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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
P-LAPLACIAN STURM-LIOUVILLE BOUNDARY VALUE
PROBLEMS

D. D. HAI

ABSTRACT. We prove the existence of positive solutions of the Sturm-Liouville
boundary value problem

—(r(®)o(u)) = Xg(t)f(t,u), te(0,1),
au(0) — by~ (r(0)w'(0) =0, cu(1) +dp~ " (r(1)u'(1) =0,

where ¢(u') = |u/'|P72u/, p > 1, f: (0,1) x (0,00) — R satisfies a p-sublinear
condition and is allowed to be singular at © = 0 with semipositone structure.
Our results extend previously known results in the literature.

1. INTRODUCTION

We consider the boundary-value problem
—(r)d(u)) = Ag(t)f(t,u), t€(0,1),
au(0) — by~ (r(0))u'(0) = 0, cu(1) +do~" (r(1))u'(1) =0,

where ¢(u') = |u'[P~%u/, p > 1, a, b, ¢, d are nonnegative constants with ac+ad-+bc >
0, f:(0,1) x (0,00) — R is allowed to be singular at u = 0, and A is a positive
parameter.

When p =2 and f:[0,1] x [0,00) — R is continuous, Yang and Zhou [I3] prove
the existence of a positive solution to under the assumption

lim  sup Fw) A LW
U= 4c1] U A u—0ttenl]  wu

(1.1)

)

where A1 > 0 denotes the first eigenvalue of —(r(t)u’) = Ag(t)u in (0,1) with
Sturm-Liouville boundary conditions. Their result allows lim, oo Sup;c(g 1] ! (2“) =
—00, which complements previous existence results in [T}, 4} [7, 8, @, 10, 12, [14].

In this article, we shall extend the result in [13] to the general case p > 1 and
also allow f to be singular at u = 0. We also establish the existence of a positive
solution to for A large allowing lim, o+ infe(o1) f(t, u)/u?~! = —oo and
limy, o0 infye 0,1y f(¢,u) = 0, which does not seem to have been considered in the
literature even when p = 2. Note that the approach in [I3] depends on the Green
function and can not apply to the nonlinear case p > 1 or the case when f is
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singular at v = 0. Our approach depends on a new sub- and super solutions type
argument and comparison principle.

Let g satisfy condition (A2) below. Then the eigenvalue problem —(r(t)¢(u’)) =
Ag(t)p(u) in (0,1) with the Sturm-Liouville boundary conditions in has a
positive first eigenvalue A\; with corresponding positive eigenfunctions (see e.g. [3|
11]).

We shall make the following assumptions:

(A1) r:[0,1] — (0,00) and f: (0,1) x (0,00) — R are continuous.

(A2) g € L*(0,1) with g > 0,9 # 0 and there exists a constant v > 0 such that

1
/ 9t) dt < oo,
o ¢(1)
where ¢(t) = min(b + at,d + ¢(1 — t)).
(A3) For each r > 0, there exists a constant K, > 0 such that

K,
|f(t,u)| < w
for ¢ € (0,1),u € (0,7], where v is defined in (A2).
(A4) lim, o sup fqu(f;j;) < % < lim,_g+ inf fééﬁ;)’ where the limits are uniform

int € (0,1).
(A5) lim,— o sup fquuu)) < % uniformly in ¢ € (0, 1).
(A6) There exist positive constants A, L such that
L

uY

for t € (0,1) and u > A.
By a solution of (1.1]), we mean a function u € C*[0, 1] with r(¢)¢(u’) absolutely
continuous on [0, 1] and satisfying (|1.1)).
Our main results read as follows:
Theorem 1.1. Let (A1)-(A4) hold. Then (1.1) has a positive solution u with
il’lf(071)(’l£/q) > 0.
Theorem 1.2. Let (A1)-(A3), (A5), (A6) hold. Then there exists a constant

Ao > 0 such that for X > Ao, Equation (l.1)) has a positive solution uy with
inf(o,1)(uxr/q) — 00 as X — oc.

Let A < \; and consider the problem
—(r(t)g(u)) = Ag(t)g(u) = Ag(t) f(t,u), te€(0,1),
au(0) — bo~ 1 (r(0))u’ (0) = 0, cu(1) + dp~*(r(1))u/(1) = 0.
Then, as an immediate consequence of Theorem [1.1] we obtain the following corol-

lary.
Corollary 1.3. Let (A1)—(A3) hold and suppose that

lim sup f(t,) < A=A < lim inf f(t,w)

Then (1.2) has a positive solution.

Remark 1.4. When p =2 and f : [0,1] x [0,00) — R is continuous, [I3, Theorem
3.1] follows from Theorem with v = 0.

(1.2)
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Example 1.5. Let g(t) =1 = r(¢) and consider the BVP

7((25(“/))/ = /\f(tvu)a te (07 1)a
u(0) = u(1) = 0. (1)

Note that Ay = «l, where

1
ds
_ _1\/p "
Tp = 2(p 1) A (1 _ Sp)l/p
is the first eigenvalue of —(¢(u'))’ with zero boundary conditions (see [5l [6]).
(i) Let f(t,u) = up_l(z—: — uﬂ), where v € [0,1), and 8 > 0. Suppose A > A; if
v =0, and \ is any positive constant if v > 0. Then (A1)-(A4) hold and therefore
Theorem gives the existence of a positive solution to (L.3]).

(ii) Let f(t,u) = —u% + ﬁ, where 0 < 8 < v < 1. Then it is easy to see
that the assumptions of Theorem are satisfied and therefore (1.3) has a pos-

itive solution for A large. Note that since lim,_ o+ inf;c (o, 1) J;(,f’_"l = —oo and

limy, o0 infye(o,1y f(¢,u) = 0, the results in [I} 4 [7, 8, O} 10, 12, 13} 14] do not
apply here.
(iii) Let f(t,u) = (1 — uP~1)cost. Then
lim sup f(t,w) <0 and lim inf f(t,w) = 00
u—oo " ¢(u) u—0t ¢(u)
uniformly in ¢ € (0,1) and so has a positive solution for all A > 0, by Corol-
lary [1.3]

2. PRELIMINARIES

We shall denote the norms in C*[0, 1] and L(0,1) by |- |1 and || - ||, respectively.
Here |u]; = max(||u||oo, [|4/]|co). We first recall the following results in [8].

Lemma 2.1. Let h € L'(0,1). Then the problem
—(r(t)p(u)) = h, te(0,1)
au(0) — b1 (r(0))u'(0) =0, cu(l) +de~ (r(1)u/(1) =0
has a unique solution uw = Sh € C[0,1]. Furthermore, S is completely continuous
and there exists a constant m > 0 such that
uly <m¢~ (||h[|1).
Lemma 2.2. Suppose u € C*[0,1] satisfies
—(r(t)p(u)) =20, te(0,1)
au(0) — bop~ 1 (r(0))u’(0) >0, cu(l) +de~*(r(1))u/(1) > 0.
Then there exists a constant mg > 0 independent of u such that
u(t) = mollullsq(t)
for t € [0,1], where q is defined by (A2).
Remark 2.3. Lemma is a special case of [8, Lemma 3.4] when h = 0. Note

that the proof of [8, Lemma 3.4] is incorrect for 1 < p < 2 when h # 0 since it uses
the inequality

07 (@) =o' (W) <207 (Jo —y|) forall w,y R,
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which is not true when 1 < p < 2. However, when h = 0, this inequality is not
needed in [8, Proof of Lemma 3.4], which guarantees the validity of Lemma

Lemma 2.4. There ezists a constant k > 0 such that |u| < klul1q in [0,1] for all
u € C[0,1] satisfying the Sturm-Liouville boundary conditions in (L.1]).

Proof. Let u € C'[0,1]. Then, if b > 0,
¢
2
u(t) = u(0) +/ v < 2lul; < E|u\1(b+at)
0

for t € [0,1], while if b = 0 then a > 0, this implies u(0) = 0 and u(t) < |u|1t for
t € ]0,1]. Hence

u(t) < kolulr (b + at), (2.1)
for t € [0,1], where kg = 2/bif b > 0, and 1/a if b = 0. Similarly, using

1
u(t) = u(1) —/ o,
t
we obtain
u(t) < kiluli(d+c(1—1t)) (2.2)
for t € [0,1], where ky =2/d if d >0, and 1/cif d = 0.
Combining and (2.2)), we see that u < k|u|;¢in (0, 1), where k = max(ko, k1 ).
By replacing u by —u, we see that Lemma [2.4] holds. ([l

Lemma 2.5. Let hg,hy € LY(0,1). Suppose ug,u; € C1[0,1] satisfy
au;(0) = bp~ ' (r(0))u;(0) = 0, cu;(1) +do~" (r(1))uj(1) =0,

fori=0,1. Then there exists a constant My > 0 depending on p,a,b,c,d, and C
such that

1
lur — uplyt < Momax{||hy — holl1, |1 — holl7 ™"}, (2.3)
where C > 0 is such that ||h;]|1 < C fori=0,1.

Proof. By integrating, we obtain

wilt) = Ci +/Ot qﬁ_l(W)ds (2.4)

for ¢ = 0,1, where C;, D; are constants satisfying
aC; — b~ (D;) =0,

c(C¢+/()1 ¢1(D"r(§}“)ds) +do~ ' (D; /Olhi) =0.

Suppose first that a = 0. Then b,¢ > 0, D; = 0, and

) 1 o S By
Ci:gd’* (/0 hi>+/0 ¢ 1({:0(5))‘[5’
ui(t) = ‘Elqs—l(/o hi) +/t qs-l({f’(j;)ds.

For p > 2, using the inequality
97 (2) = o (W) <207 (lz —yl) forz,y R,

and so
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we obtain
_1
max{|u1(t) — uo(t)| , [uy (t) — ug(t)]} < Millhy — holl{, (2.5)
for ¢ € [0,1], where 7 = mingepo,1) 7(t) > 0, My =2 (d/c+ ¢~ (1/r)).
For 1 < p < 2, using the Mean Value Theorem, we obtain
2-p
67 @) =67 ()] < (0 — 1)z — yl(max{|a], [y[}) 7=
for z,y € R, which implies
max{|u1(t) — uo(t)], [uy () — uo(t)[} < Mallhs — holl1, (2.6)
for t € [0,1], where My = (p— 1)~ (de™! + r()_l/(p_l))C’i%?.
Suppose next that a > 0. Then C; = (b/a)p~*(D;), and D; satisfies
b 4 ' _1(Di *foshi -1 !
- D; ——)d d D; — hi) =0 2.7
(ot @ o7 (B i) wae (- [n) =0 @)
for i = 0,1. Since ¢! is increasing and ¢~1(0) = 0, it follows from (2.7) that
| Di| < [|hill1, and
|D1 — Dol < ||hy — holl1,
which, together with , imply

masc{fus (1) — wo ()], Ju (6) — up (1)} < Mamasc{[hy — holu. s — kol 77} (28)

for t € [0,1], where M5 = 2(b/a + (2/7"0)Plj) if p>2,and M3 = (p—1)"1(b/a +
(2/7“0)1/(1’_1))C% if 1 < p < 2. Combining ,, and , we obtain (2.3))

with My = maxj<;<3 M;, which completes the proof. U

3. PROOFS OF MAIN RESULTS

/

Let z; € C'0,1] be the normalized positive eigenfunction of —(r(t)¢(u))’ =
Ag(t)¢(u) in (0,1) with Sturm-Liouville boundary conditions corresponding to A
ie. z1 > 0on (0,1) and |21 ]| = 1. By Lemmal[2.2] there exists a constant mg > 0
such that z; > mgq in (0, 1).

Proof of Theorem[I.d]. Since lim, o+ inf f;é’zz)) > AL uniformly in ¢ € (0, 1), there
exists a constant ¢ > 0 such that

f(tﬂ Z) >\1
> — 3.1
) o
for z € (0,c] and t € (0,1). Let Z = cz; and Z; = Mz, where M > c is a large
constant to be determined later. In view of (3.1]), Z satisfies

= (r()8(2")) = Mg(t)$(Z) < Ag(t) f(t, Z) (3.2)
for t € (0,1). For v € C[0,1], let ¥ = min{max{v,Z},Z1}. Then Z <0< Z; <M

in (0,1) and (A3) gives
o f(t5)] < Bag®  Kuglt) - Kng®)
ol (cz1)™  (emo) g (1)
for t € (0,1). Hence g(t)f(t,) € L'(0,1) by (A2). Define Tv = u, where u is the
solution of

(3.3)

7(T(t)¢(ul))l = )\g(t)f(t,f)), te (07 1)3

au(0) — b6~ (O (0) =0, eu(l) +dg(r(() =0, Y
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whose existence follows from and Lemma Define S1v = Ag(t)f(t, D).
Using and the Lebesgue Dominated Convergence Theorem, we see that S; :
C[0,1] — L(0,1) is continuous and bounded. Since T’ = So Sy, where S is defined
in Lemma it follows that T : C[0,1] — C[0,1] is completely continuous and
bounded. Hence, by the Schauder Fixed Point Theorem, T has a fixed point wu.
To complete the proof, we will first show that v > Z in (0,1). Indeed, suppose
u(t*) < Z(t*) for some t* € (0,1). Let (to,t1) C (0,1) be the largest interval
containing t* such that v < Z in (to,%1). Then @ = Z in (to, 1) and

au(to) — bo~ " (r(to))u (to) > aZ(to) — bd™" (r(to))Z' (to)- (3.5)

Indeed, if to > 0 then u(ty) = Z(to) and u'(ty) < Z'(to), while if tx = 0 then we
have equality in (3.5). Similarly,
cu(ty) +do~  (r(t)u' (t1) > cZ(t1) + do™ (r(t1)) Z' (t1). (3.6)
Since
—(r(®)o()) = Mg f (1. 2), T € (to, 1),

it follows from (3.2), (3.5)), (3.6)), and the comparison principle (see e.g. [8, Lemma
3.2]) that u > Z in (to,t1), a contradiction. Thus v > Z in (0,1) and so @ =
min{u, Z;} in (0, 1).

Next, we show that v < Z; in (0,1). Using (A3) and lim,_, . sup fqgfj:)) <A
uniformly in ¢ € (0,1), we deduce the existence of constants A, Ky > 0 and \ €
(0, A1) such that

for z> 0 and t € (0,1). Hence
~r(0()) = Mg(01(1,3) < gl0) (Ro(@) + 22)

< g0 (MNMz )+ )

(cz1)Y
3 - Kixg(t)
<At (Mz )Pt —2 7
= MO gy
for t € (0,1). Let upr = u/M. Then uys satisfies
Kig(t)

(8 < Mgl + SR

for t € (0,1). Let @y and @ satisfy

Kyg(t)
(emo)Y MP~1q(t)

—(r(H)e(uhy)) = Ag(t)r" "' + =hy, t€(0,1),

and

—(r)p(@)) = Ag(t)2X " = h, te(0,1),
with Sturm-Liouville boundary conditions in (T.1]). Note that @ = (A / Al)ﬁzl. By
the comparison principle, ups < @y in (0,1). Let & > 0 be such that (A/X;)Y/ =1+
e < 1. Since

_ K ' g(t)
lias =l = i ([ S0sat) =0 as 21 =,
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it follows from Lemmas 2.4] and .5 that
Uy — @ < |y — g < kmg Hanr — )12
< kg Mo max{[|has — bl [har — BT }21 < e21,
provided that M is large enough. Consequently,
upy <ty <U+ez = ((;\//\1)1/(’"*1) +5)z1 <z in (0,1),

ie. u < Mz = Z;in (0,1). Hence Z <wu < Zp in (0,1) i.e. u is a positive solution
of (1.1]), which completes the proof. a

Proof of Theorem|[I.3. By Theorem there exists a positive solution w of the
problem

o)y =20 e o),

aw(0) = b~ (r(0))w'(0)) = 0, cw(1) +d¢~" (r(1)w'(1) =0

with w > aq in (0,1) for some a > 0. Let wy satisfy

Lig(t) fw> 2AL7Y/ @D
—(rt)o(wp)) =4 Xy’ =ha in(0,1),
_K%w(t) if w < %

with Sturm-Liouville boundary conditions, where § = (y +p —1)71, L1 = L7t
and K, = QVLIW(IFI)KQA, and Ks4 is defined in (A3). Let w; satisfy

—r(el)y = 290 gy 0, 1)

w”Y

— L}/(P—l)

with Sturm-Liouville boundary conditions. Then w, w and wy < w; in

(0,1) by the comparison principle. Since

g(t)

2apy /-1 mdt —0 as A — oo,
— s

nmfwf4h+Kq/

w<
it follows from Lemma [2.5] that
_1
|wg — wi]1 < Momax{||hy — b1, ||hx — |77} =0 as A — oo.

Hence by Lemma [2.4] there exists a constant Ao > 0 such that

Ll/(P—l)w
wo > wy — klwy — wi]1g > 1# in (0,1) (3.7)

for A > Ao. Let Z = Mwg and Z; = Mz, where M > A‘Skmal|w1|1 (so that Z, > Z
n (0,1)). We shall verify that Z satisfies

— (r(1)9(2") < Ag()f(t,2) in (0,1). (3.8)
Indeed,
XD L g(t) fw> 2AL7 /P~
5 )
—(r()e(2") = " R
ATV p gy < 240
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It w > 2AL; /71 /2% then by ([B.7),

s71/(p—1)
Z> )‘Llfw > A,
from which (A6) gives

ALg(t) _ N Lg(t)

Ag(t)f(t, Z)

Y

zZv wy
1—~6 6(p—1)
> A fg(t) _ A fg(t) (3.9)
wq L’lY/(P* )’U}'Y
_ NP=D L g(t)
—1/(p—1)
On the other hand, if w < 222" then
7 < Nw; = L}/(pfl))\‘;w < 2A,
from which (A3) and (3.7) give
AK249(t) )\1_75K2Ag(t)
Ag)f(t,2) > — = —
o(0)f(1,2) 2 - 2N o
Nl
B NP1 K, 4 g(t) . NP1 I g(t) (3.10)
- (L}/(pfl)/2)"/w,y w?Y ’

Combining (3.9) and (3.10)), we see that (3.8]) holds. Let T be the operator defined
in the proof of Theorem ie. for v € C[0,1], u = Tv satisfies (3.4); i.e.,

—(r(t)p(u)) = Ag(t)f(t,9), te€(0,1),
au(0) — by~ (r(0))u'(0)) = 0, cu(l) +de~ " (r(1))u'(1) =0,

where © = min{max{v, Z}, Z1}. Then T has a fixed point uy in C0,1]. Using the
same arguments as in the proof of Theorem we see that uy > Z and, for M
large enough uy < Z; in (0,1); i.e., uy is a positive solution of for A > Ao
with uy > \° (L}/(pfl)/Q)w in (0,1), which completes the proof. O
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