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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
P-LAPLACIAN STURM-LIOUVILLE BOUNDARY VALUE

PROBLEMS

D. D. HAI

Abstract. We prove the existence of positive solutions of the Sturm-Liouville
boundary value problem

−(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,

where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear

condition and is allowed to be singular at u = 0 with semipositone structure.
Our results extend previously known results in the literature.

1. Introduction

We consider the boundary-value problem

−(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,
(1.1)

where φ(u′) = |u′|p−2u′, p > 1, a, b, c, d are nonnegative constants with ac+ad+bc >
0, f : (0, 1) × (0,∞) → R is allowed to be singular at u = 0, and λ is a positive
parameter.

When p = 2 and f : [0, 1]× [0,∞)→ R is continuous, Yang and Zhou [13] prove
the existence of a positive solution to (1.1) under the assumption

lim
u→∞

sup
t∈[0,1]

f(t, u)
u

<
λ1

λ
< lim
u→0+

inf
t∈[0,1]

f(t, u)
u

,

where λ1 > 0 denotes the first eigenvalue of −(r(t)u′)′ = λg(t)u in (0, 1) with
Sturm-Liouville boundary conditions. Their result allows limu→∞ supt∈[0,1]

f(t,u)
u =

−∞, which complements previous existence results in [1, 4, 7, 8, 9, 10, 12, 14].
In this article, we shall extend the result in [13] to the general case p > 1 and

also allow f to be singular at u = 0. We also establish the existence of a positive
solution to (1.1) for λ large allowing limu→0+ inft∈(0,1) f(t, u)/up−1 = −∞ and
limu→∞ inft∈(0,1) f(t, u) = 0, which does not seem to have been considered in the
literature even when p = 2. Note that the approach in [13] depends on the Green
function and can not apply to the nonlinear case p > 1 or the case when f is
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singular at u = 0. Our approach depends on a new sub- and super solutions type
argument and comparison principle.

Let g satisfy condition (A2) below. Then the eigenvalue problem −(r(t)φ(u′))′ =
λg(t)φ(u) in (0, 1) with the Sturm-Liouville boundary conditions in (1.1) has a
positive first eigenvalue λ1 with corresponding positive eigenfunctions (see e.g. [3,
11]).

We shall make the following assumptions:
(A1) r : [0, 1]→ (0,∞) and f : (0, 1)× (0,∞)→ R are continuous.
(A2) g ∈ L1(0, 1) with g ≥ 0, g 6≡ 0 and there exists a constant γ ≥ 0 such that∫ 1

0

g(t)
qγ(t)

dt <∞,

where q(t) = min(b+ at, d+ c(1− t)).
(A3) For each r > 0, there exists a constant Kr > 0 such that

|f(t, u)| ≤ Kr

uγ

for t ∈ (0, 1), u ∈ (0, r], where γ is defined in (A2).
(A4) limu→∞ sup f(t,u)

φ(u) < λ1
λ < limu→0+ inf f(t,u)

φ(u) , where the limits are uniform
in t ∈ (0, 1).

(A5) limu→∞ sup f(t,u)
φ(u) < λ1

λ uniformly in t ∈ (0, 1).
(A6) There exist positive constants A,L such that

f(t, u) ≥ L

uγ

for t ∈ (0, 1) and u ≥ A.
By a solution of (1.1), we mean a function u ∈ C1[0, 1] with r(t)φ(u′) absolutely

continuous on [0, 1] and satisfying (1.1).
Our main results read as follows:

Theorem 1.1. Let (A1)–(A4) hold. Then (1.1) has a positive solution u with
inf(0,1)(u/q) > 0.

Theorem 1.2. Let (A1)–(A3), (A5), (A6) hold. Then there exists a constant
λ0 > 0 such that for λ > λ0, Equation (1.1) has a positive solution uλ with
inf(0,1)(uλ/q)→∞ as λ→∞.

Let λ̄ < λ1 and consider the problem

−(r(t)φ(u′))′ − λ̄g(t)φ(u) = λg(t)f(t, u), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0.
(1.2)

Then, as an immediate consequence of Theorem 1.1, we obtain the following corol-
lary.

Corollary 1.3. Let (A1)–(A3) hold and suppose that

lim
u→∞

sup
f(t, u)
φ(u)

<
λ1 − λ̄
λ

< lim
u→0+

inf
f(t, u)
φ(u)

.

Then (1.2) has a positive solution.

Remark 1.4. When p = 2 and f : [0, 1]× [0,∞)→ R is continuous, [13, Theorem
3.1] follows from Theorem 1.1 with γ = 0.
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Example 1.5. Let g(t) ≡ 1 ≡ r(t) and consider the BVP

−(φ(u′))′ = λf(t, u), t ∈ (0, 1),

u(0) = u(1) = 0.
(1.3)

Note that λ1 = πpp , where

πp = 2(p− 1)1/p
∫ 1

0

ds

(1− sp)1/p

is the first eigenvalue of −(φ(u′))′ with zero boundary conditions (see [5, 6]).
(i) Let f(t, u) = up−1

(
et

uγ − u
β
)
, where γ ∈ [0, 1), and β > 0. Suppose λ > λ1 if

γ = 0, and λ is any positive constant if γ > 0. Then (A1)–(A4) hold and therefore
Theorem 1.1 gives the existence of a positive solution to (1.3).

(ii) Let f(t, u) = − 1
uγ + 1

uβ
, where 0 < β < γ < 1. Then it is easy to see

that the assumptions of Theorem 1.2 are satisfied and therefore (1.3) has a pos-
itive solution for λ large. Note that since limu→0+ inft∈(0,1)

f(t,u)
up−1 = −∞ and

limu→∞ inft∈(0,1) f(t, u) = 0, the results in [1, 4, 7, 8, 9, 10, 12, 13, 14] do not
apply here.

(iii) Let f(t, u) = (1− up−1) cos t. Then

lim
u→∞

sup
f(t, u)
φ(u)

< 0 and lim
u→0+

inf
f(t, u)
φ(u)

=∞

uniformly in t ∈ (0, 1) and so (1.2) has a positive solution for all λ > 0, by Corol-
lary 1.3.

2. Preliminaries

We shall denote the norms in C1[0, 1] and Lq(0, 1) by | · |1 and ‖ · ‖q respectively.
Here |u|1 = max(‖u‖∞, ‖u′‖∞). We first recall the following results in [8].

Lemma 2.1. Let h ∈ L1(0, 1). Then the problem

−(r(t)φ(u′))′ = h, t ∈ (0, 1)

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0

has a unique solution u = Sh ∈ C1[0, 1]. Furthermore, S is completely continuous
and there exists a constant m > 0 such that

|u|1 ≤ mφ−1(‖h‖1).

Lemma 2.2. Suppose u ∈ C1[0, 1] satisfies

−(r(t)φ(u′))′ ≥ 0, t ∈ (0, 1)

au(0)− bφ−1(r(0))u′(0) ≥ 0, cu(1) + dφ−1(r(1))u′(1) ≥ 0.

Then there exists a constant m0 > 0 independent of u such that

u(t) ≥ m0‖u‖∞q(t)
for t ∈ [0, 1], where q is defined by (A2).

Remark 2.3. Lemma 2.2 is a special case of [8, Lemma 3.4] when h = 0. Note
that the proof of [8, Lemma 3.4] is incorrect for 1 < p < 2 when h 6≡ 0 since it uses
the inequality

|φ−1(x)− φ−1(y)| ≤ 2φ−1(|x− y|) for all x, y ∈ R,
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which is not true when 1 < p < 2. However, when h = 0, this inequality is not
needed in [8, Proof of Lemma 3.4], which guarantees the validity of Lemma 2.2.

Lemma 2.4. There exists a constant k > 0 such that |u| ≤ k|u|1q in [0, 1] for all
u ∈ C1[0, 1] satisfying the Sturm-Liouville boundary conditions in (1.1).

Proof. Let u ∈ C1[0, 1]. Then, if b > 0,

u(t) = u(0) +
∫ t

0

u′ ≤ 2|u|1 ≤
2
b
|u|1(b+ at)

for t ∈ [0, 1], while if b = 0 then a > 0, this implies u(0) = 0 and u(t) ≤ |u|1t for
t ∈ [0, 1]. Hence

u(t) ≤ k0|u|1(b+ at), (2.1)
for t ∈ [0, 1], where k0 = 2/b if b > 0, and 1/a if b = 0. Similarly, using

u(t) = u(1)−
∫ 1

t

u′,

we obtain
u(t) ≤ k1|u|1(d+ c(1− t)) (2.2)

for t ∈ [0, 1], where k1 = 2/d if d > 0, and 1/c if d = 0.
Combining (2.1) and (2.2), we see that u ≤ k|u|1q in (0, 1), where k = max(k0, k1).

By replacing u by −u, we see that Lemma 2.4 holds. �

Lemma 2.5. Let h0, h1 ∈ L1(0, 1). Suppose u0, u1 ∈ C1[0, 1] satisfy

−(r(t)φ(u′i))
′ = hi, t ∈ (0, 1),

aui(0)− bφ−1(r(0))u′i(0) = 0, cui(1) + dφ−1(r(1))u′i(1) = 0,

for i = 0, 1. Then there exists a constant M0 > 0 depending on p, a, b, c, d, and C
such that

|u1 − u0|1 ≤M0 max{‖h1 − h0‖1, ‖h1 − h0‖
1
p−1
1 }, (2.3)

where C > 0 is such that ‖hi‖1 < C for i = 0, 1.

Proof. By integrating, we obtain

ui(t) = Ci +
∫ t

0

φ−1
(Di −

∫ s
0
hi

r(s)

)
ds (2.4)

for i = 0, 1, where Ci, Di are constants satisfying

aCi − bφ−1(Di) = 0,

c
(
Ci +

∫ 1

0

φ−1
(Di −

∫ s
0
hi

r(s)
)
ds
)

+ dφ−1
(
Di −

∫ 1

0

hi
)

= 0.

Suppose first that a = 0. Then b, c > 0, Di = 0, and

Ci =
d

c
φ−1

(∫ 1

0

hi

)
+
∫ 1

0

φ−1
(∫ s

0
hi

r(s)

)
ds,

and so

ui(t) =
d

c
φ−1

(∫ 1

0

hi

)
+
∫ 1

t

φ−1
(∫ s

0
hi

r(s)

)
ds.

For p ≥ 2, using the inequality

|φ−1(x)− φ−1(y)| ≤ 2φ−1(|x− y|) for x, y ∈ R,
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we obtain

max{|u1(t)− u0(t)| , |u′1(t)− u′0(t)|} ≤M1‖h1 − h0‖
1
p−1
1 , (2.5)

for t ∈ [0, 1], where r0 = mint∈[0,1] r(t) > 0, M1 = 2
(
d/c+ φ−1(1/r0

)
).

For 1 < p < 2, using the Mean Value Theorem, we obtain

|φ−1(x)− φ−1(y)| ≤ (p− 1)−1|x− y|(max{|x|, |y|})
2−p
p−1

for x, y ∈ R, which implies

max{|u1(t)− u0(t)|, |u′1(t)− u′0(t)|} ≤M2‖h1 − h0‖1, (2.6)

for t ∈ [0, 1], where M2 = (p− 1)−1
(
dc−1 + r

−1/(p−1)
0

)
C

2−p
p−1 .

Suppose next that a > 0. Then Ci = (b/a)φ−1(Di), and Di satisfies

c
( b
a
φ−1(Di) +

∫ 1

0

φ−1
(Di −

∫ s
0
hi

r(s)

)
ds
)

+ dφ−1
(
Di −

∫ 1

0

hi

)
= 0 (2.7)

for i = 0, 1. Since φ−1 is increasing and φ−1(0) = 0, it follows from (2.7) that
|Di| ≤ ‖hi‖1, and

|D1 −D0| ≤ ‖h1 − h0‖1,
which, together with (2.4), imply

max{|u1(t)− u0(t)|, |u′1(t)− u′0(t)|} ≤M3 max{‖h1 − h0‖1, ‖h1 − h0‖
1
p−1
1 } (2.8)

for t ∈ [0, 1], where M3 = 2(b/a + (2/r0)
1
p−1 ) if p ≥ 2, and M3 = (p − 1)−1(b/a +

(2/r0)1/(p−1))C
2−p
p−1 if 1 < p < 2. Combining (2.5),(2.6), and (2.8), we obtain (2.3)

with M0 = max1≤i≤3Mi, which completes the proof. �

3. Proofs of main results

Let z1 ∈ C1[0, 1] be the normalized positive eigenfunction of −(r(t)φ(u′))′ =
λg(t)φ(u) in (0, 1) with Sturm-Liouville boundary conditions corresponding to λ1

i.e. z1 > 0 on (0, 1) and ‖z1‖∞ = 1. By Lemma 2.2, there exists a constant m0 > 0
such that z1 ≥ m0q in (0, 1).

Proof of Theorem 1.1. Since limz→0+ inf f(t,z)
φ(z) > λ1

λ uniformly in t ∈ (0, 1), there
exists a constant c > 0 such that

f(t, z)
φ(z)

>
λ1

λ
(3.1)

for z ∈ (0, c] and t ∈ (0, 1). Let Z = cz1 and Z1 = Mz1, where M > c is a large
constant to be determined later. In view of (3.1), Z satisfies

− (r(t)φ(Z ′))′ = λ1g(t)φ(Z) ≤ λg(t)f(t, Z) (3.2)

for t ∈ (0, 1). For v ∈ C[0, 1], let ṽ = min{max{v, Z}, Z1}. Then Z ≤ ṽ ≤ Z1 ≤M
in (0, 1) and (A3) gives

|g(t)f(t, ṽ)| ≤ KMg(t)
ṽγ

≤ KMg(t)
(cz1)γ

≤ KMg(t)
(cm0)γqγ(t)

(3.3)

for t ∈ (0, 1). Hence g(t)f(t, ṽ) ∈ L1(0, 1) by (A2). Define Tv = u, where u is the
solution of

−(r(t)φ(u′))′ = λg(t)f(t, ṽ), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,
(3.4)
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whose existence follows from (3.3) and Lemma 2.1. Define S1v = λg(t)f(t, ṽ).
Using (3.3) and the Lebesgue Dominated Convergence Theorem, we see that S1 :
C[0, 1]→ L1(0, 1) is continuous and bounded. Since T = S ◦S1, where S is defined
in Lemma 2.1, it follows that T : C[0, 1] → C[0, 1] is completely continuous and
bounded. Hence, by the Schauder Fixed Point Theorem, T has a fixed point u.
To complete the proof, we will first show that u ≥ Z in (0, 1). Indeed, suppose
u(t∗) < Z(t∗) for some t∗ ∈ (0, 1). Let (t0, t1) ⊂ (0, 1) be the largest interval
containing t∗ such that u < Z in (t0, t1). Then ũ = Z in (t0, t1) and

au(t0)− bφ−1(r(t0))u′(t0) ≥ aZ(t0)− bφ−1(r(t0))Z ′(t0). (3.5)

Indeed, if t0 > 0 then u(t0) = Z(t0) and u′(t0) ≤ Z ′(t0), while if t0 = 0 then we
have equality in (3.5). Similarly,

cu(t1) + dφ−1(r(t1))u′(t1) ≥ cZ(t1) + dφ−1(r(t1))Z ′(t1). (3.6)

Since
−(r(t)φ(u′))′ = λg(t)f(t, Z), t ∈ (t0, t1),

it follows from (3.2), (3.5), (3.6), and the comparison principle (see e.g. [8, Lemma
3.2]) that u ≥ Z in (t0, t1), a contradiction. Thus u ≥ Z in (0, 1) and so ũ =
min{u, Z1} in (0, 1).

Next, we show that u ≤ Z1 in (0, 1). Using (A3) and limz→∞ sup f(t,z)
φ(z) < λ1

λ

uniformly in t ∈ (0, 1), we deduce the existence of constants A,Kλ > 0 and λ̄ ∈
(0, λ1) such that

λf(t, z) ≤ λ̄φ(z) +
Kλ

zγ

for z > 0 and t ∈ (0, 1). Hence

−(r(t)φ(u′))′ = λg(t)f(t, ũ) ≤ g(t)
(
λ̄φ(ũ) +

Kλ

ũγ

)
≤ g(t)

(
λ̄(Mz1)p−1 +

Kλ

(cz1)γ
)

≤ λ̄g(t)(Mz1)p−1 +
Kλg(t)

(cm0)γqγ(t)

for t ∈ (0, 1). Let uM = u/M . Then uM satisfies

−(r(t)φ(u′M ))′ ≤ λ̄g(t)z1p−1 +
Kλg(t)

(cm0)γMp−1qγ(t)

for t ∈ (0, 1). Let ūM and ū satisfy

−(r(t)φ(ū′M ))′ = λ̄g(t)z1p−1 +
Kλg(t)

(cm0)γMp−1qγ(t)
≡ hM , t ∈ (0, 1),

and
−(r(t)φ(ū′))′ = λ̄g(t)zp−1

1 ≡ h, t ∈ (0, 1),

with Sturm-Liouville boundary conditions in (1.1). Note that ū = (λ̄/λ1)
1
p−1 z1. By

the comparison principle, uM ≤ ūM in (0, 1). Let ε > 0 be such that (λ̄/λ1)1/(p−1)+
ε < 1. Since

‖hM − h‖1 =
Kλ

(cm0)γMp−1

(∫ 1

0

g(t)
qγ(t)

dt
)
→ 0 as M →∞,
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it follows from Lemmas 2.4 and 2.5 that

ūM − ū ≤ k|ūM − ū|1q ≤ km−1
0 |ūM − ū|1z1

≤ km−1
0 M0 max{‖hM − h‖1, ‖hM − h‖

1
p−1
1 }z1 < εz1,

provided that M is large enough. Consequently,

uM ≤ ūM ≤ ū+ εz1 =
(

(λ̄/λ1)1/(p−1) + ε
)
z1 ≤ z1 in (0, 1),

i.e. u ≤Mz1 = Z1 in (0, 1). Hence Z ≤ u ≤ Z1 in (0, 1) i.e. u is a positive solution
of (1.1), which completes the proof. �

Proof of Theorem 1.2. By Theorem 1.1, there exists a positive solution w of the
problem

−(r(t)φ(w′))′ =
g(t)
wγ

, t ∈ (0, 1),

aw(0)− bφ−1(r(0))w′(0)) = 0, cw(1) + dφ−1(r(1))w′(1) = 0

with w ≥ αq in (0, 1) for some α > 0. Let w0 satisfy

−(r(t)φ(w′0))′ =

L1g(t)
wγ if w >

2AL
−1/(p−1)
1
λδ

,

−K1g(t)
wγ if w ≤ 2AL

−1/(p−1)
1
λδ

≡ hλ in (0, 1),

with Sturm-Liouville boundary conditions, where δ = (γ + p − 1)−1, L1 = L
p−1
p−1+γ

and K1 = 2γL−γ/(p−1)
1 K2A, and K2A is defined in (A3). Let w1 satisfy

−(r(t)φ(w′1))′ =
L1g(t)
wγ

≡ h in (0, 1)

with Sturm-Liouville boundary conditions. Then w1 = L
1/(p−1)
1 w and w0 ≤ w1 in

(0, 1) by the comparison principle. Since

‖hλ − h‖1 = (L1 +K1)
∫
w≤ 2AL−1/(p−1)

1
λδ

g(t)
wγ(t)

dt→ 0 as λ→∞,

it follows from Lemma 2.5 that

|w0 − w1|1 ≤M0 max{‖hλ − h‖1, ‖hλ − h‖
1
p−1
1 } → 0 as λ→∞.

Hence by Lemma 2.4, there exists a constant λ0 > 0 such that

w0 ≥ w1 − k|w0 − w1|1q ≥
L

1/(p−1)
1 w

2
in (0, 1) (3.7)

for λ > λ0. Let Z = λδw0 and Z1 = Mz1 where M > λδkm−1
0 |w1|1 (so that Z1 > Z

in (0, 1)). We shall verify that Z satisfies

− (r(t)φ(Z ′))′ ≤ λg(t)f(t, Z) in (0, 1). (3.8)

Indeed,

−(r(t)φ(Z ′))′ =


λδ(p−1)L1g(t)

wγ if w >
2AL

−1/(p−1)
1
λδ

,

−λ
δ(p−1)K1g(t)

wγ if w ≤ 2AL
−1/(p−1)
1
λδ

.
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If w > 2AL−1/(p−1)
1 /λδ then by (3.7),

Z ≥ λδL
1/(p−1)
1 w

2
≥ A,

from which (A6) gives

λg(t)f(t, Z) ≥ λLg(t)
Zγ

=
λ1−γδLg(t)

wγ0

≥ λ1−γδLg(t)
wγ1

=
λδ(p−1)Lg(t)

L
γ/(p−1)
1 wγ

=
λδ(p−1)L1g(t)

wγ
.

(3.9)

On the other hand, if w ≤ 2AL
−1/(p−1)
1
λδ

, then

Z ≤ λδw1 = L
1/(p−1)
1 λδw ≤ 2A,

from which (A3) and (3.7) give

λg(t)f(t, Z) ≥ −λK2Ag(t)
Zγ

= − λ1−γδK2Ag(t)
wγ0

≥ − λδ(p−1)K2Ag(t)(
L

1/(p−1)
1 /2

)γ
wγ

= − λδ(p−1)K1g(t)
wγ

.

(3.10)

Combining (3.9) and (3.10), we see that (3.8) holds. Let T be the operator defined
in the proof of Theorem 1.1 i.e. for v ∈ C[0, 1], u = Tv satisfies (3.4); i.e.,

−(r(t)φ(u′))′ = λg(t)f(t, ṽ), t ∈ (0, 1),

au(0)− bφ−1(r(0))u′(0)) = 0, cu(1) + dφ−1(r(1))u′(1) = 0,

where ṽ = min{max{v, Z}, Z1}. Then T has a fixed point uλ in C[0, 1]. Using the
same arguments as in the proof of Theorem 1.1, we see that uλ ≥ Z and, for M
large enough uλ ≤ Z1 in (0, 1); i.e., uλ is a positive solution of (1.1) for λ > λ0

with uλ ≥ λδ
(
L

1/(p−1)
1 /2

)
w in (0, 1), which completes the proof. �
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