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REGULARIZATION AND ERROR ESTIMATES FOR
ASYMMETRIC BACKWARD NONHOMOGENEOUS HEAT

EQUATIONS IN A BALL

LE MINH TRIET, LUU HONG PHONG

Abstract. The backward heat problem (BHP) has been researched by many
authors in the last five decades; it consists in recovering the initial distribution

from the final temperature data. There are some articles [1, 2, 3] related the

axi-symmetric BHP in a disk but the study in spherical coordinates is rare.
Therefore, we wish to study a backward problem for nonhomogenous heat

equation associated with asymmetric final data in a ball. In this article, we
modify the quasi-boundary value method to construct a stable approximate

solution for this problem. As a result, we obtain regularized solution and a

sharp estimates for its error. At the end, a numerical experiment is provided
to illustrate our method.

1. Introduction

Inverse problems for partial differential equations play a vital role in many phys-
ical areas. A typical example of these problems is the backward heat problem
(BHP) which is also known as the final value problem. The purpose of the BHP
is to retrieve the temperature distribution at a particular time t < T from the
final temperature data. As we known, the BHP is severely ill-posed in Hadamard’s
sense, i.e., the solution does not always exist. Even if the solution exists, it may not
depend continuously on the given data. Therefore, an appropriate regularization is
required so as to get a stable solution.

There have been a lot of research related to the BHP in different kinds of domains.
For instance, the BHP has been investigated in rectangular coordinates by many
authors [6, 11, 13, 15, 16], to list just a few of them. Recently, some works have
considered polar coordinates and cylindrical coordinates. In particular, Cheng and
Fu [1, 2, 3] studied the axisymmetric backward heat problem in a disk. Cheng and
Fu [1, 3] used the modified Tikhonov method for regularizing the problem

∂u

∂t
=
∂2u

∂r2
+

1
r

∂u

∂r
, 0 < r ≤ r0, 0 < t < T,

u(r, T ) = ϕ(r), 0 ≤ r ≤ r0,
u(r0, t) = 0, 0 ≤ t ≤ T,
|u(0, t)| <∞, 0 ≤ t ≤ T,

(1.1)
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where the function ϕ(·) in the problem (1.1) is radially symmetric or axisymmetric,
i.e. it depends only on the radius r and not on θ.

Cheng W. et al. [2] considered a problem which is similar to (1.1). However,
there are some differences in initial condition which is expressed as follows

∂u

∂t
=
∂2u

∂r2
+

1
r

∂u

∂r
, 0 < r ≤ R, 0 < t,

u(r, 0) = 0, 0 ≤ r ≤ R,
u(r1, t) = g(t), 0 ≤ t,
|u(0, t)| <∞, 0 ≤ t,

(1.2)

in which r is the radius coordinate and g(·) is the temperature distribution at one
fixed radius r1 ≤ R of a cylinder. By applying the Fourier transform, the authors
found the exact solution of the problem ( 1.2) and used the modified Tikhonov
method to construct the regularized solutions. In the above papers [1, 2, 3], al-
though the authors suggested some methods to regularize (1.1) and (1.2), they still
did not give any numerical test to prove the effectiveness of their regularization.

From the above problems, we see that BHP was considered in a rectangular do-
main or a disk. In our knowledge, the works for BHP in a ball are rarely studied
and even we have not ever seen any results dealt with the asymmetric case. Mo-
tivated by this reason, we focus on the problem of determining the temperature
distribution u(r, θ, φ, t), for (r, θ, φ, t) ∈ (0, a)× (0, π)× (0, 2π)× (0, T ), satisfying

ut = c2
{∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)}
+ q(r, θ, φ), (1.3)

u(a, θ, φ, t) = 0, (1.4)

u(r, θ, φ, T ) = f(r, θ, φ), (1.5)

|u(0, θ, φ, t)| <∞, (1.6)

where a is the radius coordinate and f(·, θ, φ) ∈ L2[[0; a]; r] is the final temperature.
In practice, we cannot always obtain radially symmetric or axisymmetric form
of the data function f . Additionally, in physical applications, not only does the
initial temperature depend on the final data but it also depends on the heat source.
Hence, the heat source q is not often homogeneous. Thus, problem (1.3)-(1.6) is
more general than problem (1.1) and (1.2). From that, problem (1.3)-(1.6) is more
practical and applicable than (1.1) and (1.2). In this paper, we apply the modified
quasi-boundary value method (MQBV) to formulate the approximate solution for
(1.3)-(1.6). As we known, the quasi-boundary value (QBV) method which was
given by Showalter in 1983 is one of effective regularization methods. In [12], the
main idea of the QBV method is to add an appropriate “corrector term” into the
boundary condition. Based on this idea, in [11] we have modified the “corrector
term” to get a stable error estimations so we called it the modified quasi-boundary
value method. By using the MQBV method, we can obtain the Hölder type estimate
for the error between the regularized solution and the exact solution. Furthermore,
one advantage of the MQBV method is easier to make numerical experiment for
testing the feasibility of the method. Thus, we can make an example to illustrate
our results in this paper and it is a better point of our paper when we compare
with some previous papers [1, 2, 3].
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The rest of this article is organized as follows. In Section 2, some definitions
and propositions are given. In Section 3, we propose the regularized solutions for
problem (1.3)-(1.6) and estimate the error between the regularized solutions and
the exact solution. Then, the proof of our results is given in Section 4. Finally, we
present a numerical experiment to illustrate the main results in Section 5.

2. Some definitions and propositions

Definition 2.1. Let a > 0 and L2[[0; a]; r] = {f : [0; a] → R : f is Lebesgue
measurable with weigh r on [0; a]}. The above space is equipped with norm

‖f‖2 =
(∫ a

0

r|f(r)|2dr
)1/2

.

Next some definitions and propositions, presented in [5, 9, 18], are restated.

Proposition 2.2. Let n be a non-negative integer. Then, the spherical Bessel
functions of the 1st kind of order n are defined as

jn(x) = (
π

2x
)1/2Jn+ 1

2
(x),

where Jn+ 1
2

is the Bessel function of the 1st-kind of order n+ 1
2 .

Proposition 2.3. Let n be a non-negative integer and the spherical Bessel’s equa-
tion of order n be defined by

x2y′′ + 2xy′ + (λ2x2 − n(n+ 1))y = 0, 0 < x < a, y(a) = 0. (2.1)

Then, we obtain the following solutions for equation (2.1),

yn,j(x) = jn(λn,jx), n = 0, 1, 2, . . . , j = 1, 2, . . . ,

where λ = λn,j = αn+1/2,j

a , for αn+1/2,j denotes the jth positive zero of Jn+ 1
2
.

Proposition 2.4. Let n be a non-negative integer. Then, we have the Legendre
polynomial of the 1st kind of degree n,

Pn(x) =
1
2n

M∑
m=0

(−1)m
(2n− 2m)!

m!(n−m)!(n− 2m)!
xn−2m, (2.2)

in which M = n/2 if n is even or M = (n − 1)/2 if n is odd. Moreover, we have
the Legendre function of the 2nd kind of degree n,

Qn(x) = Pn(x)
∫

1
[Pn(x)]2(1− x2)

dx, (n = 0, 1, 2, . . . ). (2.3)

Proposition 2.5. For n = 0, 1, 2, . . . , Legendre’s equation of degree n,

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, −1 < x < 1. (2.4)

From which, the general solution of (2.4) is

y(x) = c1Pn(x) + c2Qn(x),

where Pn(x), Qn(x) are defined by (2.2) and (2.3), respectively, and c1, c2 are
arbitrary constants.



4 L. M. TRIET, L. H. PHONG EJDE-2016/256

Remark 2.6. (i) For n = 0, 1, 2, . . . and m = 0, 1, 2, . . . , the associated Legendre
function Pmn (x) is defined in terms of the m − th derivative of the Legendre poly-
nomial of degree n by

Pmn (x) = (−1)m(1− x2)m/2
dmPn(x)
dxm

. (2.5)

Since Pn is a polynomial of degree n, for Pmn to be nonzero, we must take 0 ≤ m ≤ n.
Moreover, if m is negative integer, we defined Pmn by

Pmn (x) = (−1)m
(n+m)!
(n−m)!

P−mn (x).

This extends the definition of the associated Legendre function for n = 0, 1, 2, . . .
and m = −n,−(n− 1), . . . , n− 1, n.

(ii) After that, we define the spherical harmonics Yn,m(θ, φ) by

Yn,m(θ, φ) =

√
2n+ 1

4π
(n−m)!
(n+m)!

Pmn (cos θ)eimφ, (2.6)

where n = 0, 1, 2, . . . and m = −n,−(n− 1), . . . , n− 1, n.

Proposition 2.7. Let n be a non-negative integer and the differential equation for
the spherical harmonics be defined by

∂2Y

∂θ2
+ cot θ

∂Y

∂θ
+ csc2 θ

∂2Y

∂φ2
+ n(n+ 1)Y = 0,

where 0 < θ < π, 0 < φ < 2π. Then, we have 2n + 1 nontrivial solutions given by
the spherical harmonics

Y (θ, φ) = Yn,m(θ, φ), |m| ≤ n,
where Yn,m(θ, φ) is defined by (2.6).

Proposition 2.8. Let f(r, θ, φ) be a square integrable function, defined for 0 < r <
a, 0 < θ < π, 0 < φ < 2π, and 2π-periodic in φ. Then, we have

f(r, θ, φ) =
∞∑
j=1

∞∑
n=0

n∑
m=−n

Ajnmjn(λn,jr)Yn,m(θ, φ),

where

Ajnm =
2

a3j2n+1(αn+ 1
2 ,j

)

∫ a

0

∫ 2π

0

∫ π

0

f(r, θ, φ)jn(λn,jr)Y n,m(θ, φ)r2 sin θ dθ dφ dr,

and Y n,m is the complex conjugate of Yn,m.

3. Regularization and main results

By employing the method of separation of variables, the exact solution u of the
problem (1.3)-(1.5) corresponding to the exact data f can be found out as follows

u(r, θ, φ, t) =
∞∑
j=1

∞∑
n=0

n∑
m=−n

Ajnm(t)jn(λn,jr)Yn,m(θ, φ), (3.1)

where

Ajnm(t) = exp{c2λ2
n,j(T − t)}

(
fjnm −

qjnm
c2λ2

n,j

)
+

qjnm
c2λ2

n,j

,
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fjnm =
2

a3j2n+1(αn+1/2,j)

∫ a

0

∫ 2π

0

∫ π

0

f(r, θ, φ)jn(λn,jr)Y n,m(θ, φ)r2 sin θ dθ dφ dr,

qjnm =
2

a3j2n+1(αn+1/2,j)

∫ a

0

∫ 2π

0

∫ π

0

q(r, θ, φ)jn(λn,jr)Y n,m(θ, φ)r2 sin θ dθ dφ dr.

From (3.1), we can see that the term exp{c2λ2
n,j(T−t)} becomes large as n tends to

infinity. This term causes the instability of problem (1.3)-(1.5) so that we replace
this term by a better term. In fact, if we use the QBV method; the regularized
problem shall be as follows

ωεt = c2∇2ωε + q(r, θ, φ), (3.2)

ωε(a, θ, φ, t) = 0, (3.3)

ωε(r, θ, φ, T ) + εωε(r, θ, φ, 0) = fε(r, θ, φ), (3.4)

|ωε(0, θ, φ, t)| <∞, (3.5)

where ∇2 is the spherical form of the Laplacian, i.e,

∇2ωε =
∂2ωε

∂r2
+

2
r

∂ωε

∂r
+

1
r2

(
∂2ωε

∂θ2
+ cot θ

∂ωε

∂θ
+ csc2 θ

∂2ωε

∂φ2
).

Then, we have the following regularized solution of (3.2)-(3.5),

ωε(r, θ, φ, t) =
∞∑
j=1

∞∑
n=0

n∑
m=−n

Aεjnm(t)jn(λn,jr)Yn,m(θ, φ),

in which

Aεjnm(t) =
exp{−c2λ2

n,jt}
ε+ exp{−c2λ2

n,jT}

(
fεjnm −

qjnm
c2λ2

n,j

)
+

qjnm
c2λ2

n,j

,

fεjnm =
2

a3j2n+1(αn+1/2,j)

∫ a

0

∫ 2π

0

∫ π

0

fε(r, θ, φ)jn(λn,jr)Y n,m(θ, φ)r2 sin θ dθ dφ dr.

In this article, we modify the regularized parameter of ωε by a different one to
get a Hölder type estimate for the error between the regularized solution and the
exact solution. So we call this method the modified quasi-boundary value method.
In particular, we construct the regularized solutions uε, vε corresponding to the
measured data fε and the exact data f , respectively

uε(r, θ, φ, t) =
∞∑
j=1

∞∑
n=0

n∑
m=−n

Bεjnm(t)jn(λn,jr)Yn,m(θ, φ), (3.6)

where

Bεjnm(t) =
exp{−c2λ2

n,jt}
α(ε)c2λ2

n,j + exp{−c2λ2
n,jT}

(
fεjnm −

qjnm
c2λ2

n,j

)
+

qjnm
c2λ2

n,j

,

and

vε(r, θ, φ, t) =
∞∑
j=1

∞∑
n=0

n∑
m=−n

Bjnm(t)jn(λn,jr)Yn,m(θ, φ), (3.7)

in which

Bjnm(t) =
exp{−c2λ2

n,jt}
α(ε)c2λ2

n,j + exp{−c2λ2
n,jT}

(
fjnm −

qjnm
c2λ2

n,j

)
+

qjnm
c2λ2

n,j

.
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and α(ε) is regularization parameter such that α(ε) → 0 when ε → 0. For short
notation, we denote α = α(ε).

Lemma 3.1. For 0 < α < T , a > 0, we have the following inequality

1
αa+ exp{−aT}

≤ T

α
(ln(

T

α
))−1.

Lemma 3.2. For 0 ≤ t ≤ s ≤ T , 0 < α < T , a > 0 and denote T̃ = max{1, T},
we get the following inequalities

(i)
exp{(s− t− T )a}
αa+ exp{−aT}

≤ T̃
(
α ln(

T

α
)
) t−s

T

.

ii) For s = T , we obtain

exp{−ta}
αa+ exp{−aT}

≤ T̃
(
α ln(

T

α
)
) t

T −1

.

In this article, we require some assumptions on the exact data f and the measured
data fε as follows

(H1) Let f(·, θ, φ), fε(·, θ, φ) ∈ L2[[0; a]; r] be the exact data and the measured
data such that

‖fε(·, θ, φ)− f(·, θ, φ)‖2 ≤ ε,

for (θ, φ) ∈ (0, π)× (0, 2π).
(H2) There exists a non-negative number A such that

sup
(θ,φ)∈[0;π]×[0;2π]

‖∂u
∂t

(·, θ, φ, 0)‖2 ≤ A.

In the following theorem, we give the stability of the modified method for problem
(3.6).

Theorem 3.3. Let α ∈ (0; 1), fε(·, θ, φ), f(·, θ, φ) satisfy (H1) for all (θ, φ) ∈
(0, π)×(0, 2π). Assume that uε and vε are defined by (3.6) and (3.7) corresponding
to the final data fε(·, θ, φ) and f(·, θ, φ), respectively. Then, we obtain

‖uε(·, θ, φ, t)− vε(·, θ, φ, t)‖2 ≤ T̃
(
α ln(

T

α
)
) t

T −1

ε,

for (θ, φ, t) ∈ (0, π)× (0, 2π)× (0, T ).

Finally, we estimate the error between the regularized solution corresponding to
the measured data fε and the exact solution of problem (1.3)-(1.5).

Theorem 3.4. Let f , fε be as in Theorem 3.3 and 0 < α < min{1;T}. Suppose
that uε is defined by (3.6) corresponding to the perturbed datum fε and u be the
exact solution of (1.3)-(1.5) satisfying (H2). Then, we have

‖uε(·, θ, φ, t)− u(·, θ, φ, t)‖2 ≤ T̃ ε
t
T

(
ln(

T

ε
)
) t

T −1

(A+ 1). (3.8)

for (θ, φ, t) ∈ (0, π)× (0, 2π)× (0, T ).
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4. Proofs of main results

Proof of Lemma 3.1. Let 0 < α < T and ψ(a) = 1
αa+exp{−aT} . By simple calcula-

tions, we have

ψ(a) ≤ T

α(1 + ln(T/α))
≤ T

α ln(T/α)
,

for a > 0. This completes the proof. �

Proof of Lemma 3.2. (i) From Lemma 3.1, we have

exp{(s− t− T )a}
αa+ exp{−aT}

≤ exp{(s− t− T )a}
(αa+ exp{−aT}) s−t

T (αa+ exp{−aT}) T+t−s
T

≤ exp{(s− t− T )a}
(αa+ exp{−aT}) s−t

T (exp{−aT}) T+t−s
T

≤
( T

α ln(T/α)

) s−t
T

≤ T̃ [α ln(T/α)]
t−s
T ,

where T̃ = max{1, T}.
(ii) Let s = T , we obtain

exp{−ta}
αa+ exp{−aT}

≤ T̃ [α ln(T/α)]
t−T

T .

This completes the proof. �

Proof of Theorem 3.3. From (3.6), (3.7) and Lemma 3.2, we have the estimate

‖uε(·, θ, φ, t)− vε(·, θ, φ, t)‖2

= ‖
∞∑
j=1

∞∑
n=0

n∑
m=−n

exp{−c2λ2
n,jt}

αc2λ2
n,j + exp{−c2λ2

n,jT}
(fεjnm − fjnm)jn(λn,j ·)Yn,m(θ, φ)‖2

≤ T̃
(
α ln(

T

α
)
) t

T −1

‖
∞∑
j=1

∞∑
n=0

n∑
m=−n

(fεjnm − fjnm)jn(λn,j ·)Yn,m(θ, φ)‖2 (4.1)

= T̃
(
α ln(

T

α
)
) t

T −1

‖fε(·, θ, φ)− f(·, θ, φ)‖2

≤ T̃
(
α ln(

T

α
)
) t

T −1

ε.

This completes the proof. �

Proof of Theorem 3.4. Using the triangle inequality,

‖uε(·, θ, φ, t)− u(·, θ, φ, t)‖2
≤ ‖uε(·, θ, φ, t)− vε(·, θ, φ, t)‖2 + ‖vε(·, θ, φ, t)− u(·, θ, φ, t)‖2.

(4.2)

From (3.1) and (3.7), we obtain

‖vε(·, θ, φ, t)− u(·, θ, φ, t)‖2

= ‖
∞∑
j=1

∞∑
n=0

n∑
m=−n

( exp{−c2λ2
n,jt}

αc2λ2
n,j + exp{−c2λ2

n,jT}
− exp{c2λ2

n,j(T − t)}
)
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×
(
fjnm −

qjnm
c2λ2

n,j

)
jn(λn,j ·)Yn,m(θ, φ)‖2

≤ αT̃
(
α ln(

T

α
)
) t

T −1

‖
∞∑
j=1

∞∑
n=0

n∑
m=−n

c2λ2
n,j exp{c2λ2

n,jT}

×
(
fjnm −

qjnm
c2λ2

n,j

)
jn(λn,j ·)Yn,m(θ, φ)‖2

= αT̃
(
α ln(

T

α
)
) t

T −1

‖∂u
∂t

(·, θ, φ, 0)‖2

≤ αT̃ (α ln(
T

α
))

t
T −1A. (4.3)

Combining Theorem 3.3 and (4.3), choosing α = ε, we have the estimate

‖uε(·, θ, φ, t)− u(·, θ, φ, t)‖2 ≤ T̃ ε
t
T

(
ln(

T

ε
)
) t

T −1

(A+ 1).

This completes the proof. �

5. Numerical experiments

In this section, we consider the backward nonhomogeneous heat equation in a
ball,

ut = c2
{∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

(∂2u

∂θ2
+ cot θ

∂u

∂θ
+ csc2 θ

∂2u

∂φ2

)}
+ q(r, θ, φ), (5.1)

u(a, θ, φ, t) = 0, (5.2)

u(r, θ, φ, T ) = f(r, θ, φ), (5.3)

where (r, θ, φ, t) ∈ (0, 1) × (0, π) × (0, 2π) × (0, 1), c = 0.05 and q, f are defined as
follows

f(r, θ, φ) = 100, (5.4)

q(r, θ, φ) = j12(α25/2,1r)[Y12,−12(θ, φ) + Y12,12(θ, φ)]. (5.5)

By simple calculations, we have

fjnm = 0 for all j, n 6= 0 or m ∈ [−n, n]/backslash{0},

fj00 =
400
√

2
√
α1/2,jJ3/2(α1/2,j)

for all j,

qjnm = 0, for all (j, n,m) 6= (1, 12,−12) and (1, 12, 12),

qjnm = 1, for (j, n,m) = (1, 12,−12) or (1, 12, 12).

We also obtain

Y12,12(θ, φ) =

√
25

24!.4π
P 12

12 (cos θ)ei12θ,

P 12
12 (x) = (−1)12(1− x2)6

d12P12(x)
dx12

,

P12(x) =
1

212

6∑
m=1

(−1)m
(24− 2m)!

m!(12−m)!(12− 2m)!
x12−2m,

Y12,−12(θ, φ) = (−1)12Y 12,12(θ, φ).
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From which, we get the exact solution u corresponding to f , q which are defined
by (5.4) and (5.5), respectively.

u(r, θ, φ, t)

=
∞∑
j=1

exp(α2
1/2,jc

2(1− t)) 400
√

2
√
α1/2,jJ3/2(α1/2,j)

j0(α1/2,jr)Y0,0(θ, φ)

+
(
1− exp(α2

25/2,1c
2(1− t))

) 1
c2α2

25/2,1

j12(α25/2,1r)

× (Y12,−12(θ, φ) + Y12,12(θ, φ))

=
∞∑
j=1

exp(α2
1/2,jc

2(1− t)) 200
√

2
√
α1/2,jJ3/2(α1/2,j)

(
1

2α1/2,jr
)1/2J1/2(α1/2,jr)

+ 2(1− exp(α2
25/2,1c

2(1− t))) 1
c2α2

25/2,1

( π

2α25/2,1r

)1/2
× J25/2(α25/2,1r)P 12

12 (cos θ) cos 12φ.

(5.6)

Figure 1. Exact and regularized solutions corresponding to εi,
i = 1, 2, 3 when r = 0.5, θ = π

6 .

Then, we consider the measured data

fε(r, θ, φ) = 100 + ε. (5.7)

From (5.4) and (5.7), we have

‖fε(·, θ, φ)− f(·, θ, φ)‖2 =
(∫ 1

0

rε2dr
)1/2

≤ ε.
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Figure 2. Exact and regularized solution corresponding to ε1

Figure 3. Regularized solutions corresponding to εi, i = 2, 3.

From (3.6) and (5.7), we have the regularized solution uε as follows

uε(r, θ, φ, t)

=
∞∑
j=1

exp(−α2
1/2,jc

2t)

εα2
1/2,jc

2 + exp(−α2
1/2,jc

2)
4(100 + ε)

√
2

√
α1/2,jJ3/2(α1/2,j)

j0(α1/2,jr)Y0,0(θ, φ)

+
(

1−
exp(−α2

25/2,1c
2t)

εα2
25/2,1c

2 + exp(−α2
25/2,1c

2)

) 1
c2α2

25/2,1

j12(α25/2,1r)

× (Y12,−12(θ, φ) + Y12,12(θ, φ))

=
∞∑
j=1

exp(−α2
1/2,jc

2t)

εα2
1/2,jc

2 + exp(−α2
1/2,jc

2)
2(100 + ε)

√
2

√
α1/2,jJ3/2(α1/2,j)

( 1
2α1/2,jr

)1/2 (5.8)

× J1/2(α1/2,jr)

+ 2
(

1−
exp(−α2

25/2,1c
2t)

εα2
25/2,1c

2 + exp(−α2
25/2,1c

2)

) 1
c2α2

25/2,1

( π

2α5/2,1r

)1/2
× J25/2(α25/2,1r)P 12

12 (cos θ) cos 12φ.
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Next, we calculate the first seven coefficients of (5.6) and (5.8) at various values
of t. Let ε be ε1 = 10−3, ε2 = 10−4, ε3 = 10−5, respectively and t ∈ {0; 0.5}. The
following table shows estimates for the error between the exact solution (5.6) and
the regularized solutions (5.8).

Table 1. Error between exact and regularized solutions when
(θ, φ) = (π6 ,

π
6 ).

‖uε(·, π6 ,
π
6 , t)− u(·, π6 ,

π
6 , t)‖2

t ε1 = 10−3 ε2 = 10−4 ε3 = 10−5

0 1.2431× 10−1 1.2475× 10−2 1.2479× 10−3

0.5 6.9674× 10−2 6.9906× 10−3 6.9929× 10−4

Figure 1 shows the exact and regularized solutions uεi , i = 1, 2, 3 at the time
t = 0.5 when r = 0.5 and θ = π

6 . Finally, we plot the graphs of the exact and
regularized solutions uεi , i = 1, 2, 3 at the time t = 0.5 corresponding to θ = π

6 in
Figures 2–3.
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