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SELFADJOINT SINGULAR DIFFERENTIAL OPERATORS OF
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Abstract. Based on Calkin-Gorbachuk method, we describe all selfadjoint

extensions of the minimal operator generated by linear multipoint singular
symmetric differential-operator, as a direct sum of weighted Hilbert space of

vector-functions. Another approach to the investigation of this problem has

been done by Everitt, Zettl and Markus. Also we study the structure of
spectrum of these extensions.

1. Introduction

The first works devoted to the general theory of selfadjoint extensions of sym-
metric operators having equal deficiency indexes in any Hilbert space belong to von
Neumann [12]. Generalization of this theory to normal extensions has been done
Coddington [3]. Applications of this theory to two-point differential operators in
Hilbert spaces can be found in works of many mathematicians; see for example
[4, 6, 7, 13].

It is known that for the existence of selfadjoint extension of any linear closed
densely defined symmetric T in a Hilbert space H the necessary and sufficient con-
dition is a equality of deficiency indexes m(T ) = n(T ), where m(T ) = dim ker(T ∗+
iE), n(T ) = dim ker(T ∗ − iE).

In the multipoint cases it may be faced with different views. Let T1 and T2 be
minimal operators generated by the linear singular differential expression

l(u) = itu′(t)

in the weighted Hilbert L2
α(−∞, a) and L2

α(b,∞), α(t) = t, a, b ∈ R of functions,
respectively. In this case it is clear that

(m(T1), n(T1)) = (0, 1), (m(T2), n(T2)) = (1, 0)

Consequently, the operators T1 and T2 are maximal symmetric. Hence they are not
any selfadjoint extensions. However, direct sum T = T1⊕T2 of operators T1 and T2

in the direct sum H = L2
α(−∞, a)⊕ L2

α(b,∞) have an equal defect numbers (1,1).
Then by the general theory it has at least one selfadjoint extension [12].
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Indeed it can be easily shown that the multipoint differential expression

l(u) = (itu′1(t), itu′2(t)) , u = (u1, u2), u1 ∈ D(T ∗1 ), u2 ∈ D(T ∗2 )

with boundary condition u2(b) = u1(a) generates selfadjoint extension of T1 ⊕ T2.
There are different methods for the description all selfadjoint extensions of min-

imal symmetric operators. For example, in mathematical literature the Eweritt-
Zettl-Markus and Calkin-Gorbachuk methods are very important of them.

The models of many physical and technical phenomena are expressed as differ-
ential operators. Therefore operator theory plays an exceptionally important role
in modern mathematics, especially in the modelling of processes of multi-particle
quantum mechanics, quantum field theory, the multipoint boundary value problems
for differential equations [1, 15].

Although the first studies of the theory multipoint differential operators were
performed at the beginning of twentieth century, most of them which are about the
investigation of the theory and application to spectral problems, have been found
since 1950 [5, 8, 9, 10, 15, 16].

In the article by Everitt and Zettl [5] in the scalar case, all selfadjoint exten-
sions of the minimal operator generated by Lagrange-symmetric any order quasi-
differential expression with equal deficiency indexes in terms of boundary conditions
are described by Glazman-Krein-Naimark method for regular and singular cases in
the direct sum of corresponding Hilbert spaces of functions.

2. Statement of the problem

Let H be a separable Hilbert space and let a, b ∈ R. In the Hilbert space
L2

1/α(H, (−∞, a))⊕L2
1/β(H, (b,+∞)) of a vector-functions we consider the following

linear multipoint differential-operator expression for first order in a form

l(w) = (k(u),m(v)), (2.1)

where w = (u, v), k(u) = iα(t)u′(t) + Au(t), m(v) = iβ(t)v′(t) + Bv(t), α ∈
C(−∞, a), β ∈ C(b,+∞) and there exist positive numbers α1, α2, β1, β2 such that
α1 ≤ α(t) ≤ α2 for any t < a, β1 ≤ β(t) ≤ β2 for any t > b and for simplicity
assumed that A and B are linear bounded selfadjoint operators in H.

In similar way in [7] the minimal K0(M0) and maximal K(M) operators associ-
ated with differential expression k(m) in L2

1/α(H, (−∞, a))(L2
1/β(H, (b,+∞))) can

be constructed.
The operators L0 = K0 ⊕ M0 and L = K ⊕ M in the Hilbert space H =

L2
1/α(H, (−∞, a)) ⊕ L2

1/β(H, (b,+∞)) are called minimal and maximal operators
associated with differential expression (2.1), respectively. It is clear that operator
L0 is a symmetric and L∗0 = L in H. The minimal operator L0 is not maximal.
Indeed, differential expression (2.1) with boundary condition u(a) = v(b) generates
a selfadjoint extension of L0.

The main goal in this article is to describe all selfadjoint extensions of minimal
operator L0 in H in terms of boundary values (Sec. 3). In section 4 the structure
of spectrum of these extensions will be investigated.
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3. Description of Selfadjoint Extensions

In this section using by Calkin-Gorbachuk method will be investigated the gen-
eral representation of selfadjoint extensions of minimal operator L0. Firstly, prove
the following proposition.

Lemma 3.1. The deficiency indexes of the operators K0 and M0 are of the form

(m(K0), n(K0)) = (dimH, 0), (m(M0), n(M0)) = (0,dimH).

Proof. From the conditions under the weight functions α(·) and β(·) imply that

1
α2
≤ 1
α(t)

≤ 1
α1
, t < a and

1
β2
≤ 1
β(t)

≤ 1
β1
, t > b .

From these relations we have∫ a

−∞

dt

α(t)
=
∫ ∞
b

dt

β(t)
= +∞

On the other hand, it is clear that the general solutions of differential equations

iα(t)u′± ± iu± = 0, t < a and iβ(t)v′± ± iv± = 0, t > b

in the L2
1/α(H, (−∞, a)) and L2

1/β(H, (b,+∞)) are

u±(t) = exp
(
∓
∫ t

−∞

ds

α(s)

)
f, f ∈ H, t < a

and

v±(t) = exp
(
±
∫ ∞
t

ds

β(s)

)
g, g ∈ H, t > b

respectively From these representations we have

‖u+‖2L2
1/α(H,(−∞,a)) =

∫ a

−∞

1
α(t)
‖u+(t)‖2Hdt

=
∫ a

−∞

1
α(t)

exp
(
− 2

∫ t

−∞

ds

α(s)

)
dt‖f‖2H

=
∫ a

−∞
exp

(
− 2

∫ t

−∞

ds

α(s)

)
d
(∫ t

−∞

ds

α(s)

)
‖f‖2H

=
1
2
‖f‖2H <∞

Consequently,
dim ker(K + iE) = dimH

On the other hand it is clear that for any f ∈ H the solutions

u−(t) = exp
(∫ t

−∞

ds

α(s)

)
f /∈ L2

1/α(H, (−∞, a)).

Hence dim ker(K − iE) = 0.
In a similar way we can show that

m(M0) = dim ker(M + iE) = 0 and n(M0) = dim ker(M − iE) = dimH

This completes the proof of theorem. �
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From last Lemma 3.1 we have

m(L0) = m(K0) +m(M0) = dimH and n(L0) = n(K0) + n(M0) = dimH

Consequently, (m(L0), n(L0)) = (dimH,dimH). Consequently, the minimal oper-
ator L0 has a selfadjoint extensions; see [12].

Definition 3.2 ([7]). Let H be any Hilbert space and S : D(S) ⊂ H → H be
a closed densely defined symmetric operator in the Hilbert space H having equal
finite or infinite deficiency indexes. A triplet (B, γ1, γ2), where B is a Hilbert space,
γ1 and γ2 are linear mappings from D(S∗) into B, is called a space of boundary
values for the operator S if for any f, g ∈ D(S∗)

(S∗f, g)H − (f, S∗g)H = (γ1(f), γ2(g))B − (γ2(f), γ1(g))B

while for any F1, F2 ∈ B, there exists an element f ∈ D(S∗) such that γ1(f) = F1

and γ2(f) = F2.

It is known that for any symmetric operator with equal deficiency indexes have
at least one space of boundary values [7].

Lemma 3.3. If u ∈ D(K) and v ∈ D(M), then limt→−∞ u(t) = 0, limt→+∞ v(t) =
0 and u(a), v(b) ∈ H.

Proof. Under the assumptions for α(·) and β(·) we have

1
α2
≤ 1
α(t)

≤ 1
α1
, t < a,

1
β2
≤ 1
β(t)

≤ 1
β1
, t > b .

Then for any pair of functions x(·) ∈ L2(H, (−∞, a)), y(·) ∈ L2(H, (b,+∞)), from
the above relations,

0 ≤
∫ a

−∞

1
α(t)
‖x(t)‖2Hdt ≤

1
α1

∫ a

−∞
‖x(t)‖2Hdt,

0 ≤
∫ ∞
b

1
β(t)
‖y(t)‖2Hdt ≤

1
β1

∫ ∞
b

‖y(t)‖2Hdt

Consequently,

L2(H, (−∞, a)) ⊂ L2
1/α(H, (−∞, a)) and L2(H, (b,+∞)) ⊂ L2

1/β(H, (b,+∞)) .

Similarly, if x(·) ∈ L2
1/α(H, (−∞, a)) and y(·) ∈ L2

1/β(H, (b,+∞)), then from the
conditions on the weight functions we have

1
α2

∫ a

−∞
‖x(t)‖2Hdt ≤

∫ a

−∞

1
α(t)
‖x(t)‖2Hdt,

1
β2

∫ ∞
b

‖y(t)‖2Hdt ≤
∫ ∞
b

1
β(t)
‖y(t)‖2Hdt

Hence,

L2
1/α(H, (−∞, a)) ⊂ L2(H, (−∞, a)) and L2

1/β(H, (b,+∞)) ⊂ L2(H, (b,+∞)).

Therefore it is obtained that

L2
1/α(H, (−∞, a)) = L2(H, (−∞, a)) and L2

1/β(H, (b,+∞)) = L2(H, (b,+∞)).
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On the other hand, from the relations

D(K) ⊂ L2(H, (−∞, a)) and D(M) ⊂ L2(H, (b,+∞)),

we have limt→−∞ u(t) = 0 and limt→+∞ v(t) = 0 for any u ∈ D(K) and v ∈ D(M).
Now we assume that u ∈ D(K). Then

u ∈ L2
1/α(H, (−∞, a)) and αu′ ∈ L2

1/α(H, (−∞, a))

This implies
1√
α
u ∈ L2(H, (−∞, a)) and

√
αu′ ∈ L2(H, (−∞, a))

Then for any t < a it holds

(u, u)′H(t) = (u′, u)H(t) + (u, u′)H(t) =
(√

αu′,
1√
α
u
)
H

(t) +
( 1√

α
u,
√
αu′
)
H

(t)

and from this,∣∣‖u(a)‖2H − ‖u(−∞)‖2H
∣∣

≤
∫ a

−∞

∣∣∣(√αu′, 1√
α
u
)
H

(t)
∣∣∣dt+

∫ a

−∞

∣∣∣( 1√
α
u,
√
αu′
)
H

(t)
∣∣∣dt

≤ 2
(∫ a

−∞
‖
√
αu′‖2H(t)dt

)1/2(∫ a

−∞
‖ 1√

α
u‖2H(t)dt

)1/2

= 2‖ u√
α
‖L2(H,(−∞,a))‖

√
αu′‖L2(H,(−∞,a)) <∞

So u(a) ∈ H. In a similar way we can show that v(b) ∈ H. �

The following theorem defines the space of boundary condition.

Theorem 3.4. The triplet (H, γ1, γ2), with

γ1 : D(L)→ H, γ1(w) =
1
i
√

2
(u(a) + v(b)),

γ2 : D(L)→ H, γ2(w) =
1√
2

(u(a)− v(b)), w = (u, v) ∈ D(L),

is a space of boundary values of the minimal operator L0 in H.

Proof. In this case for any w1 = (u1, v1) and w2 = (u2, v2) from D(L) can be easy
verified that

(Lw1, w2)H − (w1, Lw2)H =
[
(Ku1, u2)L2

1/α(H,(−∞,a)) − (u1,Ku2)L2
1/α(H,(−∞,a))

]
+
[
(Mv1, v2)L2

1/β(H,(b,∞)) − (v1,Mv2)L2
1/β(H,(b,∞))

]
= (γ1(w1), γ2(w2))H − (γ2(w1), γ2(w2))H

Now let f and g be any elements from H. Find the function w = (u, v) ∈ D(L)
such that

γ1(w) =
1
i
√

2
(u(a) + v(b)) and γ2(w) =

1√
2

(u(a)− v(b)).

From this it is obtained that

u(a) = (if + g)/
√

2 and v(b) = (if − g)/
√

2
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If we choose the functions u(·) and v(·) in the form

u(t) =

√
α(t)√
α(a)

∫ t

−∞
es−ads(if + g)/

√
2, t < a,

v(t) =

√
β(t)√
β(b)

∫ ∞
t

eb−tds(if − g)/
√

2, t > b,

then it is clear that (u, v) ∈ D(L) and γ1(w) = f , γ2(w) = g. �

Lastly, using the method in [7] it can be established the following results.

Theorem 3.5. If L̃ is a selfadjoint extension of the minimal operator L0 in H, then
it generates by the differential-operator expression (2.1) and boundary condition

v(b) = Wu(a),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H

is determined uniquely by the extension L̃, i.e. L̃ = LW and vice versa.

4. Spectrum of the selfadjoint extensions

In this section the structure of the spectrum of the selfadjoint extension LW in
H will be investigated. Firstly, prove the following results.

Theorem 4.1. The point spectrum of selfadjoint extension LW is empty, i.e.

σp(LW ) = ∅.

Proof. Consider the eigenvalue problem

l(w) = λw, w = (u, v) ∈ H, λ ∈ R

with boundary condition v(b) = Wu(a). From this it is obtained that

iα(t)u′(t) +Au(t) = λu(t), t < a,

iβ(t)v′(t) +Bv(t) = λv(t), t > b,

v(b) = Wu(a)

The general solutions of the above equations are

u(λ; t) = exp
(
− i(A− λ)

∫ a

t

ds

α(s)

)
fλ, fλ ∈ H, t < a,

v(λ; t) = exp
(
i(B − λ)

∫ t

b

ds

β(s)

)
gλ, gλ ∈ H, t > b,

v(λ; b) = Wu(λ; a)

It is clear that for fλ 6= 0 and gλ 6= 0 the solutions u(λ; ·) /∈ L2
1/α(H, (−∞, a))

and v(λ; ·) /∈ L2
1/β(H, (b,∞)). Therefore, for every unitary operator W we have

σp(LW ) = ∅. Since the residual spectrum for any selfadjoint operator in a Hilbert
space is empty, then we study the continuous spectrum of selfadjoint extensions LW
of the minimal operator L0. On the other hand from the general theory of linear
selfadjoint operators in Hilbert spaces for the resolvent set ρ(LW ) of any selfadjoint
extension LW is true

ρ(LW ) ⊃ {λ ∈ C : Imλ 6= 0}.
�
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For the continuous spectrum of selfadjoint extensions the following proposition
is true.

Theorem 4.2. The continuous spectrum of the selfadjoint extension LW is of the
form

σc(LW ) = R.

Proof. For λ ∈ C with λi = Imλ > 0 and f = (fa, fb) ∈ H the norm of function
Rλ(LW )f(t) in H satisfies

‖Rλ(LW ))f(t)‖2H = ‖ exp
(
i(λ−A)

∫ a

t

ds

α(s)

)
fλ

+ i

∫ a

t

exp
(
i(A− λ)

∫ t

s

dτ

α(τ)

)fa(s)
α(s)

ds‖2L2
1/α(H,(−∞,a))

+ ‖i
∫ ∞
t

exp
(
i(B − λ)

∫ t

s

dτ

β(τ)

)fb(s)
β(s)

ds‖2L2
1/β(H,(b,∞))

≥ ‖i
∫ ∞
t

exp
(
i(B − λ)

∫ t

s

dτ

β(τ)

)fb(s)
β(s)

ds‖2L2
1/β(H,(b,∞))

The vector functions f∗(λ; t) in the form

f∗(λ; t) =
(

0, exp
(
− i(λ−B)

∫ t

b

ds

β(s)

)
f
)
,

with λ ∈ C, λi = Imλ > 0, f ∈ H belong to H. Indeed,

‖f∗(λ; t)‖2H =
∫ ∞
b

1
β(t)
‖ exp

(
− i(λ−B)

∫ t

b

ds

β(s)

)
f‖2Hdt

=
∫ ∞
b

1
β(t)

exp
(
− 2λi

∫ t

b

ds

β(s)

)
dt‖f‖2H

=
1

2λi
‖f‖2H <∞

For the such functions f∗(λ; ·) we have

‖Rλ(LW )f∗(λ; ·)‖2H

≥ ‖i
∫ ∞
t

1
β(s)

exp
(
i(B − λ)

∫ t

s

dτ

β(τ)
− i(λ−B)

∫ s

b

dτ

β(τ)

)
fds‖2L2

1/β(H,(b,∞))

= ‖ exp
(
− iλ

∫ t

b

dτ

β(τ)
+ iB

∫ t

b

dτ

β(τ)

)
×
∫ ∞
t

1
β(s)

exp
(
− 2λi

∫ s

b

dτ

β(τ)

)
fds‖2L2

1/β(H,(b,∞))

= ‖ exp
(
λi

∫ t

b

dτ

β(τ)

)∫ ∞
t

1
β(s)

exp
(
− 2λi

∫ s

b

dτ

β(τ)

)
ds‖2L2

1/β(H,(b,∞))‖f‖
2
H

= ‖ 1
2λi

exp
(
− λi

∫ t

b

dτ

β(τ)

)
‖2L2

1/β(H,(b,∞))‖f‖
2
H

=
1

4λ2
i

∫ ∞
b

1
β(t)

exp
(
− 2λi

∫ t

b

dτ

β(τ)

)
dt‖f‖2H

=
1

8λ3
i

‖f‖2H .
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From this,

‖Rλ(LW )f∗(λ; ·)‖H ≥
‖f‖2H

2
√

2λi
√
λi

=
1

2λi
‖f∗(λ; t)‖H,

i.e., for λi = Imλ > 0 and f 6= 0 is valid
‖Rλ(LW )f∗(λ; ·)‖H
‖f∗(λ; t)‖H

≥ 1
2λi

On the other hand it is clear that

‖Rλ(LW )‖ ≥ ‖Rλ(LW )f∗(λ; ·)‖H
‖f∗(λ; t)‖H

, f 6= 0

Consequently,

‖Rλ(LW )‖ ≥ 1
2λi

for λ ∈ C, λi = Imλ > 0.

�

Using the above theorem, the spectrum of the singular differential operator gen-
erated by differential expression

l((u, v)) =
(
i
t2α + 1
t2α

u′(t, x) + xu(t, x), i
t2β + 1
t2β

v′(t, x) + xv(t, x)
)
, α, β > 0

with boundary condition

u(1, x) = eiϕu(−1, x), ϕ ∈ [0, 2π)

in the direct sum L2
(t2α+1)/t2α((−∞,−1) × R) ⊕ L2

(t2β+1)/t2β ((1,∞) × R) is purely
continuous and coincides with R.

Note that another approach for the singular differential operators for nth order
in the scalar case has been given in [14]. In special case of functions α(·) and β(·)
the analogous results have been obtained in [2].
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