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INFINITELY MANY SOLUTIONS FOR KIRCHHOFF-TYPE
PROBLEMS DEPENDING ON A PARAMETER

JUNTAO SUN, YONGBAO JI, TSUNG-FANG WU

Abstract. In this article, we study a Kirchhoff type problem with a positive
parameter λ,

−K
“Z

Ω
|∇u|2dx

”
∆u = λf(x, u), in Ω,

u = 0, on ∂Ω,

where K : [0,+∞) → R is a continuous function and f : Ω × R → R is a

L1-Carathéodory function. Under suitable assumptions on K(t) and f(x, u),

we obtain the existence of infinitely many solutions depending on the real
parameter λ. Unlike most other papers, we do not require any symmetric

condition on the nonlinear term f(x, u). Our proof is based on variational

methods.

1. Introduction

Consider the Kirchhoff type problem

−K
(∫

Ω

|∇u|2dx
)

∆u = λf(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where λ > 0 is a real parameter, K : [0,+∞) → R is a continuous function,
Ω ⊂ RN (N ≥ 1) is a nonempty bounded open set with a smooth boundary ∂Ω,
f : Ω× R→ R is a L1-Carathéodory function.

If K(t) = a + bt, then (1.1) is related to the stationary case of equations that
arise in the study of string or membrane vibrations, namely,

utt −
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = g(x, u), (1.2)

where u denotes the displacement, g(x, u) the external force and b the initial tension
while a is related to the intrinsic properties of the string, such as Young’s modulus.
Equations of this type were suggested by Kirchhoff [16] in 1883 to describe the
transversal oscillations of a stretched string, particularly, taking into account the
subsequent change in string length caused by oscillations. Equation (1.2) is often
referred to as being nonlocal because of the presence of the integral over the entire
domain Ω.
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We wish to point out that similar nonlocal problems also model several physical
and biological systems. For example, a parabolic version of (1.2) can be used
to describe the growth and movement of a particular species theoretically. The
movement, simulated by the integral term, is assumed dependent on the energy of
the entire system with u as its population density. Alternatively, the movement of a
particular species may be subject to the total population density within the domain
(for instance, the spreading of bacteria) which induces equations of the type

ut − a
(∫

Ω

|∇u|2dx
)

∆u = g(x, u).

Chipot-Lovat [12] and Corrêa [14] studied the existence of solutions and their
uniqueness for such nonlocal problems and their corresponding elliptic equations.

Since Lions [19] introduced an abstract framework of (1.2), the solvability of (1.2)
has been well-studied in general dimensions and domains by various researchers [3,
5, 9]. More precisely, Arosio-Panizzi [5] studied the Cauchy-Dirichlet type problem
related to (1.2) in the Hadamard sense as a special case of an abstract second-order
Cauchy problem in a Hilbert space. D’Ancona-Spagnolo [3] obtained the existence
of a global classical periodic solution for the degenerate Kirchhoff equation with
real analytic data.

Compared with (1.2), its stationary equation, including both the case of bounded
domain and the case of unbounded domain, has received more attention. We refer
to [1, 2, 4, 6, 7, 10, 11, 13, 15, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29] and the
references therein. The research of these papers mainly involve the existence of
positive solutions, ground state solutions and multiplicity of positive solutions under
various assumptions on K(t) and f(x, u). Let us briefly comment some known
results related to our paper.

Alves-Corrêa-Ma [2] studied (1.1) with λ = 1 and found the conditions of K(t)
and f(x, u) that permit the existence of a positive solution. That is, K(t) does not
grow too fast in a suitable interval near zero and f(x, u) is locally Lipschitz subject
to some prescribed criteria.

Chen-Kuo-Wu [10] studied the following Kirchhoff type problem with concave
and convex nonlinearities

−K
(∫

Ω

|∇u|2dx
)

∆u = µf(x)|u|q−2u+ g(x)|u|p−2u in Ω,

u = 0 in ∂Ω,
(1.3)

where Ω is a smooth bounded domain in RN with 1 < q < 2 < p < 2∗ (2∗ = 2N
N−2

if N ≥ 3, 2∗ = ∞ if N = 1, 2), K(t) = a + bt, a, b, µ > 0 are parameters and the
weight functions f, g ∈ C(Ω̄) are allowed to be changing-sign. Using the Nehari
manifold method and fibering map, several results on the existence and multiplicity
of positive solutions for (1.3) are obtained. It is worth noting that they illustrated
the difference in the solution behavior which arises from the consideration of the
nonlocal effect.

Ricceri [25] investigated the Kirchhoff type problem with two parameters

−K
(∫

Ω

|∇u|2dx
)

∆u = λf(x, u) + µg(x, u), in Ω,

u = 0, on ∂Ω,
(1.4)
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Under rather general assumptions on K(t) and f(x, u), he proved that for each
λ > λ∗ > 0 and for each Carathéodory function g(x, u) with a sub-critical growth,
(1.4) admits at least three weak solutions for every µ ≥ 0 small enough. Later,
using a recent three critical points theorem due to Ricceri [24], Graef-Heidarkhani-
Kong [15] improved the results in [25] and also obtained the existence of three
weak solutions for (1.4) under some appropriate hypotheses, depending on two real
parameters.

Motivated by the above works, in the present paper we shall establish some
results on the existence of infinitely many solutions for (1.1). In our results neither
symmetric nor monotonic condition on the nonlinear term is assumed. We require
that f(x, u) have a suitable oscillating behavior either at infinity or at zero on u.
For the first case, we obtain an unbounded sequence of solutions; for the second
case, we get a sequence of non-zero solutions strongly converging at zero. It is
worth emphasizing that we extend and improve the results in [17].

The remainder of this paper is organized as follows. In Section 2, some prelim-
inary results are introduced. The main results and their proofs are presented in
Section 3.

2. Preliminaries

Let H1
0 (Ω) be the usual Sobolev space endowed with norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

.

Throughout this paper, we denote the best Sobolev constant by Sr for the imbed-
ding of H1

0 (Ω) into Lr(Ω) with 2 ≤ r < 2∗ and define it by

Sr = inf
u∈H1

0 (Ω)\{0}

‖u‖
|u|r

,

where | · |r stands for the classical Lr norm. We recall that f : Ω × R → R is an
L1-Carathéodory function if

(a) the mapping x 7→ f(x, u) is measurable for every u ∈ R;
(b) the mapping u 7→ f(x, u) is continuous for almost every x ∈ Ω;
(c) for every ρ > 0 there exists a function lρ ∈ L1(Ω) such that

sup
|u|≤ρ

|f(x, u)| ≤ lρ(x)

for almost every x ∈ Ω.
We shall prove our results by applying the following smooth version of [8, The-

orem 2.1], which is a more precise version of Ricceri’s Variational Principle [23,
Lemma 2.5].

Theorem 2.1. Let E be a reflexive real Banach space, let Φ,Ψ : E → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous and coercive, and Ψ is sequentially weakly upper
semi-continuous. For every r > infE Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)
r − Φ(u)

,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infE Φ)+

ϕ(r).
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Then the following properties hold:
(a) For every r > infEΦ and every λ ∈ (0, 1/ϕ(r)); the restriction of the func-

tional
Iλ := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local minimum)
of Iλ in E.

(b) If γ < +∞; then for each λ ∈ (0, 1/γ), the following alternative holds: either
(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞; then for each λ ∈ (0, 1/δ), the following alternative holds: either
(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima)

of Iλ that converges weakly to a global minimum of Φ.

3. Main results

The following theorem is our first result.

Theorem 3.1. Let K : [0,+∞)→ R be a continuous function and let f : Ω×R→ R
be an L1-Carathéodory function. Assume that the following conditions hold:

(A1) there exists a constant m > 0 such that inft≥0K(t) ≥ m;
(A2) there exist constants m1 > 0 and m2 ≥ 0 such that

K(t) ≤ m1t+m2, for every t ∈ [0,+∞),

where K(t) =
∫ t

0
K(s)ds for t ≥ 0;

(A3) there exist two constants a1 > 0, a2 ≥ 0 and 1 < α < 2 such that

|f(x, u)| ≤ a1|u|+ a2|u|α−1, for all x ∈ Ω and u ∈ R;

(A4) there exist x0 ∈ Ω and three constants τ > σ > 0 and

γ >
a1m1(|B(x0, τ)| − |B(x0, σ|)
mS2

2(τ − σ)2|B(x0, σ)|
> 0, (3.1)

such that

B(x0, σ) ⊂ B(x0, τ) ⊆ Ω,

F (x, u) ≥ 0, for all (x, u) ∈ (Ω \B(x0, σ))× R,
F (x, u) ≥ γu2, for all (x, u) ∈ B(x0, σ)× [1,+∞),

where

F (x, u) =
∫ u

0

f(x, s)ds, for all (x, u) ∈ Ω× R,

and B(x0, σ) denotes the open ball with center at x0 and radius σ.
Then for every

λ ∈
(m1(|B(x0, τ)| − |B(x0, σ)|)

2γ(τ − σ)2|B(x0, σ)|
,
mS2

2

2a1

)
,

Equation (1.1) has a sequence of solutions {un} in H1
0 (Ω) satisfying

lim
n→+∞

‖un‖ = +∞.
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Proof. Let Φ,Ψ : H1
0 (Ω)→ R be defined by

Φ(u) =
1
2
K(‖u‖2), Ψ(u) =

∫
Ω

F (x, u)dx (3.2)

and put
Iλ(u) := Φ(u)− λΨ(u) for all u ∈ H1

0 (Ω).

Using the properties of f , it is easy to verify that Φ,Ψ ∈ C1(H1
0 (Ω),R) and for any

v ∈ H1
0 (Ω), we have

〈Φ′(u), v〉 = K
(∫

Ω

|∇u(x)|2dx
)∫

Ω

∇u(x)∇v(x)dx,

〈Ψ′(u), v〉 =
∫

Ω

f(x, u(x))v(x)dx.

So by the standard arguments, we deduce that the critical points of the functional
Iλ are the weak solutions of (1.1).

Using (A1) and (3.2) gives

Φ(u) ≥ m

2
‖u‖2 for all u ∈ H1

0 (Ω), (3.3)

which implies that Φ is coercive. Moreover, it is easy to show that Φ is sequentially
weakly lower semi-continuous and Ψ is sequentially weakly upper semi-continuous.
Therefore, the functionals Φ and Ψ satisfy the regularity assumptions of Theorem
2.1.

Obviously, it follows from (3.1) that

m1(|B(x0, τ)| − |B(x0, σ|)
2γ(τ − σ)2|B(x0, σ)|

<
mS2

2

2a1
.

Now we fix

λ ∈
(m1(|B(x0, τ)| − |B(x0, σ)|)

2γ(τ − σ)2|B(x0, σ)|
,
mS2

2

2a1

)
.

Then for any r > 0, using (3.3) leads to

Φ−1(−∞, r) = {u ∈ H1
0 (Ω) : Φ(u) < r}

⊆
{
u ∈ H1

0 (Ω) : ‖u‖ <
√

2r/m
}
,

(3.4)

and combining (A3), we have

sup
u∈Φ−1(−∞,r)

Ψ(u) ≤ sup
u∈Φ−1(−∞,r)

∫
Ω

|F (x, u(x))|dx

≤ sup
u∈Φ−1(−∞,r)

(a1

2

∫
Ω

|u(x)|2dx+
a2

α

∫
Ω

|u(x)|αdx
)

≤ sup
u∈Φ−1(−∞,r)

( a1

2S2
2

‖u‖2 +
a2

αSαα
‖u‖α

)
<

a1r

mS2
2

+
a2

αSαα
(
2r
m

)α/2.

Thus,

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)
r − Φ(u)
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≤
supu∈Φ−1(−∞,r) Ψ(u)

r

<
a1

mS2
2

+
a2

αSαα
(

2
m

)α/2r
α−2

2 ,

which implies
γ := lim inf

r→+∞
ϕ(r) ≤ a1

mS2
2

< +∞.

Now we choose a sequence {ηn} of positive numbers satisfying limn→+∞ ηn = +∞.
For every n ∈ N, we define vn given by

vn(x) :=


0, x ∈ Ω \B(x0, τ),
ηn
τ−σ (τ − dist(x, x0)), x ∈ B(x0, τ) \B(x0, σ),
ηn, x ∈ B(x0, σ).

(3.5)

It is easy to verify that vn ∈ H1
0 (Ω) and

‖vn‖2 =
∫

Ω\B(x0,τ)

|∇vn|2dx+
∫
B(x0,τ)\B(x0,σ)

|∇vn|2dx+
∫
B(x0,σ)

|∇vn|2dx

=
∫
B(x0,τ)\B(x0,σ)

η2
n

(τ − σ)2
dx

=
η2
n

(τ − σ)2
(|B(x0, τ)| − |B(x0, σ)|).

Then it follows from (A2) and (3.2) that

Φ(vn) ≤ m1

2
‖vn‖2 +

m2

2

≤ m1η
2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
+
m2

2
.

(3.6)

On the other hand, using (A4), from the definition of Ψ, we infer that

Ψ(vn) ≥
∫
B(x0,σ)

F (x, ηn)dx. (3.7)

Thus, by (3.6), (3.7) and (A4), for every n ∈ N large enough, one has

Iλ(vn) ≤ m1η
2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
+
m2

2
− λ

∫
B(x0,σ)

F (x, ηn)dx

<
m1η

2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
+
m2

2
− λ

∫
B(x0,σ)

γη2
ndx

=
m1η

2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
+
m2

2
− λγ|B(x0, σ)|η2

n

=
m2

2
+
(m1(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
− λγ|B(x0, σ)|

)
η2
n.

Since

λ >
m1(|B(x0, τ)| − |B(x0, σ|)

2γ(τ − σ)2|B(x0, σ)|
and limn→+∞ ηn = +∞, we have

lim
n→+∞

Iλ(vn) = −∞.
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This shows that the functional Iλ is unbounded from below, and it follows that Iλ
has no global minimum. Therefore, by Theorem 2.1 (b), there exists a sequence
{un} of critical points of Iλ such that

lim
n→+∞

‖un‖ = +∞,

since K(‖un‖2) ≤ m1
2 ‖un‖

2+m2
2 by (A2). Therefore, the conclusion is achieved. �

Remark 3.2. Indeed, from condition (A2), we can see that the potential K has a
sublinear growth. Moreover, it is not difficult to find such continuous function K
satisfying (A1) and (A2), for example

K(t) = 1 +
1

1 + t2
, t ≥ 0.

Now, we state our second result.

Theorem 3.3. Let K : [0,+∞)→ R be a continuous function and f : Ω×R→ R
be an L1-Carathéodory function. Assume that (A1) and the following conditions
hold:

(A2’) there exist constants l1 ≥ 0, q ≥ 1 and l2 > 0 such that

K(t) ≤ l1tq−1 + l2, for every t ∈ [0,+∞);

(A3’) there exist b1 > 0, b2 ≥ 0 and 2 < β < 2∗ (2∗ = 2N
N−2 if N ≥ 3, 2∗ = ∞ if

N = 1, 2) such that

|f(x, u)| ≤ b1|u|+ b2|u|β−1, for all x ∈ Ω and u ∈ R;

(A4’) there exist x0 ∈ Ω and three constants τ > σ > 0 and

γ >
b1l2(|B(x0, τ)| − |B(x0, σ)|)
mS2

2(τ − σ)2|B(x0, σ)|
> 0, (3.8)

such that

B(x0, σ) ⊂ B(x0, τ) ⊆ Ω,

F (x, u) ≥ 0, for all (x, u) ∈ (Ω\,
B(x0, σ))× R,

F (x, u) ≥ γu2, for all (x, u) ∈ B(x0, σ)× [0, 1],

where B(x0, σ) denotes the open ball with center at x0 and radius σ.
Then for every

λ ∈ (
l2(|B(x0, τ)| − |B(x0, σ)|)

2γ(τ − σ)2|B(x0, σ)|
,
mS2

2

2b1
),

Equation (1.1) has a sequence of solutions, which converges strongly to zero in
H1

0 (Ω).

Proof. It follows from (3.8) that

l2(|B(x0, τ)| − |B(x0, σ)|)
2γ(τ − σ)2|B(x0, σ)|

<
mS2

2

2b1
.

Now we fix

λ ∈
( l2(|B(x0, τ)| − |B(x0, σ)|)

2γ(τ − σ)2|B(x0, σ)|
,
mS2

2

2b1

)
.
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Using the condition (A3’) and (3.4), one has

sup
u∈Φ−1(−∞,r)

Ψ(u) ≤ sup
u∈Φ−1(−∞,r)

∫
Ω

|F (x, u(x))|dx

≤ sup
u∈Φ−1(−∞,r)

[b1
2

∫
Ω

|u(x)|2dx+
b2
β

∫
Ω

|u(x)|βdx
]

≤ sup
u∈Φ−1(−∞,r)

(
b1

2S2
2

‖u‖2 +
b2

βSββ
‖u‖β)

<
b1r

mS2
2

+
b2

βSββ
(
2r
m

)β/2.

Thus, there holds

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)
r − Φ(u)

≤
supu∈Φ−1(−∞,r) Ψ(u)

r

<
b1
mS2

2

+
b2

βSββ
(

2
m

)β/2 · r
β−2

2 ,

(3.9)

which implies

δ := lim inf
r→0+

ϕ(r) ≤ b1
mS2

2

< +∞.

Now we choose a sequence {ηn} of positive numbers satisfying limn→+∞ ηn = 0.
For all n ∈ N, let vn defined by (3.5) with the above ηn. Then, using (A2’) and
(A4’), for every n ∈ N large enough one has

Iλ(vn) ≤ l1η
2q
n (|B(x0, τ)| − |B(x0, σ)|)q

2q(τ − σ)2q
+
l2η

2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2

− λ
∫
B(x0,σ)

F (x, ηn)dx

<
l1η

2q
n (|B(x0, τ)| − |B(x0, σ)|)q

2q(τ − σ)2q
+
l2η

2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2

− λ
∫
B(x0,σ)

γη2
ndx

=
l1η

2q
n (|B(x0, τ)| − |B(x0, σ)|)q

2q(τ − σ)2q
+
l2η

2
n(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2

− λγ|B(x0, σ)|η2
n

=
l1η

2q
n (|B(x0, τ)| − |B(x0, σ)|)q

2q(τ − σ)2q

+ (
l2(|B(x0, τ)| − |B(x0, σ)|)

2(τ − σ)2
− λγ|B(x0, σ)|)η2

n < 0.

Thus,
lim

n→+∞
Iλ(vn) = Iλ(0) = 0,

which shows that zero is not a local minimum of Iλ. This, together with the fact
that zero is the only global minimum of Φ, we deduce that the energy functional
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Iλ does not have a local minimum at the unique global minimum of Φ. Therefore,
by Theorem 2.1 (c), there exists a sequence {un} of critical points of Iλ, which
converges weakly to zero. The proof is complete. �

Remark 3.4. Now we give an example to illustrate Theorem 3.3. Consider the
Kirchhoff equation

−
(
a+ b

∫
Ω

|∇u(x)|2dx
)

∆u = λf(x, u), in Ω,

u = 0, on ∂Ω,
(3.10)

where a > 0, b ≥ 0 and Ω ⊂ RN is bounded domain. Set K(t) = a+ bt. Obviously,
(A1) and (A2’) are satisfied. Let

f(x, u) = α(x)u,

and α ∈ L∞(Ω) with

inf
x∈Ω

α(x) >
supx∈Ω α(x)(|B(x0, τ)| − |B(x0, σ)|)

2S2
2(τ − σ)2|B(x0, σ)|

,

where x0 is a point of Ω and two constants τ > σ > 0 satisfying

B(x0, σ) ⊂ B(x0, τ) ⊆ Ω.

Thus, (A3’) and (A4’) hold. Therefore, by Theorem 3.3, Equation (3.10) has infin-
itely many nontrivial solutions for every

λ ∈
( a(|B(x0, τ)| − |B(x0, σ)|)

2 infx∈Ω α(x)(τ − σ)2|B(x0, σ)|
,

aS2
2

supx∈Ω α(x)

)
.
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4. Addendum posted on September 29, 2016

The authors would like to correct Theorems 3.1, 3.3 and their proofs, since the
assumptions of Theorems 3.1 and 3.3 can not be verified. Also a new example is
given to illustrate Theorem 3.3 instead of the one in Remark 3.4. However, only
the case of N = 1 is done and the case of N ≥ 2 has not been solved yet.

In Theorem 3.1, we assume that N = 1 and Ω = (a, b). The assumption (A3) is
removed and the assumption (A4) is replaced by the following.

(A5) there exist x0 ∈ (a, b) and two constants τ > σ > 0 with B(x0, σ) ⊂
B(x0, τ) ⊆ (a, b) such that

F (x, u) ≥ 0, for all (x, u) ∈ (a, b)× [0,+∞),
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α∞ <
2m(τ − σ)
m1(b− a)

β∞,

where

F (x, u) =
∫ u

0

f(x, s)ds, for all (x, u) ∈ (a, b)× R,

α∞ := lim inf
t→+∞

∫ b
a

max|ξ|≤t F (x, ξ)dx
t2

, β∞ := lim sup
t→+∞

∫
B(x0,σ)

F (x, t)dx

t2
.

Moreover, the range of the parameter λ becomes
(

m1
(τ−σ)β∞

, 2m
(b−a)α∞

)
. Based on

these changes, we restate Theorem 3.1 as follows.

Theorem 4.1. Let N = 1 and Ω = (a, b). Assume that conditions (A1), (A2), (A5)
hold. Then for every interval ( m1

(τ−σ)β∞
, 2m

(b−a)α∞

)
, Equation (1.1) has a sequence

of solutions {un} in H1
0 (a, b) satisfying

lim
n→+∞

‖un‖ = +∞.

Proof. Now we fix λ ∈
(

m1
(τ−σ)β∞

, 2m
(b−a)α∞

)
. Then for any r > 0, inequality (3.3)

leads to

Φ−1(−∞, r) = {u ∈ H1
0 (a, b) : Φ(u) < r}

⊆
{
u ∈ H1

0 (a, b) : ‖u‖ <
√

2r
m

}
⊆
{
u ∈ H1

0 (a, b) : |u(x)| ≤ 1
2

√
2r(b− a)

m
for all x ∈ (a, b)

}
,

and

sup
u∈Φ−1(−∞,r)

Ψ(u) = sup
u∈Φ−1(−∞,r)

∫ b

a

F (x, u)dx

≤
∫ b

a

sup
|u|≤ 1

2

q
2r(b−a)

m

F (x, u)dx.

Thus,

ϕ(r) = inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)

≤
supu∈Φ−1(−∞,r) Ψ(u)

r

<

∫ b
a

sup|u|≤κ
√

2r
m

F (x, u)dx

r
.

(4.1)

Let {tn} be a sequence of positive numbers such that tn → +∞ and

lim
n→+∞

∫ b
a

sup|u|≤tn F (x, u)dx
t2n

= α∞. (4.2)

We now choose another positive numbers sequence {rn} with rn = 2m
(b−a) t

2
n for every

n ∈ N. It follows from (4.1)) and (4.2) that

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ (b− a)
2m

α∞ < +∞.
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Since 1
λ < (τ − σ)β∞/m1, there exists a sequence {ηn} of positive numbers and

µ > 0 such that ηn →∞ and

1
λ
< µ <

(τ − σ)
m1

∫
B(x0,σ)

F (x, ηn)dx

η2
n

.

Define vn(x) as in (3.5) with Ω = (a, b) and it is easy to verify that ‖vn‖2 = 2η2
n

τ−σ
when N = 1. Moreover, by (A5) one has

Ψ(vn) =
∫ b

a

F (x, vn)dx ≥
∫
B(x0,σ)

F (x, ηn)dx. (4.3)

Thus, it follows from (4.3) and (A2) that for every n ∈ N large enough,

Iλ(vn) =
1
2
K
(
‖vn‖2

)
− λ

∫ b

a

F (x, vn)dx

≤ m1

2
‖vn‖2 +

m2

2
− λ

∫
B(x0,σ)

F (x, ηn)dx

=
m1η

2
n

τ − σ
+
m2

2
− λ

∫
B(x0,σ)

F (x, ηn)dx

<
m1η

2
n

(τ − σ)
(1− λµ) +

m2

2
,

which implies that the functional Iλ is unbounded from below, since ηn → +∞ and
1− λµ < 0. It follows that Iλ has no global minimum. Therefore, by Theorem 2.1
(b), there exists a sequence {un} of critical points of Iλ such that

lim
n→+∞

‖un‖2 = +∞.

The conclusion is achieved. �

In Theorem 3.3, we likewise assume that N = 1 and Ω = (a, b). The assumption
(A3’) is removed and the assumption (A4’) is replaced by the following.

(A6) there exist x0 ∈ (a, b) and three constants ε > 0 and τ > σ > 0 with
B(x0, σ) ⊂ B(x0, τ) ⊆ (a, b) such that

F (x, u) ≥ 0, for all (x, u) ∈ (a, b)× [0, ε),

α0 <
2m(τ − σ)
(b− a)l2

β0,

where

α0 := lim inf
t→0+

∫ b
a

max|ξ|≤t F (x, ξ)dx
t2

, β0 := lim sup
t→0+

∫
B(x0,σ)

F (x, t)dx

t2
.

In addition, the range of the parameter λ becomes
(

l2
(τ−σ)β0

, 2m
(b−a)α0

)
. In view of

these, we restate Theorem 3.3 as follows.

Theorem 4.2. Let N = 1 and Ω = (a, b). Assume that conditions (A1), (A2’),
(A6) hold. Then for every interval

(
l2

(τ−σ)β∞
, 2m

(b−a)α∞

)
, Equation (1.1) has a se-

quence of solutions, which converges strongly to zero in H1
0 (a, b).

The proof is omitted here, since it is similar to that of Theorem 3.1.
Finally, we give a new example to replace the one in Remark 3.4.
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Example 4.3. Let K(t) = 1 + t. Then it is easy to verify that (A1) and (A2’)
hold if we choose m = l1 = l2 = 1 and q = 2. Let (a, b) = (0, 1), x0 = 1

2 , τ = 1
3 and

σ = 1
4 . Then B(x0, σ) ⊂ B(x0, τ) ⊆ (0, 1). We take

f(x, u) = f(u) =

{
u(2a− 2 sin(ln |u|)− cos(ln |u|)), if u 6= 0,
0, if u = 0,

where 1 < a < 7
5 . A direct calculation shows that

F (u) =
∫ u

0

f(t)dt =

{
u2(a− sin(ln |u|), if u 6= 0,
0, if u = 0.

It is clear that F (u) ≥ 0 for all u ∈ R,

α0 = lim inf
t→0+

max|u|≤t F (u)
t2

= a− 1

and

β0 = lim sup
t→0+

F (t)
t2

= a+ 1.

Moreover, α0 <
2m(τ−σ)
(b−a)l2

β0, which implies that (A6) holds. Therefore, for every
λ ∈

(
12
a+1 ,

2
a−1

)
, the following problem

−
(

1 +
∫ 1

0

|u′|2dx
)
u′′ = λf(u), in (0, 1),

u(0) = u(1) = 0,

admits infinitely many nontrivial solutions strongly converging at 0 in H1
0 (0, 1).
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