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EXISTENCE AND CONTINUATION OF SOLUTIONS FOR
CAPUTO TYPE FRACTIONAL DIFFERENTIAL EQUATIONS

CHANGPIN LI, SHAHZAD SARWAR

Abstract. In this article, we consider a fractional differential equation (FDE)
with Caputo derivative and study the existence and continuation of its solution.

Firstly, we prove a theorem on the existence of local solutions. Then we
extend the continuation theorems for ODEs to those FDEs. Also several global

existence results for FDE are obtained.

1. Introduction

Recently, fractional differential equations (FDEs) have been the center of atten-
tion of many studies and played a vital role due to emergence in various applications
and exact description of nonlinear phenomena. It has been found that models using
mathematical tools from fractional calculus can describe various phenomena such
as viscoelasticity, electrochemistry, control, porous media, and many other branches
of sciences [12, 14, 16, 31]. However, the development of existence and uniqueness
of solution of FDEs are very slow. Some contributions about existence of solution
of FDEs can be found in [14, 15, 20, 26].

Many authors [1, 5, 7, 6, 8, 10, 11, 17, 19, 22, 27, 28, 29, 30, 33, 34, 35], studied
the existence-uniqueness of solution for FDEs on the finite interval [0, T ]. But few
researchers [2, 3, 4, 21] present results about the global existence-uniqueness of
solution FDEs on the half axis [0,+∞). As far as we know, we cannot find directly
the existence of global solution of FDEs by using the results from local existence
because, yet continuation theorems for FDEs have not been derived. Recently, Kou,
et al. [18] found the existence and continuation theorems for Riemann-Liouville
type FDEs. Motivated by that work, a natural question is, do there also exist local
existence, continuation theorems and global existence for Caputo type FDEs? In
this paper, we give an active answer.

In this article, we consider the fractional order initial value problems (IVPs) of
the form

CD
α
0,t x(t) = f(t, x), 0 < α < 1, t ∈ (0,+∞),

x(t)|t=0 = x0, x ∈ R.
(1.1)

To ensure the existence of a unique solution to (1.1) we always assume that f
satisfies Lipschitz condition with respect to the second variable, that is, |f(t, x1)−
f(t, x2))| ≤ L|x1 − x2|, where L > 0.
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For the system of equations

CD
α
0,tx1(t) = f1(t, x1, x2, . . . , xn), 0 < α < 1, t ∈ (0,+∞),

CD
α
0,tx2(t) = f2(t, x1, x2, . . . , xn), x ∈ Rn,

· · ·

CD
α
0,txn(t) = fn(t, x1, x2, . . . , xn),

xi(t)|t=0 = x0, i = 1, 2, . . . , n,

(1.2)

we assume that fn(t, x1, x2, . . . , xn) satisfy the Lipschitzian conditions,

|fk(t, x1, x2, . . . , xn)− fk(t, x̃1, x̃2, . . . , x̃n)| ≤
n∑
k=1

Lk|xk − x̃k|,

(Lk > 0, k = 1, 2, . . . , n), where CD
α
0,t is the Caputo derivative, f : R+ × R → R

in the IVP (1.1) and fi : R+ × Rn → Rn in IVP (1.2) have weak singularities
with respect to t respectively. In this paper, we establish the local existence for
IVP ((1.1) and IVP (1.2). Then we extend the continuation theorems for ODEs to
those of FDEs. Furthermore, we present global existence of solutions for IVP (1.1).

The rest of this article is organized as follows: In Section 2, we introduce some
basic definitions and previously known results that will be used in our main results.
A new local existence theorem for IVP (1.1) is given in Section 3. In Section 4
we present two new continuation theorems for IVP (1.1) which are generalization
of the continuation theorems for ODEs. Concluding remarks and comments are
included in the last section.

2. Preliminaries

In this section, we introduce some basic definitions and lemmas [15, 20, 23, 24,
26, 25] from the theory of fractional calculus which are used later. Let C[a, b] be
the Bannach space of all continuous functions mapping [a, b] into R where the norm
‖x‖[a,b] = maxt∈[a,b] |x(t)|

Definition 2.1. The Riemann-Liouville integral of function f(t) with order α > 0
is defined as

RLD
−α
0,t f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0.

Definition 2.2. The Riemann-Liouville derivative of function f(t) with order α >
0 is defined as

RLD
α
0,tf(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds, t > 0,

where n− 1 < α < n ∈ Z+.

Definition 2.3. The Caputo derivative of function f(t) with order α > 0 is defined
as

CD
α
0,tf(t) =

1
Γ(n− α)

∫ t

0

(t− s)α−1f (n)(s)ds, t > 0,

where n− 1 < α < n ∈ Z+.
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Lemma 2.4. Suppose that f(t, x) is a continuous function. Then the initial value
problem (1.1) is equivalent to the nonlinear Volterra integral equation of the second
kind

x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds. (2.1)

In other words, every solution of the Volterra integral equation (2.1) is also the
solution of our original IVP (1.1) and vise versa.

Lemma 2.5. Let M be a subset of C[0, T ]. Them M is precompact if and only if
the following conditions hold:

(1) {x(t) : x ∈M} is uniformly bounded,
(2) {x(t) : x ∈M} is equicontinuous on [0, T ].

Lemma 2.6 (Schauder fixed point theorem). Let U be a closed bounded convex
subset of Bannach space X. Suppose that T : U → U is completely continuous.
Then T has a fixed point in U .

3. Local existence theorems

In this section, we study the existence of local solutions for (1.1). Suppose that
f(t, x) in (1.1) and fi(t, xi), i = 1, 2, . . . , n in (1.2) have some weak singularity with
respect to t respectively. By applying Schauder fixed point theorem, a new local
existence theorem is obtained. For this, we make the following hypothesis for our
discussion.

(H1) Let f : R+ × R → R in (1.1) be a continuous function then there exists a
constant 0 ≤ δ < 1 such that (Ax)(t) = tδf(t, x) is a continuous bounded
map from C[0, T ] into C[0, T ] where T is positive.

(H2) Let fi : R+ × Rn → R in (1.2) be continuous functions then there exist
constants 0 ≤ δi < 1, such that (Aixi)(t) = tδifi(t, x1, x2, . . . , xn), i =
1, 2, . . . , n are continuous bounded maps from C[0, T ] into C[0, T ] where T
is positive.

Theorem 3.1. Suppose that condition (H1) is satisfied. Then IVP (1.1) has at
least one solution x ∈ C[0, h] for some (T ≥) h > 0.

Proof. Let

E = {x ∈ C[0, T ] : ‖x− x0‖C[0,T ] = sup
0≤t≤T

|x− x0| ≤ b},

where b > 0 is a constant. Since operator A is bounded then there exists a constant
M > 0 such that

sup{|(Ax)(t)| : t ∈ [0, T ], x ∈ E} ≤M.

Again let
Dh =

{
x : x ∈ C[0, h], sup

0≤t≤h
|x− x0| ≤ b

}
,

where h = min{( bΓ(α+1−δ)
M Γ(1−α) )

1
α−δ , T}, α > δ.

It is clear that Dh ⊆ C[0, h] is nonempty, bounded closed and convex subset.
Note that h ≤ T , define an operator B as follows

(Bx)(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds, t ∈ [0, h]. (3.1)
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By (3.1), for any x ∈ C[0, h] we have

|(Bx)(t)− x0| ≤
M

Γ(α)

∫ t

0

(t− s)α−1s−δds ≤ MΓ(1− α)
Γ(α+ 1− δ)

hα−δ ≤ b,

which shows that BDh ⊂ Dh.
Next we show that B is continuous. Let xn, x ∈ Dh such that ‖xn−x‖C[0,h] → 0

as n → +∞. In the continuity of A we have ‖Axn − Ax‖[0,h] → 0 as n → +∞.
Now

|(Bxn)(t)− (Bx)(t)|

= | 1
Γ(α)

∫ t

0

(t− s)α−1f(s, xn(s))ds− 1
Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds|

≤ 1
Γ(α)

∫ t

0

(t− s)α−1|f(s, xn(s))− f(s, x(s))|ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1s−δ|(Axn)(s)− (Ax)(s)|ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1s−δds‖(Axn)(s)− (Ax)(s)‖[0,h].

We have

‖(Bxn)(s)− (Bx)(s)‖[0,h] ≤
Γ(1− α)

Γ(α+ 1− δ)
hα−δ‖(Axn)(s)− (Ax)(s)‖[0,h].

Then ‖(Bxn)(s)− (Bx)(s)‖[0,h] → 0 as n→ +∞. Thus B is continuous.
Furthermore, we prove that operator BDh is continuous. Let x ∈ Dh and

0 ≤ t1 ≤ t2 ≤ h. For any ε > 0, note that

1
Γ(α)

∫ t

0

(t− s)α−1s−δds =
Γ(1− α)

Γ(α+ 1− δ)
tα−δ → 0, as t→ 0+,

where 0 ≤ δ < 1. There exists a δ̃ > 0 such that for t ∈ [0, h],

2M
Γ(α)

∫ t

0

(t− s)α−1s−δds < ε

holds. In this case, for t1, t2 ∈ [0, δ̃] one has∣∣ 1
Γ(α)

∫ t1

0

(t1 − s)α−1f(s, x(s))ds− 1
Γ(α)

∫ t2

0

(t2 − s)α−1f(s, x(s))ds
∣∣

≤ M

Γ(α)

∫ t1

0

(t1 − s)α−1s−δds+
M

Γ(α)

∫ t2

0

(t2 − s)α−1s−δds < ε.

(3.2)

In this case for t1, t2 ∈ [ δ̃2 , h] one gets

|(Bx)(t1)− (Bx)(t2)|

=
∣∣∣ 1
Γ(α)

∫ t1

0

(t1 − s)α−1f(s, x(s))ds− 1
Γ(α)

∫ t2

0

(t2 − s)α−1f(s, x(s))ds
∣∣∣

≤
∣∣ 1
Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]f(s, x(s))ds
∣∣

+
∣∣ 1
Γ(α)

∫ t2

t1

(t2 − s)α−1f(s, x(s))ds
∣∣.

(3.3)
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Now, from the first term on the right hand side of (3.3) one has

| 1
Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]f(s, x(s))ds|

≤ M

Γ(α)

∫ t1

0

|[(t1 − s)α−1 − (t2 − s)α−1]s−δ|ds

≤ M

Γ(α)

∫ δ̃/2

0

|[(t1 − s)α−1 − (t2 − s)α−1]s−δ|ds

+
M( δ̃2 )−δ

Γ(α)

∫ t1

δ̃
2

|[(t1 − s)α−1 − (t2 − s)α−1]|ds

≤ 2M
Γ(α)

∫ δ1
2

0

( δ̃
2
− s
)α−1

s−δds+
M( δ̃2 )−δ

Γ(α)
[(t2 − t1)α

+
(
t1 −

δ̃

2
)α − (t2 − δ̃

2
)α]

≤ ε+
M( δ̃2 )−δ

Γ(α)
[(t2 − t1)α +

(
t1 −

δ̃

2
)α − (t2 − δ̃

2
)α].

(3.4)

Next from the second term on the right hand side of (3.3), one has∣∣ 1
Γ(α)

∫ t2

t1

(t2 − s)α−1f(s, x(s))ds
∣∣ ≤ M( δ12 )−δ

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

≤
M( δ12 )−δ

Γ(α+ 1)
(t2 − t1)α.

(3.5)

From the above discussion, there exists a ( δ̃2 >)δ̃1 > 0 such that for t1, t2 ∈ [ δ̃2 , h]
and |t1 − t2| < δ̃1,

|(Bx)(t1)− (Bx)(t2)| < 2ε. (3.6)

It follows from (3.2) and (3.6) that {(Bx)(t) : x ∈ Dh} is equicontinuous. It
is also clear that {(Bx)(t) : x ∈ Dh} is uniformly bounded due to BDh ⊂ Dh.
So BDh is precompact. Therefore B is completely continuous. By Schauder fixed
point theorem and Lemma 2.4, IVP (1.1) has a local solution. The proof is thus
completed. �

Theorem 3.2. Suppose that condition (H2) is satisfied. Then IVP (1.2) has at
least one solution xi ∈ C[0, h] for some (T ≥) h > 0.

Proof. Let

E =
{
xi ∈ C[0, T ] : ‖xi − x0‖C[0,T ] = sup

0≤t≤T
|xi − x0| ≤ bi, i = 1, 2, . . . , n

}
,

where bi > 0, i = 1, 2, . . . , n are constants. Since the operators Ai, i = 1, 2, . . . , n
are bounded then there exist constants Mi > 0, i = 1, 2, . . . , n such that

sup{|(Aixi)(t)| : t ∈ [0, T ], xi ∈ E} ≤Mi, i = 1, 2, . . . , n.

Again let

Dih = {xi : xi ∈ C[0, h], sup
0≤t≤h

|xi − x0| ≤ bi, i = 1, 2, . . . , n},
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where

h = min
{(b1Γ(α+ 1− δ1)

M1 Γ(1− α)
) 1
α−δ1 ,

(b2Γ(α+ 1− δ2)
M2 Γ(1− α)

) 1
α−δ2 , . . . ,

(bnΓ(α+ 1− δn)
Mn Γ(1− α)

) 1
α−δn , T

}
,

α > δi, i = 1, 2, . . . , n.
It is clear that Dih ⊆ C[0, h] are nonempty, bounded closed, and convex subsets.

Note that h ≤ T , define operators Bi as follows

(B1x1)(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f1(s, x1(s), x2(s), . . . , xn(s))ds,

(B2x2)(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f2(s, x1(s), x2(s), . . . , xn(s))ds,

· · ·

(Bnxn)(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1fn(s, x1(s), x2(s), . . . , xn(s))ds,

(3.7)

for t ∈ [0, h]. By (3.7), for any xi ∈ C[0, h] we have

|(B1x1)(t)− x0| ≤
M1

Γ(α)

∫ t

0

(t− s)α−1s−δ1ds,

|(B2x2)(t)− x0| ≤
M2

Γ(α)

∫ t

0

(t− s)α−1s−δ2ds,

· · ·

|(Bnxn)(t)− x0| ≤
Mn

Γ(α)

∫ t

0

(t− s)α−1s−δnds,

and

|(B1x1)(t)− x0| ≤
M1Γ(1− α)

Γ(α+ 1− δ1)
hα−δ1 ≤ b1,

|(B2x2)(t)− x0| ≤
M2Γ(1− α)

Γ(α+ 1− δ2)
hα−δ2 ≤ b2,

· · ·

|(Bnxn)(t)− x0| ≤
MnΓ(1− α)

Γ(α+ 1− δ1)
hα−δn ≤ bn,

which shows that, BiDih ⊂ Dih, i = 1, 2, . . . , n.
Next we show that operators Bi are continuous. Let xm, xi ∈ Dih, m > n,

i = 1, 2, . . . , n such that ‖xm − xi‖C[0,h] → 0 as m→ +∞. In view of continuity of
operators Ai we have ‖Aixm −Aixi‖[0,h] → 0 as m→ +∞. Now

|(Bixm)(t)− (Bixi)(t)|

=
∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1fi(s, xm(s))ds− 1
Γ(α)

∫ t

0

(t− s)α−1fi(s, xi(s))ds
∣∣

≤ 1
Γ(α)

∫ t

0

(t− s)α−1|fi(s, xm(s))− fi(s, xi(s))|ds



EJDE-2016/207 EXISTENCE AND CONTINUATION OF SOLUTIONS 7

≤ 1
Γ(α)

∫ t

0

(t− s)α−1s−δi |(Aixm)(s)− (Aixi)(s)|ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1s−δids‖(Aixm)(s)− (Aixi)(s)‖[0,h].

We have

‖(Bixm)(s)− (Bixi)(s)‖[0,h] ≤
Γ(1− α)

Γ(α+ 1− δi)
hα−δi‖(Aixm)(s)− (Aixi)(s)‖[0,h].

Then ‖(Bixm)(s) − (Bixi)(s)‖[0,h] → 0 as m → +∞. Thus Bi are continuous.
Furthermore, we prove that operators BiDih are continuous. Let xi ∈ Dih and
0 ≤ t1 ≤ t2 ≤ h. For any ε > 0, note that

1
Γ(α)

∫ t

0

(t− s)α−1s−δids =
Γ(1− α)

Γ(α+ 1− δi)
tα−δi → 0, as t→ 0+,

where 0 ≤ δi < 1. There exists δ̃i > 0 such that for t ∈ [0, h],

2Mi

Γ(α)

∫ t

0

(t− s)α−1s−δids < ε.

In this case, for t1, t2 ∈ [0, δ̃i], one has

∣∣ 1
Γ(α)

∫ t1

0

(t1 − s)α−1fi(s, xi(s))ds−
1

Γ(α)

∫ t2

0

(t2 − s)α−1fi(s, xi(s))ds
∣∣

≤ Mi

Γ(α)

∫ t1

0

(t1 − s)α−1s−δids+
Mi

Γ(α)

∫ t2

0

(t2 − s)α−1s−δids < ε.

(3.8)

In this case, for t1, t2 ∈ [ δ̃i2 , h], one gets

|(Bixi)(t1)− (Bixi)(t2)|

=
∣∣ 1
Γ(α)

∫ t1

0

(t1 − s)α−1fi(s, xi(s))ds−
1

Γ(α)

∫ t2

0

(t2 − s)α−1fi(s, xi(s))ds
∣∣

≤
∣∣ 1
Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]fi(s, xi(s))ds
∣∣

+
∣∣ 1
Γ(α)

∫ t2

t1

(t2 − s)α−1fi(s, xi(s))ds
∣∣.

(3.9)
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Now, from the first term on the right hand side of (3.9) one has∣∣ 1
Γ(α)

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]fi(s, xi(s))ds
∣∣

≤ Mi

Γ(α)

∫ t1

0

|[(t1 − s)α−1 − (t2 − s)α−1]s−δi |ds

≤ Mi

Γ(α)

∫ δ̃i
2

0

|[(t1 − s)α−1 − (t2 − s)α−1]s−δi |ds

+
Mi( δ̃i2 )−δi

Γ(α)

∫ t1

δ̃i
2

|[(t1 − s)α−1 − (t2 − s)α−1]|ds

≤ 2Mi

Γ(α)

∫ δ̃i/2

0

( δ̃i
2
− s
)α−1

s−δids+
Mi( δ̃i2 )−δi

Γ(α)

[
(t2 − t1)α

+
(
t1 −

δ̃i
2
)α − (t2 − δ̃i

2
)α]

≤ ε+
Mi( δ̃i2 )−δi

Γ(α)
[
(t2 − t1)α +

(
t1 −

δ̃i
2
)α − (t2 − δ̃i

2
)α]

.

(3.10)

Next from the second term on the right hand side of (3.3), one has

∣∣ 1
Γ(α)

∫ t2

t1

(t2 − s)α−1fi(s, xi(s))ds
∣∣ ≤ Mi( δ̃i2 )−δi

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

≤
Mi( δ̃i2 )−δi

Γ(α+ 1)
(t2 − t1)α.

So from the above discussion, there exist ( δ̃i2 >) λ > 0 such that for t1, t2 ∈ [ δ̃i2 , h]
and |t1 − t2| < λ,

|(Bixi)(t1)− (Bixi)(t2)| < 2ε. (3.11)

It follows from (3.2) and (3.6) that {(Bixi)(t) : xi ∈ Dih} are equicontinuous. It is
also clear that {(Bixi)(t) : xi ∈ Dih} are uniformly bounded due to BiDih ⊂ Dih.
So BiDih are precompact. Therefore operators Bi are completely continuous. By
Schauder fixed point theorem and Lemma 2.4, IVP (1.2) has a local solution. The
proof is thus completed. �

4. Continuation theorems

In this section, we study the continuation of solution for IVP (1.1). The basic
techniques may be applied to system (1.2), so we omit the detail here or leave to
the interested readers. We extend the continuation theorem for ODEs to Caputo
type FDEs. Initially, we give the following definition.

Definition 4.1 ([18]). Let x(t) on (0, β) and x̃(t) on (0, β̃) both are the solutions
of (1.1). If β < β̃ and x(t) = x̃(t) for t ∈ (0, β), we say that x̃(t) can be continued
to (0, β̃). A solution x(t) is noncontinuable if it has no continuation. The existing
interval of noncontinuable solution x(t) is called the maximum existing interval of
x(t).
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Theorem 4.2. Assume that condition (H1) is satisfied. Then x = x(t), t ∈ (0, β)
is noncontinuable if and if only for some η ∈ (0, β2 ) and any bounded closed subset
S ⊂ [η,+∞)× R there exists a t∗ ∈ [η, β) such that (t∗, x(t∗)) /∈ S.

Proof. The proof of this theorem is given in two steps. Suppose that there exists
a compact subset S ⊂ [η,+∞) × R such that {(t, x(t)) : t ∈ [η, β)} ⊂ S. The
compactness of S implies β < +∞. By (H1) there exists a K > 0 such that
sup(t,x)∈S |f(t, x)| ≤ K.
Step 1. We show that limt→β− x(t) exists. Let

J(t) =
∫ η

0

(t− s)α−1s−δds, t ∈ [2η, β].

We can easily see that J(t) is uniformly continuous on [2η, β]. For all t1, t2 ∈
[2η, β), t1 < t2 we have

|x(t1)− x(t2)|

=
∣∣ 1
Γ(α)

∫ t1

0

(t1 − s)α−1f(s, x(s))ds− 1
Γ(α)

∫ t2

0

(t2 − s)α−1f(s, x(s))ds
∣∣

≤
∣∣ 1
Γ(α)

∫ η

0

[(t1 − s)α−1 − (t2 − s)α−1]s−δ(Ax)(s)ds
∣∣

+ | 1
Γ(α)

∫ t1

η

[(t1 − s)α−1 − (t2 − s)α−1]f(s, x(s))ds
∣∣

+ | 1
Γ(α)

∫ t2

t1

(t2 − s)α−1f(s, x(s))ds|

≤
‖Ax‖[0,η]

Γ(α)

∫ η

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
s−δds

+
K

Γ(α)

∫ t1

η

[(t1 − s)α−1 − (t2 − s)α−1]ds+
K

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

≤ |J(t1)− J(t2)|
‖Ax‖[0,η]

Γ(α)
+

K

Γ(α)
[2(t2 − t1)α + (t1 − η)α − (t2 − η)α].

From the continuity of J(t) and Cauchy convergence criterion, it follows that
limt→β− x(t) = x∗.
Step 2. Now we show that x(t) is continuable. Since S is a closed subset, we have
(β, x∗) ∈ S. Define x(β) = x∗. Then x(t) ∈ C[0, β], we define operator D as follows

(Dy)(t) = x1 +
1

Γ(α)

∫ t

β

(t− s)α−1f(s, y(s))ds,

where

x1 = x0 +
1

Γ(α)

∫ β

0

(t− s)α−1f(s, y(s))ds, y ∈ C[β, β + 1], t ∈ [β, β + 1].

Let
Eb = {(t, y) : β ≤ t ≤ β + 1, |y| ≤ max

β≤t≤β+1
|x1(t)|+ b}.

In view of the continuation of f on Eb, denote M = max(t,y)∈Eb |f(t, y)|. Again let

Eh = {y ∈ C[β, β + 1] : max
t∈[β,β+h]

|y(t)− x1(t)| ≤ b, y(β) = x1(β)},
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where h = min
{

1, (Γ(α+1)b
M )

1
α

}
. We can claim that D is completely continuous on

Eb. Set {yn} ⊆ C[β, β + h], ‖yn − y‖[β,β+h] → 0 as n→ +∞. Then we have

|(Dyn)(t)− (Dy)(t)| =
∣∣ 1
Γ(α)

∫ t

β

(t− s)α−1[f(s, yn(s))− f(s, y(s))]ds
∣∣

≤ hα

Γ(α+ 1)
‖f(s, yn(s))− f(s, y(s))‖[β,β+h].

By the continuity of f we have ‖f(s, yn(s)) − f(s, y(s))‖[β,β+h] → 0 as n → +∞.
Therefore, ‖(Dyn)(t)−(Dy)(t)‖[β,β+h] → 0 as n→ +∞, which implies that operator
D is continuous.

Secondly, we prove that DEh is equicontinuous. For any y ∈ Eh we have
(Dy)(β) = x1(β) and

|(Dy)(t)− x1| =
∣∣ 1
Γ(α)

∫ t

β

(t− s)α−1f(s, y(s))ds
∣∣

≤ M(t− β)α

Γ(α+ 1)
≤ Mhα

Γ(α+ 1)
≤ b.

Thus DEh ⊂ Eh. Set I(t) = 1
Γ(α)

∫ β
0

(t − s)α−1f(s, x(s))ds. We know that I(t) is
continuous on [β, β + 1]. For all y ∈ Eh, β ≤ t1 ≤ t2 ≤ β + h, we have

|(Dy)(t1)− (Dy)(t2)|

≤ | 1
Γ(α)

∫ β

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
f(s, y(s))ds|

+
1

Γ(α)
|
∫ t1

β

[
(t1 − s)α−1 − (t2 − s)α−1

]
f(s, y(s))ds|

+
1

Γ(α)
|
∫ t2

t1

(t2 − s)α−1f(s, y(s))ds|

≤ |I(t1)− I(t2)|+ M

Γ(α+ 1)
[2(t2 − t1)α + (t1 − β)α − (t2 − β)α].

(4.1)

In view of the uniform continuity of I(t) on [β, β + h] and (4.1), we conclude that
{(Dy)(t) : y ∈ Eh} is equicontinuous. Therefore D is completely continuous. By
Schauder fixed point theorem, operator D has a fixed point x̃(t) ∈ Eh, i.e.,

x̃(t) = x1 +
1

Γ(α)

∫ t

β

(t− s)α−1f(s, x̃(s))ds,

= x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x̃(s))ds, t ∈ [β, β + h],

(4.2)

where

x̃(t) =

{
x(t), t ∈ (0, β]
x̃(t), t ∈ [β, β + h]

It follows that x̃(t) ∈ C[0, β + h] and

x̃(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x̃(s))ds. (4.3)
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Therefore, according to Lemma 2.4, x̃(t) is a solution of (1.1) on (0, β + h]. This
yields a contradiction (since x(t) is noncontinuable). The proof is thus complete.

�

Remark 4.3. Theorem 4.2 is generalization of [9, Theorem C], which is the con-
tinuation theorem for the ODE. To see this (1.1) is reduced to an ODE if we set
α = 1.

Now we present another continuation theorem, which is more convenient for
applications.

Theorem 4.4 ([Continuation Theorem II). Suppose that condition (H1) is satisfied.
Then x = x(t), t ∈ (0, β) is noncontinuable if and only if

lim
t→β−

sup |K(t)| = +∞, (4.4)

where K(t) = (t, x(t)), ‖K(t)‖ = (x2(t) + t2)
1
2 .

Proof. We prove this theorem by contradiction. Suppose that (4.4) is not true.
Then there exist a sequence {tn} and a positive constant L > 0 such that tn <
tn+1, n ∈ N,

lim
n→∞

tn = β, |K(tn)| ≤ L, i.e., (x2(tn) + t2n) ≤ L2 (4.5)

Since {x(tn)} is a bounded convergent sub-sequence, one can let

lim
n→∞

x(tn) = x∗. (4.6)

Now we show that, for any given ε > 0 there exists T ∈ (0, β), such that |x(t)−x∗| <
ε, t ∈ (T, β), i.e.,

lim
t→β−

x(t) = x∗. (4.7)

For sufficiently small τ > 0, let

E1 =
{

(t, x) : t ∈ [τ, β], |x| ≤ sup
t∈[τ,β)

|x(t)|
}
.

Since f is continuous on E1, we can denote K = max(t,y)∈E1 |f(t, y)|. It follows
from (4.5) and (4.6) that there exists n0 such that tn0 > τ and for n ≥ n0 we have

|x(tn)− x∗| ≤ ε

2
.

If (4.7) is not true, then for n ≥ n0, there exists λn ∈ (tn, β) such that |x(λn)−x∗| ≥
ε and |x(t)− x∗| < ε, t ∈ (tn, λn). Thus

ε ≤ |x(λn)− x∗|
≤ |x(tn)− x∗|+ |x(λn)− x(tn)|

≤ ε

2
+
∣∣ 1
Γ(α)

∫ tn

0

(tn − s)α−1f(s, x(s))ds− 1
Γ(α)

∫ λn

0

(λn − s)α−1f(s, x(s))ds
∣∣

≤ ε

2
+

1
Γ(α)

∣∣ ∫ τ

0

[(tn − s)α−1 − (λn − s)α−1]f(s, x(s))ds
∣∣

+
1

Γ(α)
|
∫ tn

τ

[(tn − s)α−1 − (λn − s)α−1]f(s, x(s))ds
∣∣

+
∣∣ 1
Γ(α)

∫ λn

tn

(λn − s)α−1f(s, x(s))ds
∣∣
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≤ ε

2
+
‖Ax‖[0,τ ]

Γ(α)
|I(tn)− I(λn)|+ M

Γ(α+ 1)
[2(λn − tn)α

+ (tn − τ)α − (λn − τ)α].

In view of continuity of I(t) on [tn0 , β], for sufficiently large n ≥ n0, we have

ε ≤ |x(λn)− x∗| < ε

2
+
ε

2
= ε.

This implies the contradiction that limt→β− x(t) exists. By the similar argument
to the proof of Theorem 4.2, we can find a continuation of x(t). The proof is
ended. �

Remark 4.5. If f in (1.1) satisfies the global Lipschitz condition with the second
variable, then its solution globally exists and it is unique.

5. Global existence theorems

In this section, we study the existence of a global solution for (1.1) which is based
on the previously results. The basic techniques may be applied to system (1.2), so
we omit the details here, and leave them for the interested readers. Applying The-
orem 4.4, in a straight way we acquire the following conclusion about the existence
of global solution of (1.1).

Theorem 5.1. Suppose that condition (H1) is satisfied. Let x(t) be a solution of
(1.1) on (0, β). If x(t) is bounded on [τ, β) for some τ > 0, then β = +∞.

Continuing our discussion, we firstly present the following lemma, which is useful
in our analysis.

Lemma 5.2 ([13, 32]). Let v : [0, b] → [0,+∞) be a real function, and w(·) be a
nonnegative, locally integrable function on [0, b]. Suppose that there exist a > 0 and
0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)
(t− s)α

ds.

Then there exists a constant k = k(α) such that for t ∈ [0, b], we have

v(t) ≤ w(t) + ka

∫ t

0

w(s)
(t− s)α

ds.

Theorem 5.3. Suppose that condition (H1) is satisfied and there exist three non-
negative continuous functions l(t), m(t), p(t) : [0,+∞) → [0,+∞) such that
|f(t, x)| ≤ l(t)m(|x|) +p(t), where m(r) ≤ r for r ≥ 0. Then (1.1) has one solution
in C[0,+∞).

Proof. The existence of a local solution x(t) of (1.1) can be concluded by Theorem
3.1. By Lemma 2.4, x(t) satisfies the integral equation

x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds.

Suppose that the maximum existing interval of x(t) is [0, β) (β < +∞). Then

|x(t)| =
∣∣x0 +

1
Γ(α)

∫ t

0

(t− s)α−1f(s, x(s))ds
∣∣

≤ x0 +
1

Γ(α)

∫ t

0

(t− s)α−1(l(s)m(|x|) + p(s))ds
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≤ x0 +
‖l‖[0,β]

Γ(α)

∫ t

0

(t− s)α−1(m(|x|)ds+
1

Γ(α)

∫ t

0

(t− s)α−1p(s)ds.

We take v(t) = |x(t)|, w(t) = x0 + 1
Γ(α)

∫ t
0
(t− s)α−1p(s)ds, a = ‖l‖[0,β]

Γ(α) . By Lemma
5.2, we know that v(t) = |x(t)| is bounded on [0, β). Thus for any τ ∈ (0, β), x(t) is
bounded on [τ, β). By theorem 5.1, IVP (1.1) has a solution x(t) on (0,+∞). �

The following result guarantees the existence and uniqueness of global solution
of (1.1) on R+.

Theorem 5.4. Suppose that (H1) is satisfied and there exists a non-negative con-
tinuous function l(t) defined on [0,∞) such that |f(t, x) − f(t, y)| ≤ l(t)|x − y|.
Then (1.1) has a unique solution in C[0,+∞).

The existence of a global solution can be obtained by using the same arguments
as above. From the Lipschitz-type condition and Lemma 5.2, we can conclude the
uniqueness of global solution. The proof is omitted here.

Conclusion. In this article, we obtained a new local existence theorem for Caputo
type general FDE which has a certain singularity. Then we derived two continu-
ation theorems which have been never studied before. Next we established global
existence theorems for the FDEs.
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