EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR P-LAPLACIAN STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

D. D. HAI

Abstract

We prove the existence of positive solutions of the Sturm-Liouville boundary value problem $$
\begin{gathered} -\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\lambda g(t) f(t, u), \quad t \in(0,1) \\ a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0, \end{gathered}
$$ where $\phi\left(u^{\prime}\right)=\left|u^{\prime}\right|^{p-2} u^{\prime}, p>1, f:(0,1) \times(0, \infty) \rightarrow \mathbb{R}$ satisfies a p-sublinear condition and is allowed to be singular at $u=0$ with semipositone structure. Our results extend previously known results in the literature.

1. Introduction

We consider the boundary-value problem

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\lambda g(t) f(t, u), \quad t \in(0,1) \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0 \tag{1.1}
\end{gather*}
$$

where $\phi\left(u^{\prime}\right)=\left|u^{\prime}\right|^{p-2} u^{\prime}, p>1, a, b, c, d$ are nonnegative constants with $a c+a d+b c>$ $0, f:(0,1) \times(0, \infty) \rightarrow \mathbb{R}$ is allowed to be singular at $u=0$, and λ is a positive parameter.

When $p=2$ and $f:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ is continuous, Yang and Zhou [13] prove the existence of a positive solution to 1.1 under the assumption

$$
\lim _{u \rightarrow \infty} \sup _{t \in[0,1]} \frac{f(t, u)}{u}<\frac{\lambda_{1}}{\lambda}<\lim _{u \rightarrow 0^{+}} \inf _{t \in[0,1]} \frac{f(t, u)}{u},
$$

where $\lambda_{1}>0$ denotes the first eigenvalue of $-\left(r(t) u^{\prime}\right)^{\prime}=\lambda g(t) u$ in $(0,1)$ with Sturm-Liouville boundary conditions. Their result allows $\lim _{u \rightarrow \infty} \sup _{t \in[0,1]} \frac{f(t, u)}{u}=$ $-\infty$, which complements previous existence results in [1, 4, 7, 8, 9, 10, 12, 14.

In this article, we shall extend the result in [13] to the general case $p>1$ and also allow f to be singular at $u=0$. We also establish the existence of a positive solution to (1.1) for λ large allowing $\lim _{u \rightarrow 0^{+}} \inf _{t \in(0,1)} f(t, u) / u^{p-1}=-\infty$ and $\lim _{u \rightarrow \infty} \inf _{t \in(0,1)} f(t, u)=0$, which does not seem to have been considered in the literature even when $p=2$. Note that the approach in [13] depends on the Green function and can not apply to the nonlinear case $p>1$ or the case when f is

[^0]singular at $u=0$. Our approach depends on a new sub- and super solutions type argument and comparison principle.

Let g satisfy condition (A2) below. Then the eigenvalue problem $-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=$ $\lambda g(t) \phi(u)$ in $(0,1)$ with the Sturm-Liouville boundary conditions in 1.1) has a positive first eigenvalue λ_{1} with corresponding positive eigenfunctions (see e.g. 3, 11]).

We shall make the following assumptions:
(A1) $r:[0,1] \rightarrow(0, \infty)$ and $f:(0,1) \times(0, \infty) \rightarrow \mathbb{R}$ are continuous.
(A2) $g \in L^{1}(0,1)$ with $g \geq 0, g \not \equiv 0$ and there exists a constant $\gamma \geq 0$ such that

$$
\int_{0}^{1} \frac{g(t)}{q^{\gamma}(t)} d t<\infty
$$

where $q(t)=\min (b+a t, d+c(1-t))$.
(A3) For each $r>0$, there exists a constant $K_{r}>0$ such that

$$
|f(t, u)| \leq \frac{K_{r}}{u^{\gamma}}
$$

for $t \in(0,1), u \in(0, r]$, where γ is defined in (A2).
(A4) $\lim _{u \rightarrow \infty} \sup \frac{f(t, u)}{\phi(u)}<\frac{\lambda_{1}}{\lambda}<\lim _{u \rightarrow 0^{+}} \inf \frac{f(t, u)}{\phi(u)}$, where the limits are uniform in $t \in(0,1)$.
(A5) $\lim _{u \rightarrow \infty} \sup \frac{f(t, u)}{\phi(u)}<\frac{\lambda_{1}}{\lambda}$ uniformly in $t \in(0,1)$.
(A6) There exist positive constants A, L such that

$$
f(t, u) \geq \frac{L}{u^{\gamma}}
$$

for $t \in(0,1)$ and $u \geq A$.
By a solution of (1.1), we mean a function $u \in C^{1}[0,1]$ with $r(t) \phi\left(u^{\prime}\right)$ absolutely continuous on $[0,1]$ and satisfying (1.1).

Our main results read as follows:
Theorem 1.1. Let (A1)-(A4) hold. Then 1.1) has a positive solution u with $\inf _{(0,1)}(u / q)>0$.
Theorem 1.2. Let (A1)-(A3), (A5), (A6) hold. Then there exists a constant $\lambda_{0}>0$ such that for $\lambda>\lambda_{0}$, Equation (1.1) has a positive solution u_{λ} with $\inf _{(0,1)}\left(u_{\lambda} / q\right) \rightarrow \infty$ as $\lambda \rightarrow \infty$.

Let $\bar{\lambda}<\lambda_{1}$ and consider the problem

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}-\bar{\lambda} g(t) \phi(u)=\lambda g(t) f(t, u), \quad t \in(0,1), \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0 . \tag{1.2}
\end{gather*}
$$

Then, as an immediate consequence of Theorem 1.1, we obtain the following corollary.
Corollary 1.3. Let (A1)-(A3) hold and suppose that

$$
\lim _{u \rightarrow \infty} \sup \frac{f(t, u)}{\phi(u)}<\frac{\lambda_{1}-\bar{\lambda}}{\lambda}<\lim _{u \rightarrow 0^{+}} \inf \frac{f(t, u)}{\phi(u)}
$$

Then 1.2 has a positive solution.
Remark 1.4. When $p=2$ and $f:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ is continuous, [13, Theorem 3.1] follows from Theorem 1.1 with $\gamma=0$.

Example 1.5. Let $g(t) \equiv 1 \equiv r(t)$ and consider the BVP

$$
\begin{gather*}
-\left(\phi\left(u^{\prime}\right)\right)^{\prime}=\lambda f(t, u), \quad t \in(0,1) \\
u(0)=u(1)=0 \tag{1.3}
\end{gather*}
$$

Note that $\lambda_{1}=\pi_{p}^{p}$, where

$$
\pi_{p}=2(p-1)^{1 / p} \int_{0}^{1} \frac{d s}{\left(1-s^{p}\right)^{1 / p}}
$$

is the first eigenvalue of $-\left(\phi\left(u^{\prime}\right)\right)^{\prime}$ with zero boundary conditions (see [5, 6]).
(i) Let $f(t, u)=u^{p-1}\left(\frac{e^{t}}{u^{\gamma}}-u^{\beta}\right)$, where $\gamma \in[0,1)$, and $\beta>0$. Suppose $\lambda>\lambda_{1}$ if $\gamma=0$, and λ is any positive constant if $\gamma>0$. Then (A1)-(A4) hold and therefore Theorem 1.1 gives the existence of a positive solution to 1.3).
(ii) Let $f(t, u)=-\frac{1}{u^{\gamma}}+\frac{1}{u^{\beta}}$, where $0<\beta<\gamma<1$. Then it is easy to see that the assumptions of Theorem 1.2 are satisfied and therefore (1.3) has a positive solution for λ large. Note that since $\lim _{u \rightarrow 0^{+}} \inf _{t \in(0,1)} \frac{f(t, u)}{u^{p-1}}=-\infty$ and $\lim _{u \rightarrow \infty} \inf _{t \in(0,1)} f(t, u)=0$, the results in [1, 4, 7, 8, 9, 10, 12, 13, 14, do not apply here.
(iii) Let $f(t, u)=\left(1-u^{p-1}\right) \cos t$. Then

$$
\lim _{u \rightarrow \infty} \sup \frac{f(t, u)}{\phi(u)}<0 \quad \text { and } \quad \lim _{u \rightarrow 0^{+}} \inf \frac{f(t, u)}{\phi(u)}=\infty
$$

uniformly in $t \in(0,1)$ and so 1.2 has a positive solution for all $\lambda>0$, by Corollary 1.3 .

2. Preliminaries

We shall denote the norms in $C^{1}[0,1]$ and $L^{q}(0,1)$ by $|\cdot|_{1}$ and $\|\cdot\|_{q}$ respectively. Here $|u|_{1}=\max \left(\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}\right)$. We first recall the following results in [8].

Lemma 2.1. Let $h \in L^{1}(0,1)$. Then the problem

$$
\begin{gathered}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=h, \quad t \in(0,1) \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0
\end{gathered}
$$

has a unique solution $u=S h \in C^{1}[0,1]$. Furthermore, S is completely continuous and there exists a constant $m>0$ such that

$$
|u|_{1} \leq m \phi^{-1}\left(\|h\|_{1}\right) .
$$

Lemma 2.2. Suppose $u \in C^{1}[0,1]$ satisfies

$$
\begin{gathered}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime} \geq 0, \quad t \in(0,1) \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0) \geq 0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1) \geq 0 .
\end{gathered}
$$

Then there exists a constant $m_{0}>0$ independent of u such that

$$
u(t) \geq m_{0}\|u\|_{\infty} q(t)
$$

for $t \in[0,1]$, where q is defined by (A2).
Remark 2.3. Lemma 2.2 is a special case of [8, Lemma 3.4] when $h=0$. Note that the proof of [8, Lemma 3.4] is incorrect for $1<p<2$ when $h \not \equiv 0$ since it uses the inequality

$$
\left|\phi^{-1}(x)-\phi^{-1}(y)\right| \leq 2 \phi^{-1}(|x-y|) \quad \text { for all } x, y \in \mathbb{R}
$$

which is not true when $1<p<2$. However, when $h=0$, this inequality is not needed in [8, Proof of Lemma 3.4], which guarantees the validity of Lemma 2.2 .
Lemma 2.4. There exists a constant $k>0$ such that $|u| \leq k|u|_{1} q$ in $[0,1]$ for all $u \in C^{1}[0,1]$ satisfying the Sturm-Liouville boundary conditions in 1.1).
Proof. Let $u \in C^{1}[0,1]$. Then, if $b>0$,

$$
u(t)=u(0)+\int_{0}^{t} u^{\prime} \leq 2|u|_{1} \leq \frac{2}{b}|u|_{1}(b+a t)
$$

for $t \in[0,1]$, while if $b=0$ then $a>0$, this implies $u(0)=0$ and $u(t) \leq|u|_{1} t$ for $t \in[0,1]$. Hence

$$
\begin{equation*}
u(t) \leq k_{0}|u|_{1}(b+a t) \tag{2.1}
\end{equation*}
$$

for $t \in[0,1]$, where $k_{0}=2 / b$ if $b>0$, and $1 / a$ if $b=0$. Similarly, using

$$
u(t)=u(1)-\int_{t}^{1} u^{\prime}
$$

we obtain

$$
\begin{equation*}
u(t) \leq k_{1}|u|_{1}(d+c(1-t)) \tag{2.2}
\end{equation*}
$$

for $t \in[0,1]$, where $k_{1}=2 / d$ if $d>0$, and $1 / c$ if $d=0$.
Combining 2.1) and 2.2 , we see that $u \leq k|u|_{1} q$ in $(0,1)$, where $k=\max \left(k_{0}, k_{1}\right)$. By replacing u by $-u$, we see that Lemma 2.4 holds.

Lemma 2.5. Let $h_{0}, h_{1} \in L^{1}(0,1)$. Suppose $u_{0}, u_{1} \in C^{1}[0,1]$ satisfy

$$
\begin{gathered}
-\left(r(t) \phi\left(u_{i}^{\prime}\right)\right)^{\prime}=h_{i}, \quad t \in(0,1) \\
a u_{i}(0)-b \phi^{-1}(r(0)) u_{i}^{\prime}(0)=0, \quad c u_{i}(1)+d \phi^{-1}(r(1)) u_{i}^{\prime}(1)=0
\end{gathered}
$$

for $i=0,1$. Then there exists a constant $M_{0}>0$ depending on p, a, b, c, d, and C such that

$$
\begin{equation*}
\left|u_{1}-u_{0}\right|_{1} \leq M_{0} \max \left\{\left\|h_{1}-h_{0}\right\|_{1},\left\|h_{1}-h_{0}\right\|_{1}^{\frac{1}{p-1}}\right\} \tag{2.3}
\end{equation*}
$$

where $C>0$ is such that $\left\|h_{i}\right\|_{1}<C$ for $i=0,1$.
Proof. By integrating, we obtain

$$
\begin{equation*}
u_{i}(t)=C_{i}+\int_{0}^{t} \phi^{-1}\left(\frac{D_{i}-\int_{0}^{s} h_{i}}{r(s)}\right) d s \tag{2.4}
\end{equation*}
$$

for $i=0,1$, where C_{i}, D_{i} are constants satisfying

$$
\begin{gathered}
a C_{i}-b \phi^{-1}\left(D_{i}\right)=0 \\
c\left(C_{i}+\int_{0}^{1} \phi^{-1}\left(\frac{D_{i}-\int_{0}^{s} h_{i}}{r(s)}\right) d s\right)+d \phi^{-1}\left(D_{i}-\int_{0}^{1} h_{i}\right)=0
\end{gathered}
$$

Suppose first that $a=0$. Then $b, c>0, D_{i}=0$, and

$$
C_{i}=\frac{d}{c} \phi^{-1}\left(\int_{0}^{1} h_{i}\right)+\int_{0}^{1} \phi^{-1}\left(\frac{\int_{0}^{s} h_{i}}{r(s)}\right) d s
$$

and so

$$
u_{i}(t)=\frac{d}{c} \phi^{-1}\left(\int_{0}^{1} h_{i}\right)+\int_{t}^{1} \phi^{-1}\left(\frac{\int_{0}^{s} h_{i}}{r(s)}\right) d s
$$

For $p \geq 2$, using the inequality

$$
\left|\phi^{-1}(x)-\phi^{-1}(y)\right| \leq 2 \phi^{-1}(|x-y|) \quad \text { for } x, y \in \mathbb{R}
$$

we obtain

$$
\begin{equation*}
\max \left\{\left|u_{1}(t)-u_{0}(t)\right|,\left|u_{1}^{\prime}(t)-u_{0}^{\prime}(t)\right|\right\} \leq M_{1}\left\|h_{1}-h_{0}\right\|_{1}^{\frac{1}{p-1}}, \tag{2.5}
\end{equation*}
$$

for $t \in[0,1]$, where $r_{0}=\min _{t \in[0,1]} r(t)>0, M_{1}=2\left(d / c+\phi^{-1}\left(1 / r_{0}\right)\right)$.
For $1<p<2$, using the Mean Value Theorem, we obtain

$$
\left|\phi^{-1}(x)-\phi^{-1}(y)\right| \leq(p-1)^{-1}|x-y|(\max \{|x|,|y|\})^{\frac{2-p}{p-1}}
$$

for $x, y \in \mathbb{R}$, which implies

$$
\begin{equation*}
\max \left\{\left|u_{1}(t)-u_{0}(t)\right|,\left|u_{1}^{\prime}(t)-u_{0}^{\prime}(t)\right|\right\} \leq M_{2}\left\|h_{1}-h_{0}\right\|_{1} \tag{2.6}
\end{equation*}
$$

for $t \in[0,1]$, where $M_{2}=(p-1)^{-1}\left(d c^{-1}+r_{0}^{-1 /(p-1)}\right) C^{\frac{2-p}{p-1}}$.
Suppose next that $a>0$. Then $C_{i}=(b / a) \phi^{-1}\left(D_{i}\right)$, and D_{i} satisfies

$$
\begin{equation*}
c\left(\frac{b}{a} \phi^{-1}\left(D_{i}\right)+\int_{0}^{1} \phi^{-1}\left(\frac{D_{i}-\int_{0}^{s} h_{i}}{r(s)}\right) d s\right)+d \phi^{-1}\left(D_{i}-\int_{0}^{1} h_{i}\right)=0 \tag{2.7}
\end{equation*}
$$

for $i=0,1$. Since ϕ^{-1} is increasing and $\phi^{-1}(0)=0$, it follows from 2.7) that $\left|D_{i}\right| \leq\left\|h_{i}\right\|_{1}$, and

$$
\left|D_{1}-D_{0}\right| \leq\left\|h_{1}-h_{0}\right\|_{1}
$$

which, together with 2.4, imply

$$
\begin{equation*}
\max \left\{\left|u_{1}(t)-u_{0}(t)\right|,\left|u_{1}^{\prime}(t)-u_{0}^{\prime}(t)\right|\right\} \leq M_{3} \max \left\{\left\|h_{1}-h_{0}\right\|_{1},\left\|h_{1}-h_{0}\right\|_{1}^{\frac{1}{p-1}}\right\} \tag{2.8}
\end{equation*}
$$

for $t \in[0,1]$, where $M_{3}=2\left(b / a+\left(2 / r_{0}\right)^{\frac{1}{p-1}}\right)$ if $p \geq 2$, and $M_{3}=(p-1)^{-1}(b / a+$ $\left.\left(2 / r_{0}\right)^{1 /(p-1)}\right) C^{\frac{2-p}{p-1}}$ if $1<p<2$. Combining 2.5, 2.6), and 2.8, we obtain 2.3) with $M_{0}=\max _{1 \leq i \leq 3} M_{i}$, which completes the proof.

3. Proofs of main results

Let $z_{1} \in C^{1}[0,1]$ be the normalized positive eigenfunction of $-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=$ $\lambda g(t) \phi(u)$ in $(0,1)$ with Sturm-Liouville boundary conditions corresponding to λ_{1} i.e. $z_{1}>0$ on $(0,1)$ and $\left\|z_{1}\right\|_{\infty}=1$. By Lemma 2.2 , there exists a constant $m_{0}>0$ such that $z_{1} \geq m_{0} q$ in $(0,1)$.

Proof of Theorem 1.1. Since $\lim _{z \rightarrow 0^{+}} \inf \frac{f(t, z)}{\phi(z)}>\frac{\lambda_{1}}{\lambda}$ uniformly in $t \in(0,1)$, there exists a constant $c>0$ such that

$$
\begin{equation*}
\frac{f(t, z)}{\phi(z)}>\frac{\lambda_{1}}{\lambda} \tag{3.1}
\end{equation*}
$$

for $z \in(0, c]$ and $t \in(0,1)$. Let $Z=c z_{1}$ and $Z_{1}=M z_{1}$, where $M>c$ is a large constant to be determined later. In view of (3.1), Z satisfies

$$
\begin{equation*}
-\left(r(t) \phi\left(Z^{\prime}\right)\right)^{\prime}=\lambda_{1} g(t) \phi(Z) \leq \lambda g(t) f(t, Z) \tag{3.2}
\end{equation*}
$$

for $t \in(0,1)$. For $v \in C[0,1]$, let $\tilde{v}=\min \left\{\max \{v, Z\}, Z_{1}\right\}$. Then $Z \leq \tilde{v} \leq Z_{1} \leq M$ in $(0,1)$ and $(\mathrm{A} 3)$ gives

$$
\begin{equation*}
|g(t) f(t, \tilde{v})| \leq \frac{K_{M} g(t)}{\tilde{v}^{\gamma}} \leq \frac{K_{M} g(t)}{\left(c z_{1}\right)^{\gamma}} \leq \frac{K_{M} g(t)}{\left(c m_{0}\right)^{\gamma} q^{\gamma}(t)} \tag{3.3}
\end{equation*}
$$

for $t \in(0,1)$. Hence $g(t) f(t, \tilde{v}) \in L^{1}(0,1)$ by (A2). Define $T v=u$, where u is the solution of

$$
\begin{gather*}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\lambda g(t) f(t, \tilde{v}), \quad t \in(0,1) \\
a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0 \tag{3.4}
\end{gather*}
$$

whose existence follows from (3.3) and Lemma 2.1. Define $S_{1} v=\lambda g(t) f(t, \tilde{v})$. Using (3.3) and the Lebesgue Dominated Convergence Theorem, we see that S_{1} : $C[0,1] \rightarrow L^{1}(0,1)$ is continuous and bounded. Since $T=S \circ S_{1}$, where S is defined in Lemma 2.1, it follows that $T: C[0,1] \rightarrow C[0,1]$ is completely continuous and bounded. Hence, by the Schauder Fixed Point Theorem, T has a fixed point u. To complete the proof, we will first show that $u \geq Z$ in $(0,1)$. Indeed, suppose $u\left(t^{*}\right)<Z\left(t^{*}\right)$ for some $t^{*} \in(0,1)$. Let $\left(t_{0}, t_{1}\right) \subset(0,1)$ be the largest interval containing t^{*} such that $u<Z$ in $\left(t_{0}, t_{1}\right)$. Then $\tilde{u}=Z$ in $\left(t_{0}, t_{1}\right)$ and

$$
\begin{equation*}
a u\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) u^{\prime}\left(t_{0}\right) \geq a Z\left(t_{0}\right)-b \phi^{-1}\left(r\left(t_{0}\right)\right) Z^{\prime}\left(t_{0}\right) \tag{3.5}
\end{equation*}
$$

Indeed, if $t_{0}>0$ then $u\left(t_{0}\right)=Z\left(t_{0}\right)$ and $u^{\prime}\left(t_{0}\right) \leq Z^{\prime}\left(t_{0}\right)$, while if $t_{0}=0$ then we have equality in (3.5). Similarly,

$$
\begin{equation*}
c u\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) u^{\prime}\left(t_{1}\right) \geq c Z\left(t_{1}\right)+d \phi^{-1}\left(r\left(t_{1}\right)\right) Z^{\prime}\left(t_{1}\right) \tag{3.6}
\end{equation*}
$$

Since

$$
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\lambda g(t) f(t, Z), \quad t \in\left(t_{0}, t_{1}\right)
$$

it follows from (3.2), (3.5), (3.6), and the comparison principle (see e.g. [8, Lemma 3.2]) that $u \geq Z$ in $\left(t_{0}, t_{1}\right)$, a contradiction. Thus $u \geq Z$ in $(0,1)$ and so $\tilde{u}=$ $\min \left\{u, Z_{1}\right\}$ in $(0,1)$.

Next, we show that $u \leq Z_{1}$ in (0,1). Using (A3) and $\lim _{z \rightarrow \infty} \sup \frac{f(t, z)}{\phi(z)}<\frac{\lambda_{1}}{\lambda}$ uniformly in $t \in(0,1)$, we deduce the existence of constants $A, K_{\lambda}>0$ and $\bar{\lambda} \in$ $\left(0, \lambda_{1}\right)$ such that

$$
\lambda f(t, z) \leq \bar{\lambda} \phi(z)+\frac{K_{\lambda}}{z^{\gamma}}
$$

for $z>0$ and $t \in(0,1)$. Hence

$$
\begin{aligned}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime} & =\lambda g(t) f(t, \tilde{u}) \leq g(t)\left(\bar{\lambda} \phi(\tilde{u})+\frac{K_{\lambda}}{\tilde{u}^{\gamma}}\right) \\
& \leq g(t)\left(\bar{\lambda}\left(M z_{1}\right)^{p-1}+\frac{K_{\lambda}}{\left(c z_{1}\right)^{\gamma}}\right) \\
& \leq \bar{\lambda} g(t)\left(M z_{1}\right)^{p-1}+\frac{K_{\lambda} g(t)}{\left(c m_{0}\right)^{\gamma} q^{\gamma}(t)}
\end{aligned}
$$

for $t \in(0,1)$. Let $u_{M}=u / M$. Then u_{M} satisfies

$$
-\left(r(t) \phi\left(u_{M}^{\prime}\right)\right)^{\prime} \leq \bar{\lambda} g(t) z_{1}^{p-1}+\frac{K_{\lambda} g(t)}{\left(c m_{0}\right)^{\gamma} M^{p-1} q^{\gamma}(t)}
$$

for $t \in(0,1)$. Let \bar{u}_{M} and \bar{u} satisfy

$$
-\left(r(t) \phi\left(\bar{u}_{M}^{\prime}\right)\right)^{\prime}=\bar{\lambda} g(t) z_{1}^{p-1}+\frac{K_{\lambda} g(t)}{\left(c m_{0}\right)^{\gamma} M^{p-1} q^{\gamma}(t)} \equiv h_{M}, \quad t \in(0,1)
$$

and

$$
-\left(r(t) \phi\left(\bar{u}^{\prime}\right)\right)^{\prime}=\bar{\lambda} g(t) z_{1}^{p-1} \equiv h, \quad t \in(0,1)
$$

with Sturm-Liouville boundary conditions in (1.1). Note that $\bar{u}=\left(\bar{\lambda} / \lambda_{1}\right)^{\frac{1}{p-1}} z_{1}$. By the comparison principle, $u_{M} \leq \bar{u}_{M}$ in $(0,1)$. Let $\varepsilon>0$ be such that $\left(\bar{\lambda} / \lambda_{1}\right)^{1 /(p-1)}+$ $\varepsilon<1$. Since

$$
\left\|h_{M}-h\right\|_{1}=\frac{K_{\lambda}}{\left(c m_{0}\right)^{\gamma} M^{p-1}}\left(\int_{0}^{1} \frac{g(t)}{q^{\gamma}(t)} d t\right) \rightarrow 0 \quad \text { as } M \rightarrow \infty
$$

it follows from Lemmas 2.4 and 2.5 that

$$
\begin{aligned}
\bar{u}_{M}-\bar{u} & \leq k\left|\bar{u}_{M}-\bar{u}\right|_{1} q \leq k m_{0}^{-1}\left|\bar{u}_{M}-\bar{u}\right|_{1} z_{1} \\
& \leq k m_{0}^{-1} M_{0} \max \left\{\left\|h_{M}-h\right\|_{1},\left\|h_{M}-h\right\|_{1}^{\frac{1}{p-1}}\right\} z_{1}<\varepsilon z_{1},
\end{aligned}
$$

provided that M is large enough. Consequently,

$$
u_{M} \leq \bar{u}_{M} \leq \bar{u}+\varepsilon z_{1}=\left(\left(\bar{\lambda} / \lambda_{1}\right)^{1 /(p-1)}+\varepsilon\right) z_{1} \leq z_{1} \quad \text { in }(0,1)
$$

i.e. $u \leq M z_{1}=Z_{1}$ in $(0,1)$. Hence $Z \leq u \leq Z_{1}$ in $(0,1)$ i.e. u is a positive solution of (1.1), which completes the proof.

Proof of Theorem 1.2. By Theorem 1.1, there exists a positive solution w of the problem

$$
\begin{gathered}
-\left(r(t) \phi\left(w^{\prime}\right)\right)^{\prime}=\frac{g(t)}{w^{\gamma}}, \quad t \in(0,1) \\
\left.a w(0)-b \phi^{-1}(r(0)) w^{\prime}(0)\right)=0, \quad c w(1)+d \phi^{-1}(r(1)) w^{\prime}(1)=0
\end{gathered}
$$

with $w \geq \alpha q$ in $(0,1)$ for some $\alpha>0$. Let w_{0} satisfy

$$
-\left(r(t) \phi\left(w_{0}^{\prime}\right)\right)^{\prime}=\left\{\begin{array}{ll}
\frac{L_{1} g(t)}{w^{\gamma}} & \text { if } w>\frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}} \\
-\frac{K_{1} g(t)}{w^{\gamma}} & \text { if } w \leq \frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}}
\end{array} \equiv h_{\lambda} \quad \text { in }(0,1)\right.
$$

with Sturm-Liouville boundary conditions, where $\delta=(\gamma+p-1)^{-1}, L_{1}=L^{\frac{p-1}{p-1+\gamma}}$ and $K_{1}=2^{\gamma} L_{1}^{-\gamma /(p-1)} K_{2 A}$, and $K_{2 A}$ is defined in (A3). Let w_{1} satisfy

$$
-\left(r(t) \phi\left(w_{1}^{\prime}\right)\right)^{\prime}=\frac{L_{1} g(t)}{w^{\gamma}} \equiv h \quad \text { in }(0,1)
$$

with Sturm-Liouville boundary conditions. Then $w_{1}=L_{1}^{1 /(p-1)} w$ and $w_{0} \leq w_{1}$ in $(0,1)$ by the comparison principle. Since

$$
\left\|h_{\lambda}-h\right\|_{1}=\left(L_{1}+K_{1}\right) \int_{w \leq \frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}}} \frac{g(t)}{w^{\gamma}(t)} d t \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty
$$

it follows from Lemma 2.5 that

$$
\left|w_{0}-w_{1}\right|_{1} \leq M_{0} \max \left\{\left\|h_{\lambda}-h\right\|_{1},\left\|h_{\lambda}-h\right\|_{1}^{\frac{1}{p-1}}\right\} \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty
$$

Hence by Lemma 2.4, there exists a constant $\lambda_{0}>0$ such that

$$
\begin{equation*}
w_{0} \geq w_{1}-k\left|w_{0}-w_{1}\right|_{1} q \geq \frac{L_{1}^{1 /(p-1)} w}{2} \quad \text { in }(0,1) \tag{3.7}
\end{equation*}
$$

for $\lambda>\lambda_{0}$. Let $Z=\lambda^{\delta} w_{0}$ and $Z_{1}=M z_{1}$ where $M>\lambda^{\delta} k m_{0}^{-1}\left|w_{1}\right|_{1}$ (so that $Z_{1}>Z$ in $(0,1))$. We shall verify that Z satisfies

$$
\begin{equation*}
-\left(r(t) \phi\left(Z^{\prime}\right)\right)^{\prime} \leq \lambda g(t) f(t, Z) \quad \text { in }(0,1) \tag{3.8}
\end{equation*}
$$

Indeed,

$$
-\left(r(t) \phi\left(Z^{\prime}\right)\right)^{\prime}= \begin{cases}\frac{\lambda^{\delta(p-1)} L_{1} g(t)}{w^{\gamma}} & \text { if } w>\frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}} \\ -\frac{\lambda^{\delta(p-1)} K_{1} g(t)}{w^{\gamma}} & \text { if } w \leq \frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}}\end{cases}
$$

If $w>2 A L_{1}^{-1 /(p-1)} / \lambda^{\delta}$ then by (3.7),

$$
Z \geq \frac{\lambda^{\delta} L_{1}^{1 /(p-1)} w}{2} \geq A
$$

from which (A6) gives

$$
\begin{align*}
\lambda g(t) f(t, Z) & \geq \frac{\lambda L g(t)}{Z^{\gamma}}=\frac{\lambda^{1-\gamma \delta} L g(t)}{w_{0}^{\gamma}} \\
& \geq \frac{\lambda^{1-\gamma \delta} L g(t)}{w_{1}^{\gamma}}=\frac{\lambda^{\delta(p-1)} L g(t)}{L_{1}^{\gamma /(p-1)} w^{\gamma}} \tag{3.9}\\
& =\frac{\lambda^{\delta(p-1)} L_{1} g(t)}{w^{\gamma}}
\end{align*}
$$

On the other hand, if $w \leq \frac{2 A L_{1}^{-1 /(p-1)}}{\lambda^{\delta}}$, then

$$
Z \leq \lambda^{\delta} w_{1}=L_{1}^{1 /(p-1)} \lambda^{\delta} w \leq 2 A
$$

from which (A3) and 3.7) give

$$
\begin{align*}
\lambda g(t) f(t, Z) & \geq-\frac{\lambda K_{2 A} g(t)}{Z^{\gamma}}=-\frac{\lambda^{1-\gamma \delta} K_{2 A} g(t)}{w_{0}^{\gamma}} \\
& \geq-\frac{\lambda^{\delta(p-1)} K_{2 A} g(t)}{\left(L_{1}^{1 /(p-1)} / 2\right)^{\gamma} w^{\gamma}}=-\frac{\lambda^{\delta(p-1)} K_{1} g(t)}{w^{\gamma}} \tag{3.10}
\end{align*}
$$

Combining (3.9) and (3.10), we see that (3.8) holds. Let T be the operator defined in the proof of Theorem 1.1] i.e. for $v \in C[0,1], u=T v$ satisfies (3.4); i.e.,

$$
\begin{gathered}
-\left(r(t) \phi\left(u^{\prime}\right)\right)^{\prime}=\lambda g(t) f(t, \tilde{v}), \quad t \in(0,1) \\
\left.a u(0)-b \phi^{-1}(r(0)) u^{\prime}(0)\right)=0, \quad c u(1)+d \phi^{-1}(r(1)) u^{\prime}(1)=0,
\end{gathered}
$$

where $\tilde{v}=\min \left\{\max \{v, Z\}, Z_{1}\right\}$. Then T has a fixed point u_{λ} in $C[0,1]$. Using the same arguments as in the proof of Theorem 1.1, we see that $u_{\lambda} \geq Z$ and, for M large enough $u_{\lambda} \leq Z_{1}$ in (0,1); i.e., u_{λ} is a positive solution of 1.1) for $\lambda>\lambda_{0}$ with $u_{\lambda} \geq \lambda^{\delta}\left(L_{1}^{1 /(p-1)} / 2\right) w$ in $(0,1)$, which completes the proof.

Acknowledgements. The author wants to thank the anonymous referee for pointing out some errors in the original manuscript and providing helpful suggestions.

References

[1] V. Anuradha, D. D. Hai, R. Shivaji; Existence results for superlinear semipositone BVPs, Proc. Amer. Math. Soc., 124 (1996), 757-763.
[2] C. Atkinson K. E. Ali; Some boundary value problems for the Bingham model, J. NonNewton. Fluid Mech., 41 (1992), 339-363.
[3] P. Binding, P. Drabek; Sturm-Liouville theory for the p-Laplacian, Studia Sci. Math. Hungar., 40 (2003), no. 4, 375-396.
[4] Y. J. Cui, J. X. Sun, Y. M. Zou; Gobal bifurcation and multiple results for Sturm-Liouville problems, J. Comput. Appl. Math., 235 (2011), 2185-2192.
[5] P. Drabek; Ranges of a homogeneous operators and their perturbations, Casopis Pest. Mat., 105 (1980), 167-183.
[6] M. Del Pino, M. Elgueta, R. Manasevich; A homotopic deformation along p of a LeraySchauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0, u(0)=u(T)=0, p>1$. J. Differential Equations, 80 (1989), no. 1, 1-13.
[7] L. Erbe, H. Wang; On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc., 120 (1994), no. 3, 743-748.
[8] D. D. Hai; On singular Sturm-Liouville boundary-value problems. Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), no. 1, 49-63.
[9] K. Q. Lan; Multiple positive solutions of semipositone Sturm-Liouville boundary value problems, Bull. Lond. Math. Soc. 38 (2006), 283-293.
[10] Y. Li; On the existence and nonexistence of potitive solutions for nonlinear Sturm-Liouville boundary value problems, J. Math. Anal. Appl., 304 (2005), 74-86.
[11] R. Mahadevan; A note on a nonlinear Krein-Rutman theorem, Nonlinear Anal., 67 (2007), 3084-3090.
[12] J. R. L. Webb, K. Q. Lan; Eigenvalue criteria for existence of multiple potitive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27 (2006), 91-115.
[13] G. C. Yang, P.F. Zhou; A new existence results of positive solutions for the Sturm-Liouville boundary value problems, Appl. Math. Letters 29 (2014), 52-56.
[14] Q. Yao; An existence theorem of a positive solution solution to a semipositone Sturm-Liouville boundary value problem, Appl. Math. Letters, 23 (2010), 1401-1406.

Hai Dinh Dang
Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA

E-mail address: dang@math.msstate.edu

[^0]: 2010 Mathematics Subject Classification. 34B16, 34B18.
 Key words and phrases. Singular Sturm-Liouville boundary value problem; positive solution. (C)2016 Texas State University.

 Submitted May 20, 2016. Published September 26, 2016.

