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CONTROLLABILITY OF NONLINEAR DEGENERATE
PARABOLIC CASCADE SYSTEMS

MAMADOU BIRBA, OUMAR TRAORE

Abstract. This article studies of null controllability property of nonlinear

coupled one dimensional degenerate parabolic equations. These equations form

a cascade system, that is, the solution of the first equation acts as a control
in the second equation and the control function acts only directly on the first

equation. We prove positive null controllability results when the control and

a coupling set have nonempty intersection.

1. Introduction and statement of main results

The control of coupled parabolic system is a challenging issue, which has at-
tracted the interest of the control community in the last decade. These parabolic
systems arise, for example, in the study of chemical reactions (see e.g. [5, 12]),
and in a wide variety of mathematical biology and physical situations (see e.g.
[3, 20, 21]). For some examples involving degeneracy, let us recall some applica-
tions arising in aeronautics (the Crocco equation, see, e.g., [8]), in physics (boundary
layer models, see e.g. [6]), in genetics (Wright-Fisher and Fleming-Viot models, see
e.g. [24, 27]) and in mathematical finance (Black-Merton-Scholes models, see e.g.
[11, 18, 23]). In [13, 22, 28], the authors developed a functional analytic approach
to the construction of Feller semigroups generated by degenerate elliptic opera-
tors with Wentzell boundary conditions. In [17], the authors consider degenerate
operators with several boundary conditions.

In [26], the authors studied the null controllability properties for two systems of
coupled one dimensional degenerate parabolic equations. The first system consists
of two forward equations, while the second one consists of one forward equation
and one backward equation with k(x) = xα, 0 < α < 2.

In this article, we study the null controllability of a cascade system of nonlinear
coupled one dimensional degenerate parabolic equations, at each fixed time T > 0.
More exactly, we show that for all y0, z0 ∈ L2(Ω) and T > 0, there exists a control
h ∈ L2(ω × (0, T )) such that the associated solution of (1.1) satisfies

y(·, T ) ∈ L2(Ω) and z(x, T ) = 0 a.e. in Ω

In this context of degeneracy and nonlinearity of the system, we will study the
null controllability of the linear degenerate coupled system by using the method
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developed in [8] and after, we will use Kakutani’s fixed point theorem to deduce
the null controllability of the nonlinear system.

We consider the nonlinear coupled system
yt − (k(x)yx)x + f(y) = h1ω in Q = Ω× (0, T ),

zt − (k(x)zx)x + g(z) = y1O in Q,

y = z = 0 on Σ = {0, 1} × (0, T ),

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω = (0, 1),

(1.1)

where f, g : R → R are two locally Lipschitz-continuous functions, the initial data
y0, z0 are given in L2(Ω), h ∈ L2(Q) is a control function to be determined, k is a
diffusion coefficient. Here, ω ⊂ Ω is an arbitrarily small open control set, O ⊂ Ω is
an arbitrarily small open coupling set and 1ω denotes the characteristic function of
ω.

In this article, we assume that the coefficient k satisfies the following hypotheses:

k ∈ C([0, 1]) ∩ C1((0, 1]), k > 0 in (0, 1] and k(0) = 0, there exists
λ ∈ [0, 1) such that xk′(x) ≤ λk(x) for all x ∈ [0, 1].

(1.2)

The remainder of this article is organized as follows: In Section 2, we establish
the uniqueness of the solution to (2.1). Section 3 is devoted to the proof of our
general Carleman’s inequality of degenerate cascade system. This inequality is
crucial for the proof of the observability inequality that is used to prove the null
controllability of the linear system. In the next two Sections, we prove the null
controllability results for the linear system, and the last Section is devoted to the
proof of Theorem 1.1 and Theorem 1.2, which are the main results of this paper.

Theorem 1.1. We assume that (1.2) holds, ω ∩ O 6= ∅ and f, g : R → R are two
locally Lipschitz-continuous functions such that f(0) = g(0) = 0 and that:

lim
|s|→+∞

f(s)

|s| log3/2(1 + |s|)
= 0, lim

|σ|→+∞

g(σ)

|σ| log3/2(1 + |σ|)
= 0.

Then, for any (y0, z0) ∈ (H2
k(Ω))2 and T > 0, system (1.1) admits (at least) a

solution y, z ∈ X = C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
k(Ω)) and there exists a control

h ∈ L2(Q) such that the solution (y, z) satisfies z(x, T ) = 0 a.e in Ω.

Theorem 1.2. We assume that (1.2) holds and ω∩O 6= ∅. For any subset ω′ such
that ω′ b ω ∩ O, there exists two positive constants C = C(Ω, ω, k, ‖a‖∞, ‖b‖∞)
and s0 such that for every s ≥ s0, one has∫

Q

(
sθk(x)|vx|2 + s3θ3 x2

k(x)
|v|2 + s4θ4k(x)|wx|2 + s6θ6 x2

k(x)
|w|2

)
e2sΦ dx dt

≤ Cs7

∫ T

0

∫
ω′
θ7e2sΦ|w|2. (1.3)

Theorem 1.2, improves the Carleman estimate established in [19] for parabolic
degenerate equations. Our proofs use the Carleman estimate established in [19].

2. Well-posedness of the problem

Now, we introduce the Sobolev spaces

H1
k(Ω) =

{
u ∈ L2(Ω);u absolute continuous in [0, 1],
√
kux ∈ L2(Ω), u(0) = u(1) = 0

}
,
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H2
k(Ω) = {u ∈ H1

k(Ω); k(x)ux ∈ H1(Ω)},

respectively with the norms

‖u‖2H1
k(Ω) = ‖u‖2L2(Ω) + ‖

√
kux‖2L2(Ω), ∀u ∈ H1

k(Ω);

‖u‖2H2
k(Ω) = ‖u‖2H1

k(Ω) + ‖(kux)x‖2L2(Ω), ∀u ∈ H2
k(Ω).

Consider the unbounded operator A : D(A) = H2
k(Ω) → L2(Ω) defined by Au =

(k(x)ux)x, u ∈ D(A). Recall that the operator Au = (kux)x, u ∈ D(A) = H2
k(Ω) ⊂

H1
k(Ω), is a closed, symmetric, self-adjoint and negative operator in addition, D(A)

is dense in L2(Ω) (see [1, 7, 8]). Moreover, it is infinitesimal generator of a strongly
continuous semi-group. This permits to deduce the following result.

Theorem 2.1. Under hypothesis (1.2), for all a ∈ L∞(Q) and f ∈ L2(Q), the
system

yt − (k(x)yx)x + ay = f in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω
(2.1)

admits a unique solution y ∈ X = C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
k(Ω)) and we have

sup
[0,T ]

‖y(t)‖2L2(Ω) +
∫ T

0

‖y(t)‖2H1
k(Ω) dt ≤ C

(
‖f‖2L2(Q) + ‖y0‖2L2(Ω)

)
. (2.2)

If moreover y0 ∈ D(A) then, y ∈ X1 = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2
k(Ω)) ∩

C([0, T ];H1
k(Ω)) and

sup
[0,T ]

‖y(t)‖2H1
k(Ω) +

∫ T

0

(‖yt‖2L2(Ω) + ‖(kyx)x‖2L2(Ω)) dt ≤ C(‖f‖2L2(Q) + ‖y0‖2H1
k(Ω)).

(2.3)

Proof. The existence and uniqueness of the solution of system (1.1) comes from the
theory of continuous semi-group see [7] and [25]. Moreover, the solution is

y(t) = T (t)y0 +
∫ t

0

T (t− s)(h(s)− f(s)) ds, (2.4)

where (T (t))t≥0 is the semigroup generated by the operator A.
Multiplying the first equation of (2.1) by y and integrating by parts then inte-

grate on Ω, we obtain

d

2dt
‖y(t)‖2L2(Ω) + ‖

√
kyx(t)‖2L2(Ω) =

∫
Ω

y(f(t)− a(t)y(t)) dx. (2.5)

Thus,
d

2dt
‖y(t)‖2L2(Ω) + ‖

√
kyx(t)‖2L2(Ω)

≤ (
1
2

+ ‖a(t)‖L∞(Ω))‖y(t)‖2L2(Ω) +
1
2
‖f(t)‖2L2(Ω).

(2.6)

Now, integrating this inequality on (0, t) we find

1
2
‖y(t)‖2L2(Ω) +

∫ t

0

‖
√
kyx(s)‖2L2(Ω) ds

≤ (
T

2
+ ‖a‖L∞(Q))

∫ t

0

‖y(s)‖2L2(Ω) ds+
1
2
‖f‖2L2(Q) +

1
2
‖y0‖2L2(Ω).

(2.7)
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Using Gronwall’s inequality, we obtain

‖y(t)‖2L2(Ω) ≤ e
(T (T+2‖a‖L∞(Q)))(‖f(t)‖2L2(Ω) + ‖y0‖2L2(Ω)). (2.8)

From (2.8) and by integrating (2.6) on (0, T ), we obtain

‖
√
kyx‖2L2(Q) ≤

1
2

[1 + (T + 2‖a‖L∞(Q))e(T (T+2‖a‖L∞(Q)))]

× (‖f‖2L2(Q) + ‖y0‖2L2(Ω)).
(2.9)

Thus, (2.8) and (2.9) give (2.2).
Now, multiplying the first equation of system (2.1), by −(kyx)x and integrating

by parts on Ω, we have
d

2dt
‖
√
kyx(t)‖2L2(Ω) + ‖(kyx)x(t)‖2L2(Ω)

=
∫ 1

0

((kyx)x(t))(a(t)y(t)− f(t))

≤ 1
2
‖(kyx)x(t)‖2L2(Ω) + ‖f(t)‖2L2(Ω) + ‖a(t)‖2L∞(Ω)‖y(t)‖2L2(Ω).

Integrating the last inequality on (0, T ) and using (2.8), one gets

‖
√
kyx(T )‖2L2(Ω) +

1
2

∫ T

0

‖(kyx)x(t)‖2L2(Ω)

≤ ‖f‖2L2(Q) + ‖
√
kyx(0))‖2L2(Ω)

+ ‖a‖2∞e(T (T+2‖a‖L∞(Q)))(‖f‖2L2(Q) + ‖y0‖2L2(Ω))

≤ (1 + ‖a‖2L∞(Q)e
(T (T+2‖a‖L∞(Q))))(‖f‖2L2(Q) + ‖y0‖2H1

k(Ω)),

(2.10)

with ‖y0‖2H1
k(Ω)

= ‖y0‖2L2(Ω) + ‖
√
kyx(0))‖2L2(Ω). From (2.1), we have

y2
t (t) = ((kyx(t))x−a(t)y(t)+f(t))2 ≤ 3[((kyx(t))x)2 +(a(t)y(t))2 +f2(t)]. (2.11)

Hence, by integrating on Q and using the inequalities (2.8) and (2.10), we obtain∫ T

0

‖yt(t)‖2L2(Ω) dt ≤ C(1+‖a‖2∞e(T (T+2‖a‖L∞(Q))))(‖f‖2L2(Q)+‖y0‖2H1
k(Ω)). (2.12)

Now, (2.8), (2.10) and (2.12) give (2.3), for all y0 ∈ H2
k(Ω). �

3. Carleman inequality for degenerate systems

The main result of this section is the following.
For ω = (a, b) let α = 2a+b

3 , β = a+2b
3 and let ρ ∈ C2(R) be such that 0 ≤ ρ ≤ 1

and

ρ(x) =

{
1 if x ∈ (0, α)
0 if x ∈ (β, 1)

Let us define

θ(t) =
1

(t(T − t))4
∀t ∈ (0, T ), ψ(x) = c1(

∫ x

0

r

k(r)
dr − c2)

with c1 > 0 and c2 > 1
k(1)(2−λ) . Let Ψ(x) = erσ(x) − e2r‖σ‖∞ be where r > 0 and σ

a function which satisfies: σ ∈ C2([0, 1]), σ > 0 in Ω, σ = 0 on ∂Ω and σx(x) 6= 0
in [0, 1] \ ω0 where ω0 is an open set of Ω such that ω0 b ω.
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Let us define Φ(x, t) = θ(t)[ρ(x)ψ(x) + (1 − ρ(x))Ψ(x)]. The existence of the
function σ is proved in [16]. Consider the adjoint system where G ∈ L2(Q):

wt + (k(x)wx)x − aw = G in Q,

w = 0 on Σ,

w(x, T ) = wT (x) in Ω.
(3.1)

We have the following result.

Theorem 3.1. Under hypothesis (1.2), for all T > 0 and l ∈ N, there exists two
constants C = C(Ω, ω, ‖a‖∞) > 0 and s0 > 0 such that for all s ≥ s0 and all
solutions w of (3.1), we have∫

Q

(
sl+1θl+1k(x)|wx|2 + sl+3θl+3 x2

k(x)
|w|2

)
e2sΦ dxdt

≤ C
(
sl
∫
Q

θle2sΦ|G|2 dxdt+ sl+3

∫ T

0

∫
ω

θl+3e2sΦ|w|2 dxdt
)
.

(3.2)

The proof of Theorem 3.1 will be given at the end of this section as a consequence
of the following result. Consider the adjoint system

wt + (k(x)wx)x = G in Q,

w = 0 on Σ,

w(x, T ) = wT (x) in Ω.
(3.3)

We have

Theorem 3.2. Under hypothesis (1.2), for all T > 0 and l ∈ N, there exists two
constants C = C(Ω, ω) > 0 and s0 > 0 such that for all s ≥ s0 and all solutions w
of (3.3), we have∫

Q

(
sl+1θl+1k(x)|wx|2 + sl+3θl+3 x2

k(x)
|w|2

)
e2sΦ dx dt

≤ C(sl
∫
Q

θle2sΦ|G|2 dxdt+ sl+3

∫ T

0

∫
ω

θl+3e2sΦ|w|2 dxdt).
(3.4)

For the proof of Theorem 3.2 we follow the ideas of [1] and [19]. We prove
first a Carleman inequality for the degenerate part and combine it with a classical
Carleman inequality for the non degenerate part.

Proposition 3.3. Under the hypothesis of theorem 3.1 and for all l ∈ N, there
exists two constants C = C(Ω, l) and s0 such that for all s ≥ s0 and all solutions
w of (3.3), we have the inequality∫

Q

(
sl−1θl−1(|(k(x)wx)x|2 + |wt|2) + sl+1θl+1k(x)|wx|2

+ sl+3θl+3 x2

k(x)
|w|2

)
e2sϕ dx dt

≤ C
(
sl
∫
Q

θle2sϕ|G|2 dxdt+ k(1)sl+1

∫ T

0

θl+1e2sϕ(1,t)|wx(1, t)|2 dt
)
,

(3.5)

where ϕ(x, t) = θ(t)ψ(x).
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Proof. Let y = (sθ)1/2esϕw. We obtain from the first equation of (3.3):

P+
s y + P−s y = (sθ)1/2esϕf, (3.6)

with

P+
s y = (kyx)x − sϕty + s2ϕ2

xky

P−s y = yt − s(kϕx)xy − 2sϕxkyx −
l

2
θtθ
−1y

The inner product in L2(Q) gives

‖P+
s y‖2 + ‖P−s y‖2 + 2〈P+

s y, P
−
s y〉 = ‖(sθ)1/2esϕf‖2.

The following result is useful for the proof of proposition 3.3.

Lemma 3.4. There exists two constants m > 0 and m′ > 0 such that

‖(sθ)1/2esϕf‖2 ≥ ‖P+
s y‖2 + ‖P−s y‖2 +ms

∫
Q

θk(x)|yx|2

+ms3

∫
Q

θ3 x2

k(x)
|y|2 dxdt−m′k(1)s

∫ T

0

θ|yx(1, t)|2 dt
(3.7)

Proof. We have

〈P+
s y, P

−
s y〉

=
s

2

∫
Q

ψ(x)θtt|y|2 dxdt+ sc1

∫
Q

θ(2k(x)− xk′(x))|yx|2 dxdt

+
l

2

∫
Q

k(x)θtθ−1|yx|2 dx dt− c21s(1 + s+
l

2
)
∫
Q

θtθ
x2

k(x)
|y|2 dxdt

+
sl

2

∫
Q

θ2
t θ
−1ψ(x)|y|2 dx dt+ c31s

3

∫
Q

θ3(
x

k(x)
)2(2k(x)− xk′(x))|y|2 dx dt

− c1sk(1)
∫ T

0

θ|yx(1, t)|2 dt.

Using the conditions on k, one obtains

〈P+
s y, P

−
s y〉

≥ s

2

∫
Q

ψ(x)θtt|y|2 dxdt+ sc1

∫
Q

θk(x)|yx|2 dxdt+
l

2

∫
Q

k(x)θtθ−1|yx|2 dxdt

− c21s(1 + s+
l

2
)
∫
Q

θtθ
x2

k(x)
|y|2 dx dt+

sl

2

∫
Q

θ2
t θ
−1ψ(x)|y|2 dxdt

+ c31s
3

∫
Q

θ3 x2

k(x)
|y|2 dx dt− c1sk(1)

∫ T

0

θ|yx(1, t)|2 dt.

Notice that there exists a constant C > 0 such that θtθ−1 ≤ Cθ, θ2
t θ
−1 ≤ Tθ3/2,

θtθ ≤ Cθ3 and θtt ≤ Cθ3/2. Then, we obtain the inequality∣∣s
2

(1 + l)
∫
Q

ψ(x)(θtt + θ2
t θ
−1)y2

∣∣dxdt ≤ sC(l, T, c1)
∫
Q

θ3/2|y|2 dxdt. (3.8)

This gives by Höder’s and Hardy’s type inequalities (see [1])∣∣s
2

(1 + l)
∫
Q

ψ(x)(θtt + θ2
t θ
−1)y2

∣∣dxdt
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≤ sδ0C(l, T, c1)
∫
Q

θk(x)|yx|2 dx dt+
C(l, T, c1)

δ0
s3

∫
Q

θ3 x2

k(x)
|y|2 dx dt.

We have∣∣− c21s2
(
1 +

1
s

+
l

2s
) ∫

Q

θtθ
x2

k(x)
y2
∣∣dxdt ≤ C(l, T, c1)s3

∫
Q

θ3 x2

k(x)
|y|2 dxdt.

Next,
l

2

∫
Q

θtθ
−1k(x)|yx|2 dxdt ≤ sC(l, T, c1)

∫
Q

θk(x)|yx|2 dx dt. (3.9)

Using the inequalities above, we infer that there exists a constant M > 0 such that

2〈P+
s y, P

−
s y〉

≥M
∫
Q

(sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2) dxdt− 2c1sk(1)

∫ T

0

θ|yx(1, t)|2 dt.

As ‖(sθ)1/2esϕf‖2 ≥ 2〈P+
s y, P

−
s y〉, one deduces inequality 3.7. �

Proof of Proposition 3.3 (continued). From (3.6), we obtain∫
Q

|(k(x)yx)x|2

sθ
dx dt ≤ C0

∫
Q

(
|P+
s y|2

sθ
+ sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2) dxdt, (3.10)

with C0 > 0, and∫
Q

|yt|2

sθ
dxdt ≤ C1

∫
Q

(
|P−s y|2

sθ
+ sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2) dxdt, (3.11)

with C1 > 0. Then, the lemma 3.4 the inequalities (3.10) and (3.11) give

C‖(sθ)l/2esϕf‖2

≥
∫
Q

|(k(x)yx)x|2

sθ
dxdt+

∫
Q

|yt|2

sθ
dx dt+m′sk(1)

∫ T

0

θ|yx(1, t)|2 dt

−m
∫
Q

(sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2) dxdt,

(3.12)

where, C = max(C0, C1), m > 0 and m′ = 2c1C.
Recalling now that w = (sθ)−l/2e−sϕy, one obtains

(sθ)l−1e2sϕ|wt|2 ≤ 2
|yt|2

sθ
+

2
sθ

( l
2
θtθ
−1 + sϕt

)2

|y|2

and (sθ)l+1e2sϕ|wx|2 ≤ 2sθ|yx|2 + 2s3θϕ2
x|y|2. Then, from the Höder’s and Hardy’s

inequalities and the previous inequalities, we obtain

sl−1

∫
Q

θl−1e2sϕ|wt|2 dx dt

≤ 2
∫
Q

|yt|2

sθ
dxdt+ c0

∫
Q

(
sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2
)

dx dt,
(3.13)

sl+1

∫
Q

θl+1k(x)e2sϕ|wx|2 dxdt

≤ c1
∫
Q

(
sθk(x)|yx|2 + s3θ3 x2

k(x)
|y|2
)

dxdt,
(3.14)
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sl−1

∫
Q

θl−1e2sϕ|(k(x)wx)x|2 dxdt

≤ 2
∫
Q

|(k(x)yx)x|2

sθ
dxdt+ c2s

3

∫
Q

θ3 x2

k(x)
|y|2 dxdt

+ c2s

∫
Q

θk(x)|yx|2 dxdt.

(3.15)

We have (sθ)l+1e2sϕ|wx(1, t)|2 = sθ|yx(1, t)|2 since y(1, t) = 0. Combining the
inequalities (3.12) to (3.15), we infer that the estimate (3.5) of the proposition 3.3
holds. �

Back to the proof of Theorem 3.2. We need the following result that we omit
the proof (see [16] for instance).

Proposition 3.5. We assume that k ∈ C1([0, 1]) is a strictly positive function and
k(0) 6= 0. Let l ∈ N. Then, there exists two positive constants C > 0 and s0 > 0
such that for all s ≥ s0 and every solution z of (3.3), we have∫

Q

(
(sθ)l−1|(k(x)zx)x|2 + (sθ)l−1|zt|2 + (sθ)l+1|zx|2 + (sθ)l+3|z|2

)
e2sη dxdt

≤ C
(
sl
∫
Q

θle2sη|g|2 dx dt+ sl+3

∫ T

0

∫
ω

θl+3e2sη|z|2 dxdt
)
,

where η(x, t) = θ(t)Ψ(x).

Combining Propositions 3.3 and 3.5, it suffices to verify that Theorem 3.1 is
true for system (3.3). Thus, by using these propositions, we find the following
inequalities:∫ T

0

∫ α

0

(
sl−1θl−1(|(k(x)wx)x|2 + |wt|2) + sl+1θl+1k(x)|wx|2

+ sl+3θl+3 x2

k(x)
|w|2

)
e2sΦ dxdt

≤ C
(
sl
∫
Q

θle2sϕ|f |2 + sl+3

∫ T

0

∫ β

α

θl+3e2sϕ(|wx|2 + |w|2)
)

dxdt,

(3.16)

and ∫ T

0

∫ 1

β

(
sl−1θl−1(|(k(x)wx)x|2 + |wt|2) + sl+1θl+1k(x)|wx|2

+ sl+3θl+3 x2

k(x)
|w|2

)
e2sΦ dx dt

≤ C ′
(
sl
∫
Q

θle2sη|f |2 + sl+3

∫ T

0

∫ β

α

θl+3e2sη(|wx|2 + |w|2)
)

dx dt.

(3.17)

We recall that for every x ∈ (α, β), ϕ, η and Φ are equivalent. As (α, β) b ω,
Caccioppoli’s type inequality (see [16, 9]) leads us to the inequality

sl+1

∫
Q

θl+1(|wx|2 + |w|2) dxdt ≤ C ′′(sl
∫
Q

θl|f |2 + sl+3

∫
ω

θl+3|w|2) dxdt. (3.18)



EJDE-2016/219 CONTROLLABILITY OF CASCADE SYSTEMS 9

Thus, combining (3.15) and (3.16), and adding to both sides of the inequality the
term ∫ T

0

∫ β

α

(
sl−1θl−1(|(k(x)wx)x|2 + |wt|2) + sl+1θl+1k(x)|wx|2

+ sl+3θl+3 x2

k(x)
|w|2

)
e2sΦ dxdt,

and using (3.17) leads from any solution w of (3.3) to∫
Q

(sl−1θl−1(|(k(x)wx)x|2 + |wt|2) dxdt+ sl+1θl+1k(x)|wx|2

+ sl+3θl+3 x2

k(x)
|w|2)e2sΦ dxdt

≤ C
(
sl
∫
Q

θle2sΦ|f |2 + sl+3

∫ T

0

∫
ω

θl+3e2sΦ|w|2
)

dx dt.

(3.19)

This completes the proof of Theorem 3.2. �

Proof of Theorem 3.1. Now, applying inequality (3.19) to (3.1) with f̄ = f +aw as
right hand term, one obtains from the proof of Theorem 3.2, the inequality (3.2) of
Theorem 3.1. �

4. Null controllability of a linear system

The aim of this section is to prove the null controllability for the linear system

yt − (k(x)yx)x + ay = h1ω in Q,

zt − (k(x)zx)x + bz = y1O in Q,

y = z = 0 on Σ,

y(x, 0) = y0(x) z(x, 0) = z0(x) in Ω,

(4.1)

where a, b ∈ L∞(Q), y0, z0 ∈ L2(Ω) and h ∈ L2(Q) is the control of the system.
The adjoint of system (4.1) is

−wt − (k(x)wx)x + aw = v1O in Q,

−vt − (k(x)vx)x + bv = 0 in Q,

w = v = 0 on Σ,

w(x, T ) = 0 v(x, T ) = vT (x) in Ω.

(4.2)

The main results of this section reads as follows.

Theorem 4.1. Under hypothesis (1.2), a, b ∈ L∞(Q) and for y0, z0 ∈ L2(Ω),
there exists h ∈ L2(Q) such that the corresponding solution to system (4.1) satisfies
z(., T ) = 0 a.e. in Ω.

First, we give some results useful for the proof of Theorem 4.1. For any ε > 0,
we set

Jε(h) =
1
2

∫
q

θ(t)−7e−2sΦh2(x, t) dxdt+
1
2ε

∫
Ω

z2(x, T ) dx, (4.3)

where q = ω × (0, T ). We have the following results.
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Lemma 4.2. For any ε > 0, there exists a control hε ∈ L2(qε) such that Jε(hε) ≤
Jε(h), for all h ∈ L2(q). One has hε(x, t) = θ(t)7e2sΦw(x, t)1ω. Moreover, we have
the inequality∫

q

θ(t)−7e−2sΦh2
ε(x, t) dxdt ≤

∫
Ω

|y0(x)w(x, 0)|dx+
∫

Ω

|z0(x)v(x, 0)|dx. (4.4)

Proof. The continuity and the strict convexity of the functional Jε are obvious.
Moreover,

Jε(h) ≥ 1
2

∫
q

θ(t)−7e−2sΦh2(x, t) dxdt.

Let, h ∈ L2((0, T ) × Ω) and consider (hn) the sequence hn = h1]1/n,T−1/n[.
Then, hn(·, t) → h(·, t), a.e. on (0, 1) × (0, T ) and we have ‖hn‖2L2((0,1)×(0,T )) ≤
‖h‖2L2((0,1)×(0,T )), for all n ∈ N. From the Lebesgue dominated convergence theo-
rem, ∫ T

0

∫
ω

h2
n(x, t) dxdt→

∫ T

0

∫
ω

h2(x, t) dx dt.

Then, there exists n0 ∈ N such that n ≥ n0 implies∫ T

0

∫
ω

h2
n(x, t) dx dt ≥ 1

2
‖h‖2L2(ω×(0,T )),

i.e. ∫ T−1/n

1/n

∫
ω

h2
n(x, t) dxdt ≥ 1

2
‖h‖2L2(ω×(0,T )), ∀n ≥ n0.

As, θ−1(t)e−2sΦ ≥ η > 0 on ω×]1/n, T − 1/n[, we have

1
2
‖h‖2L2(ω×(0,T )) ≤

1
η

∫ T

0

∫
ω

θ−1(t)e−2sΦh2(x, t) dxdt, for n ≥ n0.

Therefore,

Jε(h) ≥
∫ T

0

∫
ω

θ−1(t)e−2sΦh2(x, t) dxdt ≥ η

2
‖h‖2L2(q).

The functional Jε is therefore coercive. As a consequence, there exists hε ∈ L2(q)
such that Jε(hε) ≤ Jε(h) for all h ∈ L2(q).

Now, using Euler’s condition on Jε, we obtain∫
q

θ(t)−7e−2sΦhε(x, t)h(x, t) dxdt = −1
ε

∫
Ω

zε(x, T )z(x, T ) dx. (4.5)

On the other hand, we consider the following two systems

yt − (k(x)yx)x + ay = h1ω in Q = Ω× (0, T ),

zt − (k(x)zx)x + bz = y1O in Q,

y = z = 0 on Σ = {0, 1} × (0, T ),

y(x, 0) = 0 z(x, 0) = 0 in Ω = (0, 1),

(4.6)
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and
−wt − (k(x)wx)x + aw = v1O in Q = Ω× (0, T ),

−vt − (k(x)vx)x + bv = 0 in Q,

w = v = 0 on Σ = {0, 1} × (0, T ),

w(x, T ) = 0 v(x, T ) = −1
ε
z(x, T ) in Ω = (0, 1).

(4.7)

Multiplying the two equations of system (4.6) by w and v respectively, integrating
by parts on Q and using (4.5), we infer that

hε(x, t) = θ(t)7e2sΦwε(x, t)1ω. (4.8)

Multiplying the two equations of (4.7) by yε and zε associate to the control hε
respectively and integrating on Q and using (4.8), we infer that∫

q

θ(t)−7e−2sΦh2
ε(x, t) dxdt+

1
ε

∫
Ω

z2(x, T ) dx

=
∫
q

θ(t)7e2sΦw2
ε(x, t) dxdt+

1
ε

∫
Ω

z2(x, T ) dx,

= −
∫

Ω

y0(x)w(x, 0) dx−
∫

Ω

z0(x)v(x, 0) dx

(4.9)

As a consequence, we obtain the estimate of the lemma 4.2. �

Proposition 4.3 (Observability inequality). For any T > 0 and s0 ≥ s, there
exists a constant C = C(T, ‖a‖∞, ‖b‖∞) such that

‖w(·, 0)‖2L2(Ω) + ‖v(·, 0)‖2L2(Ω) ≤ C
∫
q

|w(x, t)|2 dx dt. (4.10)

Moreover,
‖hε‖L2(Ω) ≤ C(‖y0‖L2(Ω) + ‖z0‖L2(Ω)). (4.11)

Proof. Multiplying the second equation of system (4.7) by vt and integrating on
(0, 1), we obtain∫

Ω

v2
t (x, t) dx− d

2dt

∫
Ω

k(x)v2
x(x, t) dx

=
∫

Ω

bvt(x, t)v(x, t) dx

≤ ‖b‖
2
∞

2

∫
Ω

v2(x, t) dx+
1
2

∫
Ω

v2
t (x, t) dx ∀t ∈ [0, T ].

(4.12)

The function x 7→ k(x)
x2 is non increasing on (0, 1], we obtain by using Hardy’s

inequality∫
Ω

v2(x, t) dx ≤ 1
k(1)

∫
Ω

k(x)(
v2(x, t)
x

)2 dx ≤ C

k(1)

∫
Ω

k(x)v2
x(x, t) dx, (4.13)

with C > 0. Then, combining inequalities (4.12) and (4.13), we obtain

d

dt

∫
Ω

k(x)v2
x(x, t) dx+

C‖b‖2∞
k(1)

∫
Ω

k(x)v2
x(x, t) dx ≥ 0. (4.14)

This implies
d

dt

(
e

C‖b‖2∞t

k(1)

∫
Ω

k(x)v2
x(x, t) dx

)
≥ 0 ∀t ∈ [0, T ]. (4.15)
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Thus, the function

t 7→ e
C‖b‖2∞t

k(1)

∫
Ω

k(x)v2
x(x, t) dx

is increasing on [0, T ]. We have

T

4

∫
Ω

k(x)v2
x(x, t) dx ≤ C

∫ 3T/4

T/2

∫
Ω

k(x)v2
x(x, τ) dx dτ, ∀t ∈ [0, T/2]. (4.16)

Then ∫
Ω

k(x)v2
x(x, t) dx ≤ C(T, ‖b‖∞)

∫ 3T/4

T/2

∫
Ω

k(x)v2
x(x, τ) dxdτ.

Taking s ≥ C(‖b‖∞)T 8 and 1 ≤ sθ, the latter inequality and (1.3) give∫
Ω

v2(x, t) dx ≤ Cs7

∫ T

0

∫
ω′
θ(τ)7e2sΦ|w(x, τ)|2 dxdτ, ∀t ∈ [0, T/2]. (4.17)

Now, multiplying the first equation of (4.7) by wt and integrating on (0, 1), we
obtain∫

Ω

w2
t (x, t) dx− d

2dt

∫
Ω

k(x)w2
x(x, t) dx

=
∫

Ω

wt(x, t)(aw(x, t)− v(x, t)) dx

≤ ‖a‖2∞
∫

Ω

w2(x, t) dx+
1
2

∫
Ω

w2
t (x, t) dx+

∫
Ω

v2(x, t) dx ∀t ∈ [0, T ].

(4.18)

Using again that the function x 7→ k(x)
x2 decreases on (0, 1], the inequality (4.17)

and Hardy’s inequality, we obtain that for all t ∈ [0, T/2]∫
Ω

w2
t (x, t) dx− d

dt

∫
Ω

k(x)w2
x(x, t) dx

≤ Cs7

∫ T

0

∫
ω′
θ(τ)7e2sΦ|w(x, τ)|2 dxdτ +

C‖a‖2∞
k(1)

∫
Ω

k(x)w2
x(x, t) dx.

(4.19)

Hence,

− d

dt

(
e

C‖a‖2∞t

k(1)

∫
Ω

k(x)w2
x(x, t) dx

)
≤ Ce

C‖a‖2∞t

k(1) s7

∫ T

0

∫
ω′
θ(τ)7e2sΦ|w(x, τ)|2 dxdτ,

for all t ∈ [0, T/2]. Thus, for every 0 ≤ s ≤ t ≤ T/2, we obtain∫
Ω

k(x)w2
x(x, s) dx

≤ C
∫

Ω

k(x)w2
x(x, t) dx+ Cs7

∫ T

0

∫
ω′
θ(τ)7e2sΦ|w(x, τ)|2 dxdτ,

(4.20)

for all t ∈ [0, T/2]. Integrating on [T/4, T/2] with respect to the variable t, we
obtain for all s ≤ T/4
T

4

∫
Ω

k(x)w2
x(x, s) dx

≤ C
∫ T/2

T/4

∫
Ω

k(x)w2
x(x, t) dxdt+ Cs7

∫ T

0

∫
ω′
θ(τ)7e2sΦ|w(x, τ)|2 dxdτ,

(4.21)
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for all t ∈ [0, T/2]. Taking 1 ≤ (sθ)4 for all s ≥ CT 8, we find by using the inequality
(1.3) that ∫

Ω

w2(x, s) dx ≤ Cs7

∫ T

0

∫
ω′
θ(t)7e2sΦ|w(x, t)|2 dxdt. (4.22)

Combining this result with the inequality (4.17) for s = t = 0 we can conclude that∫
Ω

(w2(x, 0) + v2(x, 0)) dx ≤ Cs7

∫ T

0

∫
ω′
θ(t)7e2sΦ|w(x, t)|2 dxdt. (4.23)

�

Lemma 4.4. Let g ∈ C(Ω) be such that −g(x) ≥ m > 0 for all x ∈ Ω. Let
Φ(x, t) = θ(t)g(x), for (x, t) ∈ Q and m0 = minΩ(−g). Then

s7θ(t)7e2sΦ ≤ (
7
em0

)7 for any s >
7T 8

29m0
and (x, t) ∈ Q. (4.24)

Proof. We have g(x) = ρ(x)ψ(x) + (1−ρ(x))Ψ(x), and for all x ∈ (0, 1), −g(x) > 0
and g is a continuous function on [0, 1]. Thus, for every x ∈ (0, 1), there exists
a constant m > 0, such that −g(x) ≥ m > 0. We have θ(t) ≥ ( 4

T 2 )4. Then
−g(x)θ(t) ≥ m0( 4

T 2 )4, for all (x, t) ∈ Q. For s > 7T 8

29m0
, we have 2sΦ(x, t) ≤ −7 and

we obtain
e2sΦ(x,t) ≤ e−7, for all (x, t) ∈ Q. (4.25)

Now, if we suppose that there exists a constant A > 0 such that (sθ(t))7 ≤ A7

for all t ∈ (0, T ) then, we obtain s ≤ A(T
2

4 )4 and as, s > 7T 8

29m0
, we can choose

A = 7/m0. With this choice of A, we obtain

(sθ(t))7 ≤ (
7
m0

)7, for any s >
7T 8

29m0
. (4.26)

Using the inequalities (4.25) and (4.26), we obtain

(sθ(t))7e2sΦ(x,t) ≤ (
7
em0

)7, for any s >
7T 8

29m0
and (x, t) ∈ Q. (4.27)

This completes the proof of the lemma 4.4. �

Proof of Proposition 4.3 (continued). From (4.23) and lemma 4.4, we obtain∫
Ω

(w2(x, 0) + v2(x, 0)) dx ≤ C
( 7
em0

)7 ∫ T

0

∫
ω′
|w(x, t)|2 dxdt. (4.28)

Now, from inequalities (4.4), (4.8), (4.28) and Cauchy-Schwarz’s inequality one
obtains∫

q

s−7θ(t)−7e−2sΦh2
ε(x, t) dxdt

≤ ‖y0‖L2(Ω)‖w(·, 0)‖L2(Ω) + ‖z0‖L2(Ω)‖v(·, 0)‖L2(Ω)

≤ C

2
(‖y0‖L2(Ω) + ‖z0‖L2(Ω))2 +

1
2
s7

∫ T

0

∫
ω′
θ(t)7e2sΦ|w(x, t)|2 dx dt.

This gives∫
q

s−7θ(t)−7e−2sΦ|hε(x, t)|2 dxdt ≤ 2C(‖y0‖L2(Ω) + ‖z0‖L2(Ω))2. (4.29)
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We recall that wε(x, t) = s−7θ(t)−7e−2sΦhε(x, t). Thus, using (1.3), (2.11) and
(4.29), we obtain

‖hε‖2L2(q) ≤ 2C
( 7
em0

)7(‖y0‖L2(Ω) + ‖z0‖L2(Ω))2. (4.30)

This completes the proof of the proposition 4.3. �

Proof of Theorem 4.1. Notice that the solution (y, z) of (4.1), can be decomposed
as follows

y = y + yo, z = z + yo,

where (y, z), and (yo, zo) are the solutions of the systems

yt − (k(x)yx)x + ay = h1ω in Q = Ω× (0, T ),

zt − (k(x)zx)x + bz = y1O in Q,

y = z = 0 on Σ = {0, 1} × (0, T ),

y(x, 0) = 0 z(x, 0) = 0, in Ω = (0, 1)

(4.31)

and
yot − (k(x)yox)x + ayo = 0 in Q = Ω× (0, T ),

zot − (k(x)zox)x + bzo = yo1O in Q,

yo = zo = 0 on Σ = {0, 1} × (0, T ),

yo(x, 0) = y0(x) zo(x, 0) = z0(x) in Ω = (0, 1).

(4.32)

Let us define L : L2(Q)→ L2(Ω)×L2(Ω) by L(h) = (y(x, T ), z(x, T )) where (y, z) is
the solution corresponding to (4.31). Also let M : L2(Ω)×L2(Ω)→ L2(Ω)×L2(Ω)
be defined by

M(y0, z0) = (yo(x, T ), zo(x, T )),

where (yo(x, T ), zo(x, T )) is the corresponding solution to (4.32). Thus, Theorem
4.1 is equivalent to the inclusion

R(M) ⊂ R(L). (4.33)

Both M and L are L2(Ω)×L2(Ω)-valued, bounded linear operators. Consequently
(4.33) holds if and only if, for every (wT , vT ) ∈ L2(Ω)×L2(Ω) there exists a constant
C > 0 such that

‖M∗(wT , vT )‖(L2(Ω))2 ≤ C‖L∗(wT , vT )‖L2(Q). (4.34)

Now, by multiplying the two equations of (4.31) by w and v and integrating
respectively, where (w, v) solves the adjoint system (4.2) and using the fact that
these systems are duals, we obtain

L∗(wT , vT ) = w1ω. (4.35)

On the other hand, multiply the two equations of system (4.32) by w and v where
(w, v) solves the adjoint system (4.2) and integrate respectively on Q, and by using
the fact that these systems are duals, we obtain

M∗(wT , vT ) = (w(x, 0), (v(x, 0)). (4.36)

Hence, Theorem 4.1 is proved, since (4.33) is just (4.10). �
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5. Proof of main results

Proof of Theorem 1.2. Let O′ b ω ∩ O. Applying Theorem 3.1 and taking l = 3
for the first equation of (4.2) and l = 0 for the second equation of the same system;
we find the following inequalities:∫

Q

(s4θ4k(x)|wx|2 + s6θ6 x2

k(x)
|w|2)e2sΦ dxdt

≤ C(s3

∫
Q

θ3e2sΦ|v1O|2 dxdt+ s6

∫ T

0

∫
O′
θ6e2sΦ|w|2 dxdt),

(5.1)

for all s ≥ s1; and∫
Q

(sθk(x)|vx|2 + s3θ3 x2

k(x)
|v|2)e2sΦ dxdt

≤ Cs3

∫ T

0

∫
O′
θ3e2sΦ|v|2 dx dt, for all s ≥ s2.

(5.2)

Adding these two inequalities, one obtains that for every s ≥ s1 + s2,∫
Q

(
sθk(x)|vx|2 + s3θ3 x2

k(x)
|v|2 + s4θ4k(x)|wx|2 + s6θ6 x2

k(x)
|w|2

)
e2sΦ dxdt

≤ Cs3

∫ T

0

∫
O
θ3e2sΦ|v|2 dxdt+ Cs3

∫ T

0

∫
O′
θ3e2sΦ|v|2 dx dt

+ Cs6

∫ T

0

∫
O′
θ6e2sΦ|w|2 dx dt.

(5.3)
We will absorb the term

∫ T
0

∫
O′ θ

3e2sΦ|v|2 dxdt by the term
∫ T

0

∫
O θ

3e2sΦ|v|2 dxdt
by using the properties of the integral. We know that O′ b O and therefore, there
exists a constant C1 > 0 such that∫ T

0

∫
O′
θ3e2sΦ|v|2 dxdt ≤ C1

∫ T

0

∫
O
θ3e2sΦ|v|2 dxdt.

Thus, the inequality (5.3) gives∫
Q

(
sθk(x)|vx|2 + s3θ3 x2

k(x)
|v|2 + s4θ4k(x)|wx|2 + s6θ6 x2

k(x)
|w|2)e2sΦ dx dt

≤ Cs3

∫ T

0

∫
O
θ3e2sΦ|v|2 dx dt+ Cs6

∫ T

0

∫
O′
θ6e2sΦ|w|2 dxdt.

(5.4)

Now, let O′ b ω′ b ω ∩ O, we define and the function ζ ∈ C∞(Ω) as follows

0 ≤ ζ(x) ≤ 1 ∀x ∈ Ω

ζ(x) = 1 if x ∈ O′

ζ(x) = 0 if x ∈ Ω \ ω′
(5.5)

In addition it is assumed that
∇ζ
ζ1/2

∈ L∞(Ω) and
∆ζ
ζ1/2

∈ L∞(Ω). (5.6)

Indeed, just take ζ = ζ4
0 where ζ0 ∈ C∞(Ω), to satisfy the two previous conditions

on ζ.
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We set χ = s3θ3e2sΦ and multiply the first equation of (4.2) by ζχv and integrate
the result on Q. We obtain∫

Q

v21Oζχ = 2
∫
Q

k(x)vxwxζχ−
∫
Q

vw(k(x)(ζχ)x)x

+
∫
Q

(a+ b)vwζχ+
∫
Q

vwζχt,∫
Q

v21Oζχ =
4∑
i=1

Ii.

Note that there exists a positive constant C2 > 0 such that

|χt| ≤ C2s
4θ5e2sΦ and |χx| ≤ C2s

4θ4 x

k(x)
e2sΦ (5.7)

and, using Höder’s and Young’s inequalities, one obtains

I1 = 2s3

∫
Q

k(x)θvxwxe2sΦζ

≤ 2δ0s
∫
Q

k(x)θ|vx|2e2sΦζ +
2
δ0
s5

∫
Q

k(x)θ5|wx|2e2sΦζ, δ0 > 0.

From inequality (5.2), one obtains

2δ0s
∫
Q

k(x)θ|vx|2e2sΦζ ≤ Cδ0s3

∫ T

0

∫
O
θ3|v|2e2sΦζ. (5.8)

It results that

I1 ≤ Cδ0s3

∫ T

0

∫
O
θ3|v|2e2sΦζ +

2
δ0
s5

∫
Q

k(x)θ5|wx|2e2sΦζ, (5.9)

I3 =
∫
Q

(a+ b)vwζχ ≤ δ1s3

∫
Q

θ3|v|2e2sΦζ +
‖a+ b‖2∞

δ1
s3

∫
Q

θ3|w|2e2sΦζ, (5.10)

with δ1 > 0. As the function x 7→ x2

k(x) is increasing on (0, 1], we have

‖a+ b‖2∞
δ1

s3

∫
Q

θ3|w|2e2sΦζ ≤ ‖a+ b‖2∞
k(1)δ1

s3

∫ T

0

θ3[
∫ 1

0

k(x)ζ(
wesΦ

x
)2 dx] dt.

Using Hardy’s type inequality to the function wesΦ with Fubini-Tonelli’s theorem,
we obtain

‖a+ b‖2∞
δ1

s3

∫
Q

θ3|w|2e2sΦζ

≤ C4‖a+ b‖2∞
k(1)δ1

s3

∫
Q

θ3k(x)ζ(s2Φ2
x|w|2 + |wx|2)e2sΦ) dx dt.

Using that Φx = c1θx
k(x) , we have

‖a+ b‖2∞
δ1

s3

∫
Q

θ3|w|2e2sΦζ

≤ C5‖a+ b‖2∞
k(1)δ1

∫
Q

(s5θ5 x2

k(x)
|w|2 + s3θ3k(x)|wx|2)ζe2sΦ dxdt.
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From inequality (5.4), we find

‖a+ b‖2∞
δ1

s3

∫
Q

θ3|w|2e2sΦζ

≤ C5C‖a+ b‖2∞
k(1)δ1

s3

∫ T

0

∫
O
θ3e2sΦ|v|2 dx dt

+
C5C‖a+ b‖2∞

k(1)δ1
s6

∫ T

0

∫
O′
θ6e2sΦ|w|2 dxdt.

It results that

I3 ≤ δ1s3

∫
Q

θ3|v|2e2sΦζ +
C5C‖a+ b‖2∞

k(1)δ1
s3

∫ T

0

∫
O
θ3e2sΦ|v|2ζ dxdt

+
C5C‖a+ b‖2∞

k(1)δ1
s6

∫ T

0

∫
O′
θ6e2sΦ|w|2ζ dxdt,

(5.11)

I4 =
∫
Q

vwζχt dxdt ≤ δ2s3

∫
Q

θ3|v|2e2sΦζ dxdt

+
C2

1

δ2
s5

∫
Q

k(x)θ7|w|2e2sΦζ dxdt, δ2 > 0
(5.12)

I2 = −
∫
Q

vw(k(x)(ζχ)x)x dxdt

≤
∫
Q

|k′(x)||vw||(χζ)x|dx dt+
∫
Q

k(x)|vw||(χζ)xx|dxdt.
(5.13)

Notice that

k ∈ C([0, 1]) ∩ C1((0, 1]),

(ζχ)x = ζxχ+ ζχx ≤ C2s
4θ4e2sΦζ1/2,

(χζ)xx = ζxxχ+ 2ζxχx + ζχxx ≤ C2(sθ)5e2sΦζ1/2.

(5.14)

Using inequality (5.14), one gets

I1
2 =

∫
Q

|k′(x)||vw||(χζ)x|dxdt

≤ C3s
4

∫
Q

θ4e2sΦ|wv|ζ1/2 dx dt.

≤ δ3s3

∫
Q

θ3e2sΦ|v|2ζ1/2 dxdt+
C2

3

δ3
s5

∫
Q

θ5|w|2e2sΦζ1/2 dx dt, δ3 > 0

and

I2
2 =

∫
Q

|k(x)||vw||(χζ)xx|dxdt

≤ C3s
5

∫
Q

θ5e2sΦ|wv|ζ1/2 dxdt.

≤ δ4s3

∫
Q

θ3e2sΦ|v|2ζ1/2 dxdt+
C2

3

δ4
s7

∫
Q

θ7|w|2e2sΦζ1/2 dxdt, δ4 > 0.
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Therefore,

I2 ≤ (δ3 + δ4)s3

∫
Q

θ3e2sΦ|v|2ζ1/2 dxdt

+
C2

3

δ3
s5

∫
Q

θ5|w|2e2sΦζ1/2 dx dt+
C2

3

δ4
s7

∫
Q

θ7|w|2e2sΦζ1/2 dxdt.
(5.15)

By summing the Ii, for 1 ≤ i ≤ 4, we obtain
4∑
i=1

Ii ≤ (Cδ0 + δ1 + δ2 + δ3 + δ4 +
C5C‖a+ b‖2∞

k(1)δ1
)s3

∫
Q

θ3|v|2e2sΦζ dxdt

+
2
δ0
s5

∫
Q

k(x)θ5|wx|2e2sΦζ dx dt+
C2

1

δ2
s5

∫
Q

k(x)θ7|w|2e2sΦζ dxdt

+
C2

3

δ3
s5

∫
Q

θ5|w|2e2sΦζ1/2 dx dt+
C2

3

δ4
s7

∫
Q

θ7|w|2e2sΦζ1/2 dx dt

+
C5C‖a+ b‖2∞

k(1)δ1
s6

∫ T

0

∫
O′
θ6e2sΦ|w|2 dxdtζ dx dt. (5.16)

Now, we look to increase the term

2
δ0
s5

∫
Q

k(x)θ5|wx|2e2sΦζ dxdt.

To do this, we are going to multiply the first equation of system (4.2) by s5θ5e2sΦwζ,
and integrate on Q. To simplify we set χ = s5θ5e2sΦ,∫

Q

v1Owζχdxdt

= −
∫
Q

(wχζ)wt dxdt−
∫
Q

(wχζ)(k(x)wx)x dxdt+
∫
Q

aχw2ζ dx dt

=
1
2

∫
Q

w2ζχt dxdt+
∫
Q

k(x)χζw2
x dxdt− 1

2

∫
Q

w2(k(ζχ)x)x +
∫
Q

aχζw2 dxdt.

Therefore,∫
Q

k(x)χζ|wx|2 dxdt

≤
∫
Q

v1Owζχdxdt+
1
2

∫
Q

|w|2|ζχt|dxdt+
1
2

∫
Q

|w|2
∣∣(k(ζχ)x)x

∣∣dxdt

+
∫
Q

|aχζ||w|2 dxdt

=
4∑
i=1

Ji.

Using Höder-Young’s inequality, one obtains

J1 = s5

∫
Q

θ5e2sΦvwζ dx dt

≤ γs3

∫
Q

θ3e2sΦ|v|2ζ dxdt+
1
γ
s7

∫
Q

θ7e2sΦ|w|2ζ dxdt.
(5.17)
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Observe that χt = (s5θ4θte
2sΦ(5 + 2sθh(x)) because by definition the function Φ

is of the form Φ(x, t) = θ(t)h(x) where h(x) = ρ(x)ψ(x) + (1 − ρ(x))Ψ(x). Thus,
χt ≤ Cs6θ7e2sΦ for every s ≥ CT 8. Therefore, for all s ≥ 1 we have

J2 ≤ Cs6

∫
Q

θ7e2sΦ|w|2ζ dx dt ≤ Cs7

∫
Q

θ7e2sΦ|w|2ζ dx dt, (5.18)

J4 = s5

∫
Q

|a|θ5e2sΦζ|w|2 dxdt ≤ ‖a‖∞s5

∫
Q

θ5e2sΦζ|w|2 dx dt. (5.19)

Observe also that (ζχ)x ≤ C(sθ)6 x
k(x)e

2sΦζ1/2 and from the linearity of the deriv-
ative function, we have

J3 =
∫
Q

w2 |(k(x)(ζχ)x)x| dxdt

≤ C
∫
Q

|w|2k(x)|(ζχ)x|dxdt

≤ Cs6

∫
Q

θ6|w|2e2sΦζ1/2 dx dt.

(5.20)

Let n,m be natural numbers such that for any n ≥ m, one has

smθm ≤ Csnθn, ∀s ≥ CT 8. (5.21)

In fact

smθm = smθn(θ−1)n−m ≤ smθn(
T 8

16
)n−m ≤ smθn(

C

16
s)n−m = Csnθn.

Since s ≥ CT 8, using inequalities (5.17) to (5.20) and (5.21), we find∫
Q

k(x)χζ|wx|2 dxdt

≤ γs3

∫
Q

θ3e2sΦ|v|2ζ dxdt+ (
1
γ

+ C‖a‖∞ + C)s7

∫
Q

θ7e2sΦ|w|2ζ dx dt
(5.22)

Finally, combining inequalities (5.16), (5.21), and (5.22), one gets

s3

∫
Q

θ3|v|2e2sΦζ dxdt

≤
(
Cδ0 + δ1 + δ2 + δ3 + δ4 +

2γ
δ0

+
C‖a+ b‖2∞
k(1)δ1

)
s3

∫
Q

θ3|v|2e2sΦζ dxdt

+
(C‖a+ b‖2∞

k(1)δ1
+
C

δ2
+

1
γ

+ C‖a‖∞ + C
)
s7

∫
Q

θ7|w|2e2sΦζ dxdt

+
(C
δ4

+
C

δ3
+

2C
δ0

)
s7

∫
Q

θ7|w|2e2sΦζ1/2 dx dt.

(5.23)

We now set δ2 = δ3 = δ4 = C′δ0
3 , γ = C′δ20

2 and δ1 = 1
δ0

, with

C ′ = max(
1
4
, C,

C‖a+ b‖2∞
k(1)

, C‖a‖∞) ≥ 1
4
.

Using that supp ζ ⊂ O′ we have

(−4C ′δ2
0 + δ0 − 1)s3

∫ T

0

∫
O
θ3|v|2e2sΦ
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≤ C ′δ3
0 + 2C ′δ2

0 + (6 + 2C ′)δ0 + 2
δ0

s7

∫ T

0

∫
O′
θ7|w|2e2sΦ.

The term −4C ′δ2
0 + δ0 − 1 > 0 is equivalent to 16C ′ ≥ 1 and since C ′ ≥ 1

4 >
1
16 ,

for δ0 fixed, we obtain by taking C = C′δ30+2C′δ20+(6+2C′)δ0+2

−δ(C′δ20+δ0−1)

s3

∫ T

0

∫
O
θ3|v|2e2sΦ ≤ Cs7

∫ T

0

∫
O′
θ7|w|2e2sΦ. (5.24)

Now, by multiplying the inequality (5.24) by C0 and using inequalities (5.4) and
(5.21), we obtain the inequality (1.3) of Theorem 1.2. �

Proof of Theorem 1.1. Consider the functions

F (s) =

{
f(s)
s if s 6= 0

f ′(0) if s = 0
and G(σ) =

{
g(σ)
σ if σ 6= 0
g′(0) if σ = 0

We need the following result.

Lemma 5.1. Under the hypothesis of Theorem 1.1 and any ε > 0, there exists a
positive constant Cε such that

|F (s)|2/3 ≤ Cε + εlog(1 + |s|)

|G(σ)|2/3 ≤ Cε + εlog(1 + |σ|).
(5.25)

Proof. Indeed, it will be sufficient to prove that for each ε > 0, one has |F (s)| ≤
Cη + ε log3/2(1 + |s|) for all s ∈ R. Let ε > 0. From lim|s|→+∞

f(s)

|s| log3/2(1+|s|) = 0,
there exists s(ε) ≥ 1 such that

|f(s)
s
| ≤ ε log3/2(1 + |s|) for all |s| > s(ε). (5.26)

On the other hand, using the fact that f is a locally Lipschitz-continuous function,
there exists a constant Cη only depending on ε and f , such that |f(s) − f(s′)| ≤
Cη|s− s′|, for all (s, s′) ∈ [−s(ε), s(ε)]2. In particular, for s 6= 0 and s′ = 0, we find

|f(s)| ≤ Cε|s| =⇒ |
f(s)
s
| ≤ Cε. (5.27)

From (5.26) and (5.27), we deduce that for all s ∈ R, | f(s)
s | ≤ Cε + ε log3/2(1 + |s|).

Therefore, we obtain |F (s)|2/3 ≤ Cε + εlog(1 + |s|), for all s ∈ R with Cε =
(Ks(ε))2/3 depending only on ε and f , and K > 0 is a constant.

The same arguments, allow us to prove that |G(s)|2/3 ≤ Cε + εlog(1 + |s|), for
all s ∈ R. This completes the proof. �

Let R > 0 be a constant whose value will be determined below. We will use the
truncation continuous function TR : R→ R, given by

TR(s) =

{
s if |s| ≤ R,
R sgn(s) otherwise .
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For each (ỹ, z̃) ∈ X1, we will consider the linear cascade system

yt − (kyx)x + F (TR(ỹ))y = h1ω in Q,

zt − (kzx)x +G(TR(z̃))z = y1O in Q,

y = z = 0 on Σ,

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω.

(5.28)

Obviously, system (5.28) is of the same form as system (4.1), with aỹ = F (TR(ỹ)) ∈
L∞(Q) and bz̃ = G(TR(z̃)) ∈ L∞(Q) since F and G are continuous functions.
Consequently, we can apply Theorem 4.1 to (5.28). In fact, we apply this result in
an adequate (eventually smaller) time interval (0, TR), where

TR = min(T, ‖aỹ‖−1/2, ‖bz̃‖−1/2). (5.29)

According to Theorem 4.1 and applying the density of H2
k(Ω) in L2(Ω), if y0, z0 ∈

H2
k(Ω) then, there exists a control h̃ ∈ L2(Ω × (0, TR)) such that the solution of

(5.28) in Ω× (0, TR) satisfies z(x, TR) = 0 in Ω and we have

‖h̃‖L2(ω×(0,TR) ≤ C0(Ω, ω, TR, aỹ, bz̃)(‖y0‖H1
k(Ω) + ‖z0‖H1

k(Ω)), (5.30)

‖y‖XR
+ ‖z‖XR

≤ C1(Ω, ω, TR, aỹ, bz̃)(‖y0‖H1
k(Ω) + ‖z0‖H1

k(Ω)). (5.31)

We now extend the functions h̃, y and z by zero to the whole Q. Denote such
extensions again h̃, y and z respectively. Then, (y, z) lies in X1 and solves the
linearised system (5.28) in Q with control term h̃ ∈ L2(Q), and satisfies z(x, T ) = 0
in Ω. Moreover, we have the estimates

‖h̃‖L2(ω×(0,T ) ≤ C0(Ω, ω, TR, aỹ, bz̃)(‖y0‖H1
k(Ω) + ‖z0‖H1

k(Ω)), (5.32)

‖y‖X + ‖z‖X ≤ C1(Ω, ω, TR, aỹ, bz̃)(‖y0‖H1
k(Ω) + ‖z0‖H1

k(Ω)). (5.33)

For a fixed control h ∈ L2(Q), we now denote by (yh, zh) the solution of (5.28)
associated to h and the potentials aỹ, bz̃. For any (ỹ, z̃) ∈ X2

1 , one defines the
family of controls

AR(ỹ, z̃) = {h ∈ L2(Q) : (yh, zh) ∈ X2
1 , zh(x, T ) = 0 in Ω and h satisfies (5.32)}.

Thus, we can introduce the multi-valued mapping

ΛR (ỹ, z̃) ∈ X2
1 7→ ΛR(ỹ, z̃) ⊂ X2

1 ,

where

ΛR(ỹ, z̃) = {(yh, zh) ∈ X2
1 , solution of (5.28), satisfying (5.33) and h ∈ AR(ỹ, z̃)}.

We will prove that this mapping admits at least one fixed point (y, z). We will also
prove that, for some R, every fixed point of ΛR satisfie

‖y‖X1 + ‖z‖X1 ≤ R. (5.34)

Notice that Kakutani’s fixed point theorem can be applied to ΛR thus, ensuring
the existence of (at least) one fixed point of ΛR in X2

1 .
First, from the inequalities (5.32) and (5.33), we deduce that ΛR(ỹ, z̃) is for every

(ỹ, z̃) a nonempty set. Moreover, ΛR(ỹ, z̃) is a closed and convex subset for any
(ỹ, z̃). In fact, if (y, z) and (y′, z′) are two elements of ΛR(ỹ, z̃), solutions of (5.28)
associated to controls h and h′ respectively. Let α ∈ [0, 1]. We are going to show
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that (Y, Z) with Y = αy+ (1−α)y′ and Z = αz+ (1−α)z′ and (Y,Z) is a solution
of (5.28). Consider the following two systems

yt − (kyx)x + F (TR(ỹ))y = h1ω in (0, T0)× Ω,

zt − (kzx)x +G(TR(z̃))z = y1O in (0, T0)× Ω,
y = z = 0 on Σ,

y(x, 0) = y0(x), z(x, 0) = z0(x) in Ω,

(5.35)

and
y′t − (ky′x)x + F (TR(ỹ))y′ = h′1ω in (0, T1)× Ω,

z′t − (kz′x)x +G(TR(z̃))z′ = y′1O in (0, T1)× Ω,

y′ = z′ = 0 on Σ,

y′(x, 0) = y′0(x), z′(x, 0) = z′0(x) in Ω.

(5.36)

Since systems (5.35) and (5.36) admit solutions at any times T0 and T1 respectively,
we can deduce that (Y, Z) is a solution of

Yt − (kYx)x + F (TR(ỹ))Y = H1ω in Q,

Zt − (kZx)x +G(TR(z̃))Z = Y 1O in Q,

Y = Z = 0 on Σ,

Y (x, 0) = Y0(x), Z(x, 0) = Z0(x) in Ω,

(5.37)

where H = αh + (1 − α)h′, Y0(x) = y0(x) + y′0(x) and Z0(x) = z0(x) + z′0(x).
Consequently, with T = max(T0, T1), we have Z(x, T ) = 0 in Ω and the inequalities
(5.32) and (5.33) are satisfied. We can deduce that (Y, Z) ∈ ΛR(ỹ, z̃) for any
(ỹ, z̃) ∈ X2

1 . Then, ΛR(ỹ, z̃) is the convex subset. On the other hand, from (5.33),
ΛR(ỹ, z̃) is bounded in X2

1 . Hence, ΛR maps the whole space X2
1 in a bounded

subset of X2
1 . Now, let K ⊂ X2

1 be a bounded set. Let us show that for any
(ỹ, z̃) ∈ K, ΛR(ỹ, z̃) is a compact set of X2

1 . Thus, let {(yn, zn)} be a sequence in
ΛR(ỹ, z̃). From inequality (5.33), (yn, zn) is bounded in X2

1 there exists a sequence
{hn} in AR(ỹ, z̃) and from (5.32), hn is bounded in L2(Q). Thus, there exists a
subsequence denoted again {(yn, zn)} and {hn} such that

hn → h weakly in L2(Q),

(yn, zn)→ (y, z) strongly in (C([0, T ];H1
k))2 and weakly in X2

1 .
(5.38)

Since (yn, zn) is a solution of the system

(yn)t − (k(yn)x)x + F (TR(ỹ))yn = (hn)1ω in Q,

(zn)t − (k(zn)x)x +G(TR(z̃))zn = (yn)1O in Q,

yn = zn = 0 on Σ,

yn(x, 0) = y0(x), zn(x, 0) = z0(x) in Ω,

(5.39)

we conclude by passing to the limit that (y, z) ∈ ΛR(ỹ, z̃) and is associated to the
control h ∈ AR(ỹ, z̃) for any (ỹ, z̃) ∈ K, as claimed. Thus, we can conclude that
ΛR(K) = ∪{ΛR(ỹ, z̃) : (ỹ, z̃) ∈ K} is relatively compact in X2

1 .
Let us now prove that the mapping (ỹ, z̃) 7→ ΛR(ỹ, z̃) is upper hemicontinuous,

i.e. that the real-valued function (ỹ, z̃) ∈ X2
1 7→ sup(y,z)∈ΛR(ỹ,z̃)〈µ, (y, z)〉 is upper

semicontinuous for each bounded linear form µ ∈ (X2
1 )′. In other words, let us see
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that
Bα,µ = {(ỹ, z̃) ∈ X2

1 : sup
(y,z)∈ΛR(ỹ,z̃)

〈µ, (y, z)〉 ≥ α} (5.40)

is a closed subset of X2
1 for every α ∈ R and every µ ∈ (X2

1 )′. Thus, let ((ỹn, z̃n))n
be a sequence in Bα,µ such that (ỹn, z̃n)→ (ỹ, z̃) in X2

1 . Our aim is to prove that
(ỹ, z̃) ∈ Bα,µ. In view of the continuity of on F , G and TR, we have

F (TR(ỹn))→ F (TR(ỹ)) strongly in L∞(Q),

G(TR(z̃n))→ G(TR(z̃)) strongly in L∞(Q).
(5.41)

Since all sets ΛR(ỹn, z̃n) are compact and satisfy (5.33), we deduce that

α ≤ sup
(y,z)∈ΛR(ỹn,z̃n)

〈µ, (y, z)〉 = 〈µ, (yn, zn)〉 (5.42)

for some (yn, zn) ∈ ΛR(ỹn, z̃n). In fact, the mapping (ỹn, z̃n) 7→ 〈µ, (y, z)〉 is con-
tinuous on the compact set ΛR(ỹn, z̃n), this upper boundary is achieved; i.e. there
exists (yn, zn) ∈ ΛR(ỹn, z̃n), such that sup(y,z)∈ΛR(ỹn,z̃n)〈µ, (y, z)〉 = 〈µ, (yn, zn)〉,
as claimed. From the definitions of ΛR(ỹn, z̃n) and AR(ỹn, z̃n), there must exist a
sequence (hn)n ⊂ L2(ω × (0, T )) solution of the system

(yn)t − (k(yn)x)x + F (TR(ỹn))yn = (hn)1ω in Q,

(zn)t − (k(zn)x)x +G(TR(z̃n))zn = (yn)1O in Q,

yn = zn = 0 on Σ,

yn(x, 0) = y0(x), zn(x, 0) = z0(x) in Ω.

, (5.43)

such that hn and (yn, zn) satisfy the inequalities (5.32) and (5.33) respectively.
Hence, (yn, zn) and hn are uniformly bounded in X2

1 and L2(Q) respectively. There-
fore, we must write the following at least for a subsequence that we are going to
denote (yn, zn) and hn again respectively such that (yn, zn) → (ŷ, ẑ) strongly in
X2

1 and hn → ĥ weakly in L2(Q). Since the subsequence ((yn, zn))n is a so-
lution of (5.43), we check by passing to the limit that (ŷ, ẑ) ∈ ΛR(ỹ, z̃) and
ĥ ∈ AR(ỹn, z̃n). Consequently, we can take the limit in (5.42) and deduce that
α ≤ sup(y,z)∈ΛR(ỹ,z̃)〈µ, (y, z)〉 = 〈µ, (ŷ, ẑ)〉, this is to say (ŷ, ẑ) ∈ Bα,µ. This proves
that (ỹ, z̃) 7→ ΛR(ỹ, z̃) is upper hemicontinuous on X2

1 .
As a consequence, for any fixed R > 0, Kakutani’s fixed point theorem can

be applied ensuring the existence of a fixed point of ΛR, i.e. that there exists
(y, z) ∈ X2

1 such that (y, z) ∈ ΛR(y, z).
Now, let us show the existence R > 0 such that ‖y‖L∞ + ‖z‖L∞ ≤ R.

‖y‖X1 + ‖z‖X1

≤ C(1 + ‖aỹ‖∞ + ‖bz̃‖∞)e1/2CT (1+‖aỹ‖2∞+‖bz̃‖2∞)(‖y0‖H1
k

+ ‖z0‖H1
k
),

≤ e1/2CT (1+aỹ‖∞+‖bz̃‖∞+‖aỹ‖2∞+‖bz̃‖2∞)(‖y0‖H1
k

+ ‖z0‖H1
k
).

(5.44)

Since for any small ε > 0,

‖aỹ‖∞ = F (TR(ỹ)) ≤ Cε + ε log(1 +R),

‖aỹ‖2∞ = F (TR(ỹ))2 ≤ Cε + ε log(1 +R),

‖bz̃‖∞ = G(TR(ỹ)) ≤ Cε + ε log(1 +R),

‖bz̃‖2∞ = G(TR(ỹ))2 ≤ Cε + ε log(1 +R).
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Then (5.44), becomes

‖y‖X1 + ‖z‖X1 ≤ eC(1+Cε+ε log(1+R))(‖y0‖H1
k

+ ‖z0‖H1
k
)

≤ eC(1+Cε)(1 +R)Cε(‖y0‖H1
k

+ ‖z0‖H1
k
)

(5.45)

with C > 0. The fact that X1 ↪→ L∞(Q) (a consequence of [15, Theorem 5.4]),
with continuous embedding then, taking ε = (2c)−1 like in [19], we infer that

‖y‖∞ + ‖z‖∞ ≤ C(1 +R)1/2
(
‖y0‖H1

k
+ ‖z0‖H1

k

)
, (5.46)

and we have ‖y‖∞+‖z‖∞ ≤ R, for R > 0 large enough. Thus, the proof of Theorem
1.1 is complete. �
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