, by Theorem 4.1. The fact that y ∈ DS0,0 is implied by
y ∈ DS0 and u ∈ D̂S0. Formula (5.3) follows from (5.12), where we first extract y′

and then integrate from t to ∞. If
∫∞
a
H(s) ds < ∞, then the integral in (5.7) is

convergent and application of Theorem 4.1 yields

− r(t)Φ(y′(t)) = u(t) = |M | exp
{∫ ∞

t

(1 + o(1))
H(s)
|%|α−1

ds
}

(5.13)

as t → ∞, where M = limt→∞−u(t) = limt→∞ r(t)Φ(y′(t)). From y ∈ DS0 and
u ∈ D̂SB , we obtain that y ∈ DS0,B . Formula (5.5) easily follows from (5.13). The
fact that y satisfies M − y[1] ∈ SV and (5.6) can be proved similarly as in the case
δ < −1. �

Remark 5.2. A closer examination of the previous proof shows that the expression
exp{·} in all formulae (5.2) and (5.3) is slowly varying. Moreover, r1−β ∈ RV(γ),
γ := (1− β)(δ+α) = %− 1, with γ > −1 when δ < −1 resp. γ < −1 when δ > −1.
Hence, we can apply the Karamata theorem to formula (5.2) resp. (5.3) which in
either case yields

y(t) = (1 + o(1))
tr1−β(t)
|γ + 1|

exp
{∫ t

a

(1 + o(1))
β − 1
Φ(%)

H(s) ds
}

as t → ∞. Realizing that (1 + o(1))/|γ + 1| = exp ln((1 + o(1))/|γ + 1|) and∫∞
a
H(s) ds diverges, we obtain

y(t) = tr1−β(t) exp
{∫ t

a

(1 + o(1))
β − 1
Φ(%)

H(s) ds
}

(5.14)

as t → ∞. Alternatively, formula (5.14) can easily be obtained from (5.10) and
(5.12), if we realize that y ∈ NRV(%) implies that y′(t) ∼ %y(t)/t as t→∞.

Assume – under the conditions of Theorem 5.1 – that y is a solution such that
limt→∞ y[1](t) = M ∈ R \ {0}. Integrating the relation y[1](t) ∼ M and applying
the Karamata integration theorem (cf. (5.35), (5.37) below), we obtain the simple
formula

y(t) = (1 + o(1))
Φ−1(M)

%
tr1−β(t) (5.15)

as t→∞.

Example 5.3. Let p(t) = tδLp(t), δ 6= −1, with Lp(t) = (ln t)ν1 + g1(t), and
r(t) = tδ+αLr(t) with Lr(t) = (ln t)ν2 + g2(t), where |gi(t)| = o((ln t)νi) as t→∞,
i = 1, 2, and ν1 < ν2. Then Lp, Lr ∈ SV and limt→∞ Lp(t)/Lr(t) = 0. For example,
one can take gi(t) = sin t or gi(t) = ln(ln t) provided νi > 0. We have

H(t) =
Lp(t)
tLr(t)

∼ 1
t
· 1 + g1(t)/(ln t)ν1

(ln t)ν2−ν1(1 + g2(t)/(ln t)ν2)
∼ 1
t
(ln t)ν1−ν2
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as t→∞. Let y be an eventually positive solution of (1.1). If ν1 − ν2 = −1, then∫ t
a
H(s) ds ∼ ln(ln t) and

y(t) = t%(ln t)ν2+(β−1)(1+o(1))/Φ(%)

as t→∞, in view of (5.14). If ν1 − ν2 > −1, then∫ t

a

H(s) ds ∼ 1
ν1 − ν2 + 1

(ln t)ν1−ν2+1

and

y(t) = t%(ln t)ν2 exp
{ (β − 1)(1 + o(1))

Φ(%)(ν1 − ν2 + 1)
(ln t)ν1−ν2+1

}
as t→∞, in view of (5.14). If ν1 − ν2 < −1, then∫ ∞

t

H(s) ds ∼ 1
−ν1 + ν2 − 1

(ln t)ν1−ν2+1

and

y(t) = (1 + o(1))
Φ−1(M)

%
t%(ln t)ν2

as t→∞, in view of (5.15), where M = limt→∞ r(t)Φ(y′(t)) ∈ R \ {0}.

Remark 5.4. For decreasing solutions, if α = 2 and r(t) = 1, then Theorem 4.1
reduces to [7, Theorem 0.1-A]. In this case – since we have a linear equation –
we can obtain a linearly independent solution x which satisfies x(t)/t ∈ Π by the
reduction of order formula (see [7, Remark 3]), thus x ∈ RV(1). A representation
can also be given. This tool however is not at disposal in the half-linear case; see
also Section 7.3. The conclusion of Theorem 5.1 for r(t) 6≡ 1 is new in the linear
case. The both proofs (the above one as well as the one in Subsection 5.3) are also
new in the linear case.

Certain asymptotic formulae for regularly varying solutions of the equation

(Φ(y′))′ + p(t)Φ(y) = 0 (5.16)

with no sign condition on p were established in very recent paper [14]. The approach
is quite different; a crucial role there is played by the Banach fixed point theorem.
Under somewhat weaker assumptions than ours, the existence of a couple of RV
solutions is established and asymptotic formulae are derived. On the other hand, in
our paper we work with all positive (eventually decreasing or increasing solutions).
See also Remark 5.8-(ii).

Remark 5.5. From [21, Remark 6], we know that to show D̂S ⊂ NSV it is
sufficient to assume weaker conditions, namely

∫∞
a
r̂1−bβ(s) ds = ∞,

∫∞
a
p̂(s) ds <

∞, and limt→∞
tbα−1br(t) ∫∞t p̂(s) ds = 0. In terms of equation (1.1) these conditions

read as
∫∞
a
p(s) ds =∞,

∫∞
a
r1−β(s) ds <∞, and

lim
t→∞

(tp(t))β−1

∫ ∞
t

r1−β(s) ds = 0, (5.17)

respectively, and guarantee that −rΦ(y′) ∈ NSV for any y ∈ DS. If, moreover,
r ∈ RV(δ + α) with δ > −1, then y ∈ NRV(%); this follows from (ii), (v), and (ix)
of Proposition 2.3. Note that condition (5.17) can be written as

lim
t→∞

tαp(t)
r(t)

= 0 (5.18)
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provided r ∈ RV(δ+α), by the Karamata theorem. Similarly, from [21, Remark 9],
we obtain that the conditions

∫∞
a
r1−β(s) ds =∞ and

lim
t→∞

(tp(t))β−1

∫ t

a

r1−β(s) ds = 0 (5.19)

imply rΦ(y′) ∈ NSV for any y ∈ IS. If, in addition, r ∈ RV(δ + α) with δ < −1,
then y ∈ NRV(%), and (5.19) can be written as (5.18).

5.2. Necessity. Let (4.1) hold. We claim that condition (4.2) is necessary for the
existence of y ∈ IS∩NRV(%) (when δ < −1) or y ∈ DS∩NRV(%) (when δ > −1).

Indeed, assume first that δ < −1 and that there exists y ∈ IS ∩ NRV(%).
Set w = rΦ(y′/y). Then w satisfies (3.3) for large t, and 0 < tα−1w(t)/r(t) =
(ty′(t)/y(t))α−1 → %α−1. Hence, there exists M1 > 0 such that w(t) ≤M1r(t)t1−α

which belongs to RV(δ + 1), and so w(t) → 0 as t → ∞. Further, there exists
M2 > 0 such that

r1−β(t)wβ(t) = r(t)(y′(t)/y(t))α ≤M2r(t)t−α ∈ RV(δ).

This implies
∫∞
a
r1−β(s)wβ(s) ds < ∞. Integrating (3.3) from t to ∞ and multi-

plying by tα−1/r(t) we obtain

− t
α−1

r(t)
w(t) =

tα−1

r(t)

∫ ∞
t

p(s) ds− (α− 1)z(t),

z(t) :=
tα−1

r(t)

∫ ∞
t

r1−β(s)wβ(s) ds.
(5.20)

We claim that z(t) → %α−1/(α − 1) as t → ∞. Without loss of generality we may
assume r ∈ NRV(δ + α) ∩ C1. Indeed, if r is not normalized or is not in C1, then
we can take r̃ ∈ NRV(δ + α)∩C1 with r̃(t) ∼ r(t) when t→∞ (which is possible
thanks to Proposition 2.3–(viii)), and we have

z(t) ∼ tα−1

r̃(t)

∫ ∞
t

r̃1−β(s)
(
r̃(s)Φ

(
y′(s)
y(s)

))β
ds

as t→∞. By the L’Hospital rule,

lim
t→∞

z(t) = lim
t→∞

−r1−β(t)wβ(t)
r′(t)t1−α + (1− α)r(t)t−α

= lim
t→∞

(ty′(t)/y(t))α

−tr′(t)/r(t) + α− 1

=
%α

−δ − α+ α− 1
=

%α−1

α− 1
.

From (5.20) we obtain

lim
t→∞

tα−1

r(t)

∫ ∞
t

p(s) ds = 0, (5.21)

which, thanks to the Karamata theorem, yields (4.2)
Similarly we proceed in the case δ > −1. We assume that there exists y ∈

DS ∩ NRV(%) and again set w = rΦ(y′/y). Instead of (5.20) we work with the
Riccati type integral equation of the form

tα−1w(t)
r(t)

− tα−1w(a)
r(t)

=
tα−1

r(t)

∫ t

a

p(s) ds− tα−1

r(t)
(α− 1)

∫ t

a

r1−β(s)|w(s)|βds.
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Here, tα−1/r(t)→ 0 and tα−1w(t)/r(t)→ Φ(%) as t→ 0. We then get

lim
t→∞

tα−1

r(t)

∫ t

a

p(s) ds = 0, (5.22)

which yields again (4.2), by the Karamata theorem. This conclusion can be reached
also in an alternative way, where we apply [21, Remark 6, Remark 9] and the
reciprocity principle.

Observe that if we drop the condition p ∈ RV(δ), then necessary conditions read
as (5.21) resp. (5.22).

5.3. Second approach. Let us assume that the assumptions of Theorem 5.1 hold.
Next we present an alternative approach to the proof. The Riccati technique in
combination with the Karamata theory is directly used to show that all increasing
resp. decreasing solutions of (1.1) are in NRV(%). Regular variation and the de
Haan theory are then utilized to obtain asymptotic formulas from Remark 5.2. In
Section 7, which is devoted to linear equations, we offer another approaches to this
problem.

Proof of IS ⊂ NRV(%). Let δ < −1. Take y ∈ IS. We want to show that y ∈
NRV(%).

First assume that r ∈ C1 ∩ NRV(δ + α). Set w(t) = Φ(ty′(t)/y(t)). Then w is
positive and satisfies equation (3.4) for large t, which can be written as

tw′ =
Lp(t)
Lr(t)

+ w
(
α− 1− tr′(t)

r(t)
− (α− 1)wβ−1

)
. (5.23)

We claim that limt→∞ w(t) = %α−1. Let w′(t) > 0 for large t. Then we obtain
limt→∞ w(t) = A ∈ (0,∞]. If A = ∞, then the right-hand side of (5.23) tends to
−∞, and so limt→∞ tw′(t) = −∞, which contradicts eventual positivity of w′. If
A ∈ (0,∞) \ {%α−1}, then tw′(t) ∼ C := A(−1− δ − (α − 1)Aβ−1) 6= 0 as t→∞.
Thus, w(t) − w(a) ∼ C

∫ t
a

1/sds = C ln(t/a) as t → ∞, which contradicts A ∈ R.
Now let w′(t) < 0 for large t, say t ≥ t0. Then limt→∞ w(t) = B ∈ [0,∞). If
B = 0, then limt→∞ ty′(t)/y(t) = 0, and so y ∈ NSV. This contradicts with the
fact that SV solutions cannot increase (see Lemma 4.2). If B ∈ (0,∞) \ {%α−1},
then similarly as above we obtain a contradiction with B ∈ R. Finally, assume that
there exists a sequence {tn}n, with limn→∞ tn =∞, such that w′(tn) = 0. We take
here zeroes of w′ being consecutive. From (5.23), we have

0 =
Lp(tn)
Lr(tn)

+ w(tn)
(
α− 1− tnr

′(tn)
r(tn)

− (α− 1)wβ−1(tn)
)
. (5.24)

Hence, w(t) hits the real roots of

0 =
Lp(tn)
Lr(tn)

+ λ
(
α− 1− tnr

′(tn)
r(tn)

− (α− 1)λβ−1
)

(5.25)

at t = tn. Observe that for large n, the roots are (arbitrarily) close to the roots of

0 = µ(−1− δ − (α− 1)µβ−1), (5.26)

i.e., µ = 0 and µ = %α−1. Hence, if |λ|, λ = λ(n) being the root of (5.25),
is very small (such root clearly corresponds to the root µ = 0 of (5.26)), then
α−1−tnr′(tn)/r(tn)−(α−1)|λ|β−1 > 0, thanks to α−1−tnr′(tn)/r(tn)→ α−1−δ−
α = −1−δ > 0 as n→∞. Because of positivity of Lp/Lr, we must then have λ < 0,
which is impossible since w(t) > 0. Hence, w(t) hits the positive roots of (5.25) at
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t = tn which tends to %α−1 as n → ∞. Consequently, limn→∞ w(tn) = %α−1. The
function w is monotone between zeroes of w′, thus min{w(tn), w(tn+1)} ≤ w(t) ≤
max{w(tn), w(tn+1)}, tn ≤ t ≤ tn+1. Hence, limt→∞ w(t) = %α−1 also in this case.

Altogether we have limt→∞(ty′(t)/y(t))α−1 = limt→∞ w(t) = %α−1, which im-
plies y ∈ NRV(%).

Now we drop the assumption of continuous differentiability and normality of
regular variation of r. From Proposition 2.3–(viii), there exists r̄ such that r̄(t) ∼
r(t) as t→∞ and r̄ ∈ C1 ∩ NRV(δ + α). For every ε ∈ (0, 1) there exists tε such
that (1−ε)r̄(t) ≤ r(t) ≤ (1+ε)r̄(t) for t ≥ tε. According to [5, Lemma 4.1.2], there
exist eventually positive increasing solutions u, v, respectively, of the problems(

(1− ε)r̄(t)Φ(u′)
)′ = p(t)Φ(u), u(tε) = u0, u

′(tε) = u1, (5.27)

and (
(1 + ε)r̄(t)Φ(v′)

)′ = p(t)Φ(v), v(tε) = v0, v
′(tε) = v1, (5.28)

with u0, u1, v0, v1 positive and such that

(1− ε)r̄(tε)
(u1

u0

)α−1

≤ r(tε)
(y′(tε)
y(tε)

)α−1

≤ (1 + ε)r̄(tε)
(v1

v0

)α−1

.

Define wu = (1 − ε)r̄Φ(u′/u), wy = rΦ(y′/y), and wv = (1 + ε)r̄Φ(v′/v). These
functions satisfy respectively the generalized Riccati equations w′u = p(t) − (α −
1)(1− ε)1−β r̄1−β(t)wβu , w′y = p(t)− (α− 1)r1−β(t)wβy , and w′v = p(t)− (α− 1)(1 +
ε)1−β r̄1−β(t)wβv . Since we actually have (1− ε)1−β r̄1−β ≤ −r1−β ≤ (1 + ε)1−β r̄1−β

and wu(tε) ≤ wy(tε) ≤ wv(tε), from the classical result on differential inequalities
(see [11, Chapter III, Section 4]), we obtain wu(t) ≤ wy(t) ≤ wv(t) for t ≥ tε.
Consequently,

(1− ε)
( tu′(t)
u(t)

)α−1

≤ r(t)
r̄(t)

( ty′(t)
y(t)

)α−1

≤ (1 + ε)
( tv′(t)
v(t)

)α−1

(5.29)

for t ≥ tε. From the previous part we know that limt→∞ tu′(t)/u(t) = % =
limt→∞ tv′(t)/v(t). Hence,

(1− ε)β−1% ≤ lim inf
t→∞

ty′(t)
y(t)

≤ lim sup
t→∞

ty′(t)
y(t)

≤ (1 + ε)%.

Since ε ∈ (0, 1) was arbitrary, limt→∞ ty′(t)/y(t) = % and so y ∈ NRV(%). �

Proof of asymptotic formula in the case δ < −1. Take y ∈ NRV(%) ∩ IS. Clearly,
y ∈ IS∞ since % > 0. From (1.1), (rΦ(y′))′ = pΦ(y) ∈ RV(δ+(α−1)%) = RV(−1).
Hence, rΦ(y′) ∈ Π(t(rΦ(y′))′) = Π(tpΦ(y)), in view of Proposition 2.4–(v). Thanks
to relation (2.5), we now obtain

tp(t)Φ(y(t)) ∼ r(t)Φ(y′(t))− 1
t

∫ t

a

r(s)Φ(y′(s)) ds (5.30)

as t → ∞; without loss of generality, we may assume that y(t) > 0 and y′(t) > 0
for t ≥ a. Since rΦ(y′) ∈ SV, the Karamata integration theorem yields∫ t

a

r(s)Φ(y′(s)) ds ∼ tr(t)Φ(y′(t))
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as t → ∞. Further, from y ∈ NRV(%), y′(t) ∼ %y(t)/t as t → ∞. These two
relations imply ∫ t

a

r(s)Φ(y′(s)) ds ∼ t2−αr(t)Φ(%)yα−1(t) (5.31)

as t→∞. From (5.30) and (5.31), we obtain

r(t)Φ(y′(t))∫ t
a
r(s)Φ(y′(s)) ds

− 1
t
∼ tp(t)yα−1(t)
t2−αr(t)%α−1yα−1(t)

=
H(t)
%α−1

(5.32)

as t→∞. Relation (5.32) can be rewritten as(
ln

∫ t
a
r(s)Φ(y′(s)) ds

t

)′
= (1 + o(1))

H(t)
%α−1

(5.33)

as t→∞. Integration from t0 > a to t yields∫ t

t0

(1 + o(1))
H(s)
Φ(%)

ds = ln

∫ t
a
r(s)Φ(y′(s)) ds

Dt
, (5.34)

where D = 1
t0

∫ t0
a
r(s)Φ(y′(s)) ds.

Let
∫∞
a
H(s) ds = ∞. Then limt→∞

1
t

∫ t
a
r(s)Φ(y′(s)) ds = ∞ and since rΦ(y′)

is positive increasing, the L’Hospital rule implies that limt→∞ r(t)Φ(y′(t)) = ∞
otherwise we would get a contradiction. Hence, y ∈ IS∞,∞. Using (5.31) in (5.34),

Dt exp
{∫ t

t0

(1 + o(1))
H(s)
%α−1

ds
}

= (1 + o(1))t2−αr(t)%α−1yα−1(t)

as t → ∞. Realizing that (1 + o(1))D/%α−1 = exp ln((1 + o(1))D/%α−1) and∫∞
a
H(s) ds diverges, we have

yα−1(t) =
tα−1

r(t)
exp

{∫ t

t0

(1 + o(1))
H(s)
%α−1

ds
}

as t→∞. Raising by β − 1 we obtain formula (5.14).
Let

∫∞
a
H(s) ds < ∞. Then, from (5.34), limt→∞

1
t

∫ t
a
r(s)Φ(y′(s)) ds = M ∈

(0,∞). For the positive increasing y[1] = rΦ(y′) we must then have limt→∞ y[1](t) =
M , and so y ∈ IS∞,B . This immediately implies y′(t) ∼Mβ−1r1−β(t). Integrating
this relation and using the Karamata theorem,

y(t) ∼ y(t)− y(t0) ∼Mβ−1

∫ t

t0

r1−β(s) ds

∼ Mβ−1

(δ + 1)(1− β)
t(δ+1)(1−β)L1−β

r (t)

∼ Mβ−1

(δ + 1)(1− β)
tr1−β(t)

(5.35)

as t→∞. This implies (5.15). �

Proof of DS ⊂ NRV(%). Let δ > −1. Assume first that r ∈ C1 ∩ NRV(δ + α).
Take y ∈ DS. We want to show that y ∈ NRV(%). Set again w(t) = Φ(ty′(t)/y(t)).
Then w is negative and satisfies equation (3.4) for large t, which can be written as

tw′ =
Lp(t)
Lr(t)

+ (−w)
( tr′(t)
r(t)

+ 1− α− (α− 1)(−w)β−1
)
.
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We claim that limt→∞ w(t) = Φ(%). Some of the arguments are similar to those in
the case δ < −1, but some steps require a different approach. Indeed, if w′(t) > 0
for large t, then limt→∞ w(t) = A− ∈ (−∞, 0]. The case A− = 0 leads to y ∈ NSV,
which contradicts with the fact that SV solutions cannot decrease (see Lemma 4.2).
If A− ∈ (−∞, 0) \ {Φ(%)}, then we obtain a contradiction with A− ∈ R similarly
as above. Let w′(t) < 0 for large t. Then limt→∞ w(t) = B− ∈ [−∞, 0). Assume
that B− = −∞. This implies limt→∞ y(t)/(ty′(t)) = 0. From (1.1), we obtain
r′Φ(y′) + (α− 1)r(−y′)α−2y′′ = pyα−1. Hence,

y′′(t)y(t)
y′2(t)

=
p(t)yα(t)

(α− 1)r(t)(−y′(t))α
− r′(t)y(t)

(α− 1)r(t)y′(t)

=
p(t)tα

(α− 1)r(t)

(−y(t)
ty′(t)

)α
− tr′(t)

(α− 1)r(t)
· y(t)
ty′(t)

→ 0
(5.36)

as t → ∞. It follows that
( y(t)
y′(t)

)′ = 1− y′′(t)y(t)
y′2(t) → 1, hence y(t)

y′(t) → ∞ as t → ∞,
which implies y′(t) > 0, contradiction with y ∈ DS. If B− ∈ (−∞, 0) \ {Φ(%)},
then we obtain a contradiction with B− ∈ R similarly as above. The case when w′

changes its sign and w(tn) = 0 can be treated using arguments analogous to those
from the proof of IS ⊂ NRV(%).

Now we drop the assumption of continuous differentiability and normality of
regular variation of r. We take r̄ ∈ C1∩NRV(δ+α) such that r̄(t) ∼ r(t) as t→∞
and (1− ε)r̄(t) ≤ r(t) ≤ (1 + ε)r̄(t) for large t. Because of a certain uniqueness in
the class DS (see [5, Section 4.1.3]) we however cannot use the same approach as
above for increasing solutions. We utilize the concept of principal solution. Along
with (1.1), let us consider the equations ((1 − ε)r̄(t)Φ(u′))′ = p(t)Φ(u) and ((1 +
ε)r̄(t)Φ(v′))′ = p(t)Φ(v). Let wu = (1− ε)r̄Φ(u′/u), wy = rΦ(y′/y), and wv = (1 +
ε)r̄Φ(v′/v), where u, y, v are eventually positive decreasing solutions of respective

half-linear equations. We have limT→∞
∫ T
a
r1−β(t)

(∫ T
t
p(s) ds

)β−1

dt = ∞ since∫∞
a
p(s) ds = ∞. By (6.2), the sets of all decreasing solutions of the equations

which are working with are in fact formed by principal solutions. Consequently
wu, wy, wv are eventually minimal solutions of the associated generalized Riccati
differential equations. Since (1− ε)r̄(t) ≤ r(t) ≤ (1 + ε)r̄(t), according to (3.5) we
obtain wu(t) ≥ wy(t) ≥ wv(t) for large t. Consequently, −(1 − ε)Φ(tu′(t)/u(t)) ≤
−r(t)/r̄(t)Φ(ty′(y)/y(t)) ≤ −(1 + ε)Φ(tv′(t)/v(t)), and the rest of the proof is
similar to that after (5.29). �

Proof of asymptotic formula in the case δ > −1. Take y ∈ NRV(%)∩DS. Clearly,
y ∈ DS0 since % < 0. From (1.1), (rΦ(y′))′ = pΦ(y) ∈ RV(δ + (α − 1)%) =
RV(−1). Hence, rΦ(y′) ∈ Π(t(rΦ(y′))′) = Π(tpΦ(y)), in view of Proposition 2.4–
(v). Without loss of generality we may assume that y(t) > 0 and y′(t) < 0 for
t ≥ a. Similarly as above – we again use (5.30) (which is true thanks to rΦ(y′) ∈
Π(tpΦ(y))) and (5.31) – we obtain

(1 + o(1))
H(t)
Φ(%)

=
(

ln
−
∫ t
a
r(s)Φ(y′(s)) ds

t

)′
as t → ∞. Integrating from t0 > a to t, we obtain (5.34) as t → ∞. Note that in
this case y[1] and D are negative.

Let
∫∞
a
H(s) ds = ∞. Then

∫ t
a
y[1](s) ds/t → 0 as t → ∞ and since −y[1] is

positive decreasing, the L’Hospital rule gives r(t)Φ(y′(t)) → 0 as t → ∞. From
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(5.31) and (5.34) we obtain

yα−1(t) = (1 + o(1))
|D|tα−1

r(t)|%|α−1
exp

{∫ t

t0

(1 + o(1))
H(s)
Φ(%)

ds
}

as t→∞, and formula (5.14) easily follows.
Let

∫∞
a
H(s) ds < ∞. Then limt→∞ r(t)Φ(y′(t)) = M ∈ (−∞, 0), and so y ∈

DS0,B . Consequently,

y(t) ∼ |M |β−1

∫ ∞
t

r1−β(s) ds (5.37)

as t→∞. The Karamata integration theorem now yields formula (5.15). �

Remark 5.6. A closer examination of the above observations shows that – under
the assumptions of Theorem 5.1 – asymptotic formulas for (non-SV) solutions of
(1.1) can be expressed in the following forms. If

∫∞
a
H(s) ds =∞, then∣∣ ∫ t

a

y[1](s) ds
∣∣ = t exp

{∫ t

a

(1 + o(1))
H(s)
Φ(%)

ds
}

(5.38)

as t → ∞. This follows from (5.33) by taking exp and including |D| and
∫ t0
a

into
(1 + o(1)) term. Note that (5.14) can be obtained by using (5.31) in (5.38). If∫∞
a
H(s) ds <∞, then∫ t

a

y[1](s) ds = Mt exp
{
−
∫ ∞
t

(1 + o(1))
H(s)
Φ(%)

ds
}

(5.39)

as t → ∞, where limt→∞ r(t)Φ(y′(t)) = M ∈ R \ {0}. This follows from (5.33) by
replacing t0 by t and t by ∞ and taking exp.

5.4. RV solutions when tαp(t)/r(t)→ C > 0. Condition (4.2) can be understood
as limt→∞ tαp(t)/r(t) = 0. A logical step is to assume that this limit is nonzero,
i.e.,

lim
t→∞

tαp(t)/r(t) = C > 0. (5.40)

As we shall see, a modification of the approach from the previous subsection leads
to the claim that any solution of (1.1) belongs to RV(Φ−1(λ)), where λ is a root of

|λ|β +
γ + 1− α
α− 1

λ− C

α− 1
= 0, (5.41)

γ ∈ R being the index of regular variation of r. More precisely, we have the following
statement, where λ1, λ2 ∈ R, λ2 < λ1, denote the (real) roots of (5.41). Imaging
the graphs of λ 7→ |λ|β − C

α−1 and λ 7→ α−1−γ
α−1 λ, it is easy to see that λ2 < 0 < λ1.

Theorem 5.7. Assume that r ∈ RV(γ) and condition (5.40) holds. Then IS ⊂
NRV(Φ−1(λ1)) and DS ⊂ NRV(Φ−1(λ2)).

Proof. Assume first that r ∈ NRV(γ) ∩ C1. Take y ∈ IS and set w(t) =
Φ(ty′(t)/y(t)). Then w satisfies

tw′ =
tαp(t)
r(t)

+ w
(
α− 1− tr′(t)

r(t)
− (α− 1)wβ−1

)
for large t. Assume that w′(t) > 0 for large t and denote limt→∞ w(t) =: A ∈ (0,∞].
If A =∞, then tw′(t)→ −∞ as t→∞, contradiction with w′ > 0. If R 3 A 6= λ1,
then tw′(t) ∼ D as t → ∞ for some D 6= 0, contradiction with A ∈ R. Assume
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that w′(t) < 0 for large t and denote limt→∞ w(t) =: B ∈ [0,∞). If B = 0, then
tw′(t)→ C as t→∞, contradiction with B ∈ R. If B ∈ \{λ1}, then tw′(t) ∼ D as
t→∞ for some D 6= 0, contradiction with B ∈ R. The case when w′(tn) = 0 with
{tn}, tn →∞ as n→∞, can be managed similarly as under the assumption C = 0.
Note only that instead of (5.26), we consider 0 = C + µ(α− 1− γ − (α− 1)µβ−1).
Altogether we obtain limt→∞ w(t) = λ1, thus limt→∞ ty′(t)/y(t) = Φ−1(λ1), i.e.,
y ∈ NRV(Φ−1(λ1)). If r is not in C1 or its regular variation is not normalized,
then we proceed similarly as in the proof of IS ⊂ NRV(%) in the previous section.

Take y ∈ DS. Again, assume first that r ∈ NRV(γ) ∩ C1 and set w(t) =
Φ(ty′(t)/y(t)). Then w satisfies

tw′ =
tαp(t)
r(t)

+ (−w)
( tr′(t)
r(t)

+ 1− α− (α− 1)(−w)β−1
)

for large t. Assume that w′(t) > 0 for large t and denote limt→∞ w(t) =: A ∈
(−∞, 0]. If A = 0, then limt→∞ tw′(t) = C, whence w(t) ∼ C ln t as t → ∞,
contradiction. The case A ∈ (−∞, 0) \ {λ2} also leads to contradiction. Assume
that w′(t) < 0 for large t and denote limt→∞ w(t) =: B ∈ [−∞, 0). If B = −∞,
then limt→∞ y(t)/(ty′(t)) = 0. From the identity in (5.36) we obtain (y(t)/y′(t))′ =
1 − y′′(t)y(t)/y′2(t) → 1 as t → ∞, thus y(t)/y′(t) → ∞ as t → ∞, contradiction
with y ∈ DS. If R 3 B 6= λ2, then tw′(t) ∼ D as t → ∞ for some D 6= 0,
contradiction with B ∈ R. The case when w′ changes its sign and w′(tn) = 0 can
be treated similarly as when y ∈ IS. Hence, limt→∞ w(t) = λ2. Consequently,
y ∈ NRV(Φ−1(λ2)). If r is not in C1 or its regular variation is not normalized,
then we proceed similarly as in the proof of DS ⊂ NRV(%) in the previous section.
Indeed, it is not difficult to see that limT→∞

∫ T
a
r1−β(t)

(∫∞
t
p(s) ds

)β−1
dt = ∞.

Consequently the solutions which we are working with are all principal solutions,
see (6.2). �

Remark 5.8. (i) A similar result as in Theorem 5.1 can be found in [21]; the
approach is however somewhat different.

(ii) A fixed point approach was used in [12, 13] to derive conditions which guar-
antee the existence of a couple of RV solutions (with different indices which exactly
correspond to the indices from Theorem 5.7) to equation (1.1). For r(t) 6≡ 1, the
concept of generalized regular variation was used. Similarly, the conditions for the
existence of a SV solution and a non-SV solution are obtained in those works in
the general case which can reduce to condition (4.2), i.e., C = 0. The conditions
are in a more general integral form than (5.40) (for instance, that there exists the
proper limit limt→∞ tα

∫∞
t
p(s) ds when r(t) ≡ 1) and are shown to be necessary,

cf. Remark 5.5 and Subsection 5.2. On the other hand, here we prove regular
variation of all eventually positive solutions.

(iii) Another approach which is based on a transformation of dependent variable
– and is at disposal in the linear case – is presented in the proof of Theorem 7.1.

(iv) The extreme case where C from (7.4) is equal to∞ corresponds, in a certain
sense, with the setting in [19] and [21, Section 3]. Solutions in the class Γ, which
forms a proper subset of rapidly varying functions, are studied there.

(v) A natural problem is to establish asymptotic formula for solutions from
Theorem 5.7. This is done in Theorem 7.1 for linear equations.
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6. Classification of nonoscillatory solutions in the framework of
regular variation

Denote

SSV = S ∩ SV, SRV(ϑ) = S ∩RV(ϑ),

SNSV = S ∩ NSV, SNRV(ϑ) = S ∩ NRV(ϑ).

If (4.1) holds, we set

J =
∫ ∞
a

1
t

(Lp(t)
Lr(t)

)β−1

dt and R =
∫ ∞
a

1
t
· Lp(t)
Lr(t)

dt

We actually have

J =
∫ ∞
a

G(t) dt and R =
∫ ∞
a

H(t) dt

under condition (4.1). Further denote

P = {y ∈ S : y is principal}.
Theorem 4.1, Theorem 5.1, Lemma 4.2, Remark 5.2, Remark 5.6, and [4, Theo-

rem B] (see also (6.2) below) yield the following corollary.

Corollary 6.1. Let (4.1) and (4.2) hold.
(i) Assume that δ < −1.

(i-a) If J =∞, then SNSV = SSV = DS = DS0,0 = P. For any y ∈ DS formula
(4.3) holds.

(i-b) If J < ∞, then SNSV = SSV = DS = DSB,0 = P. For any y ∈ DS
formula (4.4) holds.

(i-c) If R = ∞, then SNRV(%) = SRV(%) = IS = IS∞,∞. For any y ∈ IS
formulae (5.2), (5.14), (5.38) hold.

(i-d) If R < ∞, then SNRV(%) = SRV(%) = IS = IS∞,B. For any y ∈ IS
formulae (5.4), (5.15), (5.39) hold.

(ii) Assume that δ > −1.
(ii-a) If J = ∞, then SNSV = SSV = IS = IS∞,∞. For any y ∈ IS formula

(4.3) holds.
(ii-b) If J < ∞, then SNSV = SSV = IS = ISB,∞. For any y ∈ IS formula

(4.4) holds.
(ii-c) If R =∞, then SNRV(%) = SRV(%) = DS = DS0,0 = P. For any y ∈ DS

formulae (5.3), (5.14), (5.38) hold.
(ii-d) If R <∞, then SNRV(%) = SRV(%) = DS = DS0,B = P. For any y ∈ DS

formulae (5.5), (5.15), (5.39) hold.

The following example shows that the case, when one of the integrals J,R is
convergent while the other one is divergent, may generally occur. Note that this is
not possible in the linear case (where we always have J = R since β = 2). Thus we
see that half-linear equations may exhibit more complex behavior than linear ones.

Example 6.2. Let r, p be such that Lp(t)/Lr(t) = lnγ t with γ ∈ (−∞, 0). Note
that then (4.2) is satisfied. Let a in J,R be equal to 2. If α ∈ (1, 2), then take γ
such that −1 < γ < 1− α, and we obtain

R = lim
t→∞

[ lnγ+1 s

γ + 1

]t
2

=∞, J = lim
t→∞

[ lnγ(β−1)+1 s

γ(β − 1) + 1

]t
2
<∞.
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If α > 2, then take γ such that 1− α < γ < −1, and we obtain

R <∞, J =∞.

To include our results into a broader context, let us recall several existence
results concerning asymptotic classes defined in Section 3. We already know that
the classes DS and IS are nonempty. We set

J1 = lim
T→∞

∫ T

a

r1−β(t)
(∫ t

a

p(s) ds
)β−1

dt,

J2 = lim
T→∞

∫ T

a

r1−β(t)
(∫ T

t

p(s) ds
)β−1

dt.

The convergence or divergence of the above integrals fully characterize the classes
DS0,DSB , ISB , and IS∞. In particular, according to [5, Theorems 4.1.1–4.1.3]:

IS = IS∞ ⇔ J1 =∞,
IS = ISB ⇔ J1 <∞,

DS = DSB ⇔ J1 =∞ and J2 <∞,
DS = DS0 ⇔ J2 =∞,

J1 <∞ and J2 <∞ ⇒ DS0 6= ∅ 6= DSB .

Denote

Jr =
∫ ∞
a

r1−β(s) ds, and Jp =
∫ ∞
a

p(s) ds.

It is useful to recall relations between J1, J2, Jr, Jp ([5, Lemma 4.1.5]): If J1 <∞,
then Jr < ∞. If J2 < ∞, then Jp < ∞. If J2 = ∞, then Jr = ∞ or Jp = ∞. If
J1 = ∞, then Jr = ∞ or Jp = ∞. It holds J1 < ∞ and J2 < ∞ if and only if
Jr <∞ and Jp <∞.

Further we set

R1 = lim
T→∞

∫ T

a

p(t)
(∫ t

a

r1−β(s) ds
)α−1

dt,

R2 = lim
T→∞

∫ T

a

p(t)
(∫ T

t

r1−β(s) ds
)α−1

dt.

Observe that the integral Jr (resp. Jp) for (1.1) plays the same role as Jp (resp.
Jr) for the reciprocal equation (5.1). Similarly, the integrals J1, J2 become R1, R2,
respectively, for the reciprocal equation.

The integrals J1, J2, R1, R2 characterize the subclasses defined in (3.1) in the
following way (see [4, Theorem 1]):

(I) J1 = J2 = R1 = R2 =∞ ⇒ IS = IS∞,∞,DS = DS0,0

(II) J1 = R2 =∞, J2 <∞, R1 <∞ ⇒ IS = IS∞,B ,DS = DSB
(III) J1 <∞, R2 <∞, J2 = R1 =∞ ⇒ IS = ISB ,DS = DS0,B

(IV) J1, J2, R1, R2 <∞ ⇒ IS = ISB ,DS0,0 = ∅,DS0,B 6= ∅ 6= DSB
(V) J1 = J2 = R2 =∞, R1 <∞ ⇒ IS = IS∞,B ,DS = DS0,0

(VI) J1 = J2 = R1 =∞, R2 <∞ ⇒ IS = IS∞,∞,DS = DS0,B

(VII) J1 = R1 = R2 =∞, J2 <∞ ⇒ IS = IS∞,∞,DS = DSB
(VIII) J2 = R1 = R2 =∞, J1 <∞ ⇒ IS = ISB ,DS = DS0,0.

(6.1)
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Necessary conditions for non-emptiness in the subclasses can be found in [5, Theo-
rem 4.1.5]. Note that the sufficient conditions in cases (V), (VI) may occur only if
α > 2, and the sufficient conditions in cases (VII), (VIII) may occur only if α < 2.

We have already applied the following characterization of principal solutions ([4,
Theorem B]) several times in our paper:

P =

{
DSB if J1 =∞ and J2 <∞
DS0 otherwise.

(6.2)

Let us now discuss our results in the just described framework of general existence
conditions. Let us assume that (4.1) holds. First note that Jp < ∞ and Jr = ∞
when δ < −1, while Jp = ∞ and Jr < ∞ when δ > −1. In view of the Karamata
theorem,

∫∞
t
p(s) ds ∼ tp(t)/(−δ − 1) as t → ∞ and

∫ t
a
r1−β(s) ds ∼ tr1−β(t)/%

when δ < −1, while
∫ t
a
p(s) ds ∼ tp(t)/(δ + 1) as t → ∞ and

∫∞
t
r1−β(s) ds ∼

−tr1−β(t)/% when δ > −1. Hence, if δ < −1, then

J1 =∞ = R2, J2 =∞⇔ J =∞, R1 =∞⇔ R =∞,

while if δ > −1, then

J2 =∞ = R1, J1 =∞⇔ J =∞, R2 =∞⇔ R =∞.

Now we can easily see how the conditions in Corollary 6.1 match the general
existence conditions (6.1). More precisely, the setting in (I) corresponds to (i-a),
(ii-a), the setting in (II) corresponds to (i-b), (i-d), the setting in (III) corresponds
to (ii-b), (ii-d), the setting in (V) corresponds to (i-a), (i-d), the setting in (VI)
corresponds to (ii-a), (ii-d), the setting in (VII) corresponds to (i-b), (i-c), the set-
ting in (VIII) corresponds to (ii-b), (ii-c). It is worth mentioning that the behavior
of slowly varying components of r, p appear to be crucial. In view of relations
among J, J1, J2, R,R1, R2, our conditions must naturally guarantee non-emptiness
in the subclasses defined by (3.1) and yield the right-hand sides of (I)–(III) and of
(V)–(VIII); arguments are however completely different from the general results in
the previous literature. In addition, we claim that these subclasses are formed by
(normalized) slowly varying functions or (normalized) regularly varying functions
of index %, and all their elements satisfy certain asymptotic formula. Note that the
only case which is not included in Corollary 6.1 is (IV); the reason is that δ < −1
excludes J1 <∞ while δ > −1 excludes R1 <∞.

7. Some methods that are not fully available in the half-linear case

Consider the linear differential equation

(r(t)y′)′ = p(t)y, (7.1)

where r, p are positive continuous functions on [a,∞). If α = 2, then (1.1) reduces
to (7.1). The main reasons why the below discussed tools cannot be directly used
in the half-linear case are the lack of the additivity of the solution space and the
absence of a reasonable Wronskian identity for (1.1).

7.1. Transformation of dependent variable: the choice h(t) = tϑ. We use
an argument based on transformation of dependent variable where Theorems 4.1
and 5.1 are applied to obtain asymptotic formulae for solutions of (7.1) in new
situations.
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Let h 6= 0 be a differentiable function such that rh′ is also differentiable. Let us
introduce a new independent variable y = hu. Then we have the identity

h[(ry′)′ − py] = (rh2u′)′ − h[−(rh′)′ + ph]u.

In particular, if y is a solution of (7.1), then u is a solution of the equation

(r̃(t)u′)′ − p̃u = 0, (7.2)

where r̃ = rh2 and p̃ = h[−(rh′)′ + p].
Let ϑ1, ϑ2, ϑ2 < ϑ1, denote the (real) roots of the equation

ϑ2 + ϑ(γ − 1)− C = 0, (7.3)

where C ∈ (0,∞), γ ∈ R. Clearly, ϑ2 < 0 < ϑ1.

Theorem 7.1. Assume that r ∈ NRV(γ) ∩ C1, γ ∈ R,

lim
t→∞

t2p(t)
r(t)

= C ∈ (0,∞), (7.4)

Li(t) :=
t2p(t)
r(t)

− ϑi
tr′(t)
r(t)

− ϑi(ϑi − 1) ∈ SV, (7.5)

i = 1, 2. Then IS(7.1) ⊂ NRV(ϑ1) and DS(7.1) ⊂ NRV(ϑ2). Moreover,

y1(t) ∈ ΠRV
(
ϑ1; t1−ϑ1y′1(t)− ϑ1t

−ϑ1y1(t)
)

for every y1 ∈ IS(7.1),

−y2(t) ∈ ΠRV
(
ϑ2;−t1−ϑ2y′2(t) + ϑ2t

−ϑ2y2(t)
)

for every y2 ∈ DS(7.1),

and
(i) if, for i = 1 or i = 2,

∫∞
a

Li(s)
s ds =∞, then

yi(t) = tϑi exp
{∫ t

a

(1 + o(1))
Li(s)

(γ + 2ϑ1 − 1)s
ds
}
, (7.6)

with t−ϑ1y1(t)↗∞ and t−ϑ2y2(t)↘ 0 as t→∞;
(ii) if, for i = 1 or i = 2,

∫∞
a

Li(s)
s ds <∞, then

yi(t) = Dit
ϑi exp

{
−
∫ ∞
t

(1 + o(1))
Li(s)

(γ + 2ϑ1 − 1)s
ds
}
, (7.7)

with t−ϑ1y1(t)↗ D1 = D1(y1) ∈ (0,∞) and t−ϑ2y2(t)↘ D2 = D2(y2) ∈ (0,∞) as
t→∞. Moreover, |tϑiyi(t)−Di| ∈ SV and

Li(t)
Di − t−ϑiyi(t)

= o(1) (7.8)

as t→∞.

Proof. Let S̃, ĨS, D̃S have the same meaning with respect to (7.2) as the classes
S(7.1), IS(7.1),DS(7.1), respectively, have with respect to (7.1). Set δ = γ − 2, h =
tϑi , and δi = δ+2ϑi, i = 1, 2. Then r̃ becomes r̃(t) = ri(t) := r(t)t2ϑi ∈ RV(δi+2)
and p̃(t) = pi(t) := ri(t)

t2 Li(t) ∈ RV(δi), i = 1, 2. We have Lpi (t)

Lri (t)
= t2pi(t)

ri(t)
=

Li(t) ∈ SV with Li(t) → 0 as t → ∞, i = 1, 2, thanks to (7.4). Further, since
ϑ1,2 = 1

2

(
−δ − 1±

√
(δ + 1)2 + C

)
, we obtain δ1 > −1 and δ2 < −1.

Take y ∈ IS(7.1). Set y = hu with h(t) = tϑ1 . Then u solves (7.2) with p̃ =
p1, r̃ = r1. Clearly, u ∈ S̃ = ĨS ∪ D̃S. If u ∈ ĨS, then u ∈ NSV and u ∈ Π(tu′(t))
by Theorem 4.1. Hence, y ∈ RV(ϑ1) and y ∈ Π(ϑ1; t1−ϑ1y′(t)−ϑ1t

−ϑ1y(t)). Denote
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gi(t) = tpi(t)
|δi+1|ri(t) , i = 1, 2. By Theorem 4.1, u(t) = exp{

∫ t
a
(1 + o(1))g1(s) ds}

with u(t) → ∞ as t → ∞, provided
∫∞
a
g1(s) ds = ∞. Formula (7.6) with i =

1 now easily follows if we realize that y = tϑ1u, tp1
r1

= L1
t , and δ1 = δ + 2ϑ1.

Similarly we obtain formula (7.7) with i = 1, since if
∫∞
a

L1(s)
s ds <∞, then u(t) =

D1 exp
{
−
∫∞
t

(1 + o(1))g1(s) ds
}

as t → ∞ with limt→∞ u(t) = D1 ∈ (0,∞). If
u ∈ D̃S, then u ∈ NRV(−δ1− 1) by Theorem 5.1. Hence, recalling that ϑ1 +ϑ2 =
−δ − 1, y ∈ NRV(ϑ2) which contradicts y ∈ IS(7.1) since ϑ2 < 0.

Take y ∈ DS(7.1). We proceed similarly as before. Now we set y = hu with
h(t) = tϑ2 . Consequently, u is in S̃ = ĨS ∪ D̃S where p̃ = p2 ∈ RV(δ2) and
r̃ = r2 ∈ RV(δ2 + 2) with δ2 < −1. If u ∈ D̃S, then we apply Theorem 4.1
to obtain u ∈ NSV, −u ∈ Π(−tu(t)), and u(t) = exp{−

∫ t
a
(1 + o(1))g2(s) ds} as

t → ∞ provided
∫∞
a
g2(s) ds = ∞ while u(t) = D2 exp{

∫∞
t

(1 + o(1))g2(s) ds} as
t → ∞ provided

∫∞
a
g2(s) ds < ∞, where limt→∞ u(t) = D2 ∈ (0,∞). Asymptotic

formulae (7.6) with i = 2 and (7.7) with i = 2 then clearly follow. If u ∈ ĨS, then
u ∈ NRV(−δ2−1) by Theorem 5.1. This implies y ∈ NRV(ϑ1), which contradicts
y ∈ DS(7.1).

By (4.5), we have Lpi(t)/(Lri(t)(Di − u(t))) = o(1) as t → ∞, and so (7.8)
follows. �

Remark 7.2. (i) If r = 1, then formula (7.6) with i = 2 (i.e., for decreasing
solutions) reduces to the former formula in [7, Theorem 0.2]. The quoted result
was however proved by a quite different method. For increasing solutions and with
r(t) 6= 1, Theorem 7.1 is new.

(ii) Observe that – for linear equations – we have presented another method
of the proof of IS(7.1) ⊂ NRV(ϑ1) and DS(7.1) ⊂ NRV(ϑ2), see the proof of
Theorem 5.7 and Remark 5.8.

(iii) Assuming r ∈ NRV(γ) ∩ C1 and (7.4), if ϑitr′(t)/r(t) − t2p(t)/r(t) ∈ Π,
then condition (7.5) is satisfied thanks to Proposition 2.4–(iv).

To obtain information about the behavior of solutions in DS(7.1) and IS(7.1),
the previous theorem requires both the functions L1 and L2 to be SV and so they
are necessarily positive. The next remark reveals that asymptotic formulas for all
solutions in S(7.1) can be obtained also in the case when one of these functions is
not positive. First however we give an example which discusses various possibilities
for behavior of the functions L1 and L2. Let ϑi, i = 1, 2, denote the roots of (7.3).
The functions L1, L2 can be written in the form

Li(t) = ϑi

(
γ − tr′(t)

r(t)

)
− C +

t2p(t)
r(t)

,

i = 1, 2. For r ∈ NRV(γ) ∩ C1, we have tr′(t)/r(t) = γ + tL′r(t)/Lr(t).

Example 7.3. (a) If r(t) = tγ , then L1 = −C + t2p/t = L2, and so the functions
L1 and L2 coincide.

(b) Let r ∈ NRV(γ)∩C1 and p(t) = CLr(t)tγ−2, C ∈ (0,∞). Then t2p(t)/r(t) =
C, and so Li = −ϑitL′r(t)/Lr(t), i = 1, 2. If, in addition, L′r > 0, then L1 < 0 and
L2 > 0. Moreover, Lr can be taken such that L2 ∈ SV. An example is Lr(t) = ln t.
Thus the situation where (7.4) is fulfilled and (7.5) holds for only one index can
occur.
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(c) Let p(t) = (C ln t+ ϑ1 + C/ln t) tγ−2, C ∈ (0,∞), and r(t) = tγ ln t. Then
r ∈ NRV(γ)∩C1 and condition (7.4) is fulfilled. Further, L1(t) = C/ ln2 t ∈ SV and
L2(t) = (ϑ1 − ϑ2)/ ln t + C/ ln2 t ∈ SV. Since (−1/ ln t)′ = L1(t)/(Ct), we obtain∫∞
a
L1(t)/tdt < ∞. On the other hand, we have (ϑ1 − ϑ2)(ln(ln t))′ < L2(t)/t,

hence
∫∞
a
L2(t)/tdt = ∞. Consequently, the case when

∫∞
a
Li(t)/tdt = ∞ while∫∞

a
L3−i(t)/tdt <∞ for one of i ∈ {1, 2} can generally occur in Theorem 7.1.

Remark 7.4. (i) Assume that L2 ∈ SV, r ∈ NRV(γ)∩C1, and (7.4) holds. There
is no assumption on L1; in particular, L1 might not be positive. As we could see
in Example 7.3-(b), such a case can occur. Take y ∈ S(7.1). Set y = hu, where
h(t) = tϑ2 . Then u ∈ S̃ = ĨS∪D̃S where p̃ = p2 ∈ RV(δ2) and r̃ = r2 ∈ RV(δ2 +2)
with δ2 < −1. If u ∈ D̃S, then – as in the proof of the previous theorem – we
obtain that y is in NRV(ϑ2) (and so in DS) and satisfies formula (7.6) with i = 2
or formula (7.7) with i = 2. If u ∈ ĨS, then u ∈ NRV(−δ2 − 1) by Theorem 5.1,
and so y ∈ NRV(ϑ1) (which yields y ∈ IS(7.1)). To obtain an asymptotic formula,
we use Remark 5.2. For instance, if

∫∞
a

L2(s)
s ds =∞, then

y(t) = tϑ2
t

r2(t)
exp

{∫ t

a

(1 + o(1))
sp2(s)

(−1− δ2)r2(s)
ds
}

=
tϑ1

Lr2(t)
exp

{∫ t

a

(1 + o(1))
L2(s)

(1− γ − 2ϑ2)s
ds
}
.

(7.9)

Similarly we proceed if
∫∞
a

L2(s)
s ds < ∞. The case when L1 ∈ SV (with L2 not

being necessarily positive) can be treated analogously.
(ii) A closer examination of the previous observation shows that the case may

happen such that a formula for solutions of equation (7.2) where the coefficient
p̃ is not positive is obtained. Indeed, assume, for instance, that L2 ∈ SV with∫∞
a

L2(s)
s ds =∞, and L1(t) 6> 0. We already know that y ∈ IS(7.1) is in NRV(ϑ1)

and satisfies formula (7.9). Take this y and set y(t) = tϑ1v(t). Then v satisfies
equation (7.2) with r̃ = r1 and p̃ = p1 = r1

t2 L1 6> 0. The formula for v can easily be
obtained from v = t−ϑ1y. Note that monotonicity for v is not guaranteed.

Remark 7.5. Similar arguments to those in the proof of Theorem 7.1 can be used
to obtain a variant of Theorem 5.1 in the linear case. In fact, the following setting
leads to C = 0 and γ = δ+2. Thus, as for the roots of (7.3), we obtain ϑ1 = −δ−1,
ϑ2 = 0 when δ < −1, resp. ϑ1 = 0, ϑ2 = −δ−1 when δ > −1. Hence, in both cases
we set h(t) = t−δ−1. Other details are left to the reader. The statement reads as
follows:

Let p ∈ RV(δ), r ∈ NRV(δ + 2) ∩ C1, δ 6= −1, and limt→∞ t2p(t)/r(t) = 0.
Assume that L ∈ SV, where

L(t) =
Lp(t)
Lr(t)

+ Φ(%)
(
δ + 2− tr′(t)

r(t)

)
.

If δ < −1, then IS(7.1) ⊂ NRV(−1− δ). If δ > −1, then DS(7.1) ⊂ NRV(−1− δ).
Moreover, for any y ∈ IS(7.1) when δ < −1 and any y ∈ DS(7.1) when δ > −1, the
following hold:

(a) If
∫∞
a
L(s)/sds =∞, then

y(t) = t−δ−1 exp
{∫ t

a

1 + o(1)
−δ − 1

· L(s)
s

ds
}
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with y(t)tδ+1 ↗ ∞ as t → ∞ provided y ∈ IS(7.1) and δ < −1, and y(t)tδ+1 ↘ 0
as t→∞ provided y ∈ DS(7.1) and δ > −1.

(b) If
∫∞
a
L(s)/sds <∞, then

y(t) = Dt−δ−1 exp
{
−
∫ ∞
t

1 + o(1)
−δ − 1

· L(s)
s

ds
}

with y(t)tδ+1 ↗ D = D(y) ∈ (0,∞) as t → ∞ provided y ∈ IS(7.1) and δ < −1,
resp. y(t)tδ+1 ↘ D = D(y) ∈ (0,∞) as t → ∞ provided y ∈ DS(7.1) and δ > −1.
Moreover, |y(t)tδ+1 −D| ∈ SV and

L(t)
D − y(t)tδ+1

= o(1)

as t→∞.

7.2. Transformation of dependent variable: the choice h(t) =
∫∞
t

1/r(s) ds
or h(t) =

∫ t
a

1/r(s) ds. We have seen how the results of Theorem 4.1 and The-
orem 5.1 can be related by the reciprocity principle. In this subsection we show
that for linear equations the results in these theorems can be linked via other tool,
namely a suitable transformation of dependent variable. We do not discuss all
possibilities for the setting. Rather we illustrate the method on one selected case.
Assume that p ∈ RV(δ), r ∈ RV(δ+ 2) with (4.2), and δ > −1. Take, for instance,
y ∈ IS(7.2). Set y = hu where h(t) =

∫∞
t

1/r(s) ds; this integral converges thanks
to δ > −1. Then u solves (7.1), where r̃ = rh2 ∈ RV(δ̃ + 2) and p̃ = ph2 ∈ RV(δ̃)
with δ̃ = −δ − 2 < −1. Moreover, Lep(t)/Ler(t) = Lp(t)Lh2(t)/(Lr(t)Lh2(t)) =
Lp(t)/Lr(t)→ 0 as t→∞. Further, H̃(t) := tp̃(t)/r̃(t) = tp(t)/r(t). Since y ∈ IS
and 1/h increases, u ∈ ĨS. Application of Theorem 5.1 yields u ∈ NRV(%), where
% = −1 − δ̃ = δ + 1. Hence, y/h ∈ NRV(%). Since −h′ = 1/r ∈ RV(−δ − 2) im-
plies h ∈ NRV(−δ − 1) by Proposition 2.3-(ix), we obtain y ∈ NSV. Assume, for
instance,

∫∞
a
tp(t)/r(t) dt =∞. The Karamata theorem yields (δ + 1)h(t) ∼ t/r(t)

as t→∞. Hence, see (5.14),

y(t) =
th(t)
r̃(t)

exp
{∫ t

a

(1 + o(1))
H̃(s)
%

ds
}

=
th(t)

r(t)h2(t)
exp

{∫ t

a

(1 + o(1))
sp(s)

(δ + 1)r(s)
ds
}

= (1 + o(1))(δ + 1) exp
{∫ t

a

(1 + o(1))
sp(s)

(δ + 1)r(s)
ds
}

= exp
{∫ t

a

(1 + o(1))
sp(s)

(δ + 1)r(s)
ds
}

as t→∞, cf. (4.3). Similarly we treat other cases.

7.3. Reduction of order formula. Another tool which is not at disposal in the
half-linear case is the reduction of order formula. If y is a solution of (7.1) such
that y(t) 6= 0 on [b,∞), then any other solution x of (7.1) can be expressed as

x(t) = c1y(t) + c2y(t)
∫ t

b

ds
r(s)y2(s)

,
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c1, c2 ∈ R. In particular, u(t) = y(t)
∫ t
b

1/(r(s)y2(s)) ds is a linearly independent
solution (w.r.t. y). If r ∈ RV(δ + 2) and y ∈ SV resp. y ∈ RV(−δ − 1), then
1/(ry2) is RV of index different form −1, and hence the Karamata theorem can be
applied to get u ∈ RV(−δ − 1) resp. u ∈ SV with

u(t) ∼ t

|δ + 1|r(t)y(t)

as t → ∞. Similarly, under the setting of Theorem 7.1, if y ∈ RV(ϑi), then
u ∈ RV(ϑ3−i) with

u(t) ∼ t

|γ + 2ϑi + 1|r(t)y(t)
as t→∞, i = 1, 2.

8. Conclusion, further research

We have presented several methods for the study of asymptotic properties of
linear and half-linear differential equations in the framework of regular variation.
We believe that these ideas and their modifications will be useful also in other
settings, for example:

• (half-)linear equation of the form (1.1) with p(t) < 0 or with p(t) which
may change its sign;
• nearly (half-)linear differential equations (i.e., the equations of the form

(1.1) where Φ in both terms is replaced by a regularly varying function at
infinity or at zero of index α);
• (half-)linear differential equations with deviated arguments;
• first order (half-)linear systems or higher order equations;
• (half-)linear difference equations;
• (half-)linear dynamic equations on time scales.

Even though some results for linear or half-linear differential equations can be
established via more approaches, not all these methods can be applicable in other
settings. For instance, the reciprocity principle cannot be used in dynamic equations
on time scales unless the graininess is constant; thus the approach from Section 5.3
or Section 7.1 might be more suitable for such an extension. Further, the facts
like the absence of a chain rule (and, consequently, a substitution in the integral)
in a discrete case or a time scale case might substantially affect availableness of
some approaches. For half-linear differential equations with deviated argument, the
Riccati type substitution does not lead to a “pure” generalized Riccati equation,
which might be a serious problem in a delicate asymptotic analysis.

Of course, there is also some space for improving the presented results. In
particular:
• Establish a half-linear extension of Theorem 7.1 – the part concerning as-

ymptotic formulas. One of the proper tools is the transformation into a modified
generalized Riccati differential equation. This tool can somehow substitute the
transformation y = hu used in Section 7.1 and it actually linearizes the problem,
cf. [22], where all positive solutions of (1.1) are treated under this setting. A dif-
ferent approach, based on the Banach fixed point theorem, is used in [14] where the
existence of regularly varying solutions of (5.16) along with asymptotic formulae
is derived under the condition limt→∞ tα−1

∫∞
t
p(s) ds = C and some additional

assumptions.
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• Examine whether some “purely linear” techniques (e.g. the use of the Wron-
skian identity or the transformation of dependent variable) can directly be applied
to half-linear equation at least in some “asymptotic sense”.
• To obtain asymptotic formulae under relaxation of some conditions, such as

limt→∞ tαp(t)/r(t) = C, into an integral form. See [9] for the linear case.
• Examine the borderline case δ = −1. A suitable transformation of independent

variable and utilization of Theorems 4.1 and 5.1 can quite satisfactorily solve this
problem, cf. [22].
• Use the theory of regular variation and the de Haan theory to find more precise

asymptotic formulae for solutions of (1.1) (and to find estimations for remainders),
see e.g. [8, Theorem 0.1-B] for the linear case.
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