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INFINITELY MANY POSITIVE SOLUTIONS FOR FRACTIONAL
DIFFERENTIAL INCLUSIONS

GE BIN, YING-XIN CUI, JI-CHUN ZHANG

Abstract. In this article, we study a class of fractional differential inclusions

problem. By nonsmooth variational methods and the theory of the fractional
derivative spaces, we establish the existence of infinitely many positive solu-

tions of the problem under suitable oscillatory assumptions on the potential

F at zero or at infinity.

1. Introduction

In this article, we consider the existence and multiplicity of solutions for the
fractional differential inclusion

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 0D

−β
T (u′(t))

)
∈ ∂F (t, u(t)), a.a. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where 0D
−β
t and 0D

−β
T are the left and right Riemann-Liouville fractional integrals

of order 0 ≤ β < 1, respectively, F : [0, T ] × RN → R is locally Lipschitz function
in the t-variable integrand (in general it can be nonsmooth), and ∂F (t, x) is the
subdifferential with respect to the t-variable in the sense of Clarke [4].

Fractional differential equations and inclusions have been proved that they are
very valued tools in the modeling of many phenomena in various fields of science and
engineering, such as, viscoelasticity, electrochemistry, electromagnetism, econom-
ics, optimal control, porous media, etc. In consequence, the subject of fractional
differential equations and inclusions is gaining much importance and attention. For
details and examples, see [2, 3, 13, 14, 21], and the references therein.

Recently, variational methods have turned out to be a very effective analytical
tool in the study of nonlinear problems. The classical point theory for C1 func-
tional was developed in the sixties and seventies, see [1, 5, 16, 18]. The need of
specific applications (such as nonsmooth mechanics, nonsmooth gradient systems,
etc.) and the impressive progress in nonsmooth analysis and multivalued analysis
led to extensions of the critical point theory to nondifferentiable functions, locally
Lipschitz functions in particular. The nonsmooth critical point theory for locally
Lipschitz functions started with the work of Chang [5]. Chang proposed a gener-
alization of the well-known Palais-Smale condition and obtained various minimax
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principles concerning the existence and characterization of critical points for locally
Lipschitz functions. Chang used his theory to study semilinear elliptic boundary
value problem with a discontinuous nonlinearity.

There are some papers which are devoted to the boundary value problems for
fractional differential inclusion, see [6, 17, 20, 22]. And the main tools they use are
fixed point theory for multi-valued contractions. In particular, if F (x, ·) ∈ C1(RN )
for a.a. x ∈ RN , then problem (1.1) becomes

d

dt

(1
2 0D

−β
t (u′(t)) +

1
2 0D

−β
T (u′(t))

)
= ∇F (t, u(t)), a.a. t ∈ [0, T ],

u(0) = u(T ) = 0.
(1.2)

Thus a solution u of (1.1) is a weak solution to the problem (1.2). So, in some sense,
the solutions of (1.1) can be considered as generalized solutions of (1.2), thus, the
formulation of (1.1) is completely justified.

In the past decade, there are many papers dealing with the existence of multiple
solutions of fractional boundary value problems [7, 8, 9, 10, 11, 12, 15, 19] and the
references therein. For example, Jiao and Zhou [11] got one nontrivial solutions for
problem (1.2) using the mountain pass theorem. Chen and Tang [7] studied the exis-
tence and multiplicity of solutions for the system (1.2) when the nonlinearity F (t, ·)
are superquadratic, asymptotically quadratic, and subquadratic, respectively. In
[8], by using the minmax methods in critical point theory, the authors proved the
existence of infinitely many solutions under suitable conditions. Inspired by the
above-mentioned papers, we study problem (1.1) from a more extensive viewpoint.
So we deal with the existence of infinitely many solutions for problem (1.1) with
the potential F (x, t) exhibits an oscillation at the origin or at infinity. Indeed, our
main results (see Theorems 3.3 and 3.6 below) give sufficient conditions on the os-
cillatory terms such that problem (1.1) has infinitely many positive solutions. As
a byproduct, these solutions can be constructed in such a way that their norms in
Eα tend to zero (to infinity, respectively) whenever the nonlinearity oscillates at
zero (at infinity, respectively).

This article is organized as follows. In section 2, we present some necessary pre-
liminary knowledge on the fractional derivative space Eα,p0 and generalized gradient
of the locally Lipschitz function. In section 3, we give the main results of this paper.

2. Preliminaries

In this part, we recall some definitions and display the variational setting which
has been established for our problem.

Definition 2.1 ([17]). Let f(t) be a function defined on [a, b] and τ > 0. The left
and right Riemann-Liouville fractional integrals of order τ for function f(t) denoted
by aD

−τ
t f(t) and tD

−τ
b f(t), respectively, are defined by

aD
−τ
t f(t) =

1
Γ(τ)

∫ t

a

(t− s)τ−1f(s)ds, t ∈ [a, b],

tD
−τ
b f(t) =

1
Γ(τ)

∫ b

t

(t− s)τ−1f(s)ds, t ∈ [a, b],
(2.1)

provided the right-hand sides are pointwise defined on [a, b], where Γ is the gamma
function.
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Definition 2.2 ([17]). Let f(t) be a function defined on [a, b]. The left and right
Riemann-Liouville fractional derivatives of order τ for function f(t) denoted by
aD

τ
t f(t) and tD

τ
b f(t), respectively, are defined by

aD
τ
t f(t) =

dn

dtn
aD

τ−n
t f(t) =

1
Γ(n− τ)

dn

dtn

(∫ t

a

(t− s)n−τ−1f(s)ds
)
,

tD
τ
b f(t) = (−1)n

dn

dtn
tD

τ−n
b f(t) =

1
Γ(n− τ)

dn

dtn

(∫ b

t

(t− s)n−τ−1f(s)ds
)
,

(2.2)

where t ∈ [a, b], n− 1 ≤ τ < n and n ∈ N.

The left and the right Caputo fractional derivatives are defined via the above
Riemann-Liouville fractional derivatives. In particular, they are defined for the
function belong-ing to the space of absolutely continuous functions, which we denote
by AC([a, b],RN ). ACk([a, b],RN )(k = 1, 2, · · · ) is the space of functions f such
that f ∈ Ck([a, b],RN ). In particular, AC([a, b],RN ) = AC1([a, b],RN ).

Definition 2.3 ([17]). Let τ ≥ 0 and n ∈ N. If τ ∈ [n − 1, n) and f(t) ∈
ACn([a, b],RN ), then the left and right Caputo fractional derivative of order τ for
function f(t) denoted by c

aD
τ
t f(t) and c

tD
τ
b f(t), respectively, exist almost every-

where on [a, b]. caD
τ
t f(t) and c

tD
τ
b f(t) are represented by

c
aD

τ
t f(t) = aD

τ−n
t f (n)(t) =

1
Γ(n− τ)

(∫ t

a

(t− s)n−τ−1f (n)(s)ds
)
,

c
tD

τ
b f(t) = (−1) ntD

τ−n
b f (n)(t) =

1
Γ(n− τ)

(∫ b

t

(t− s)n−τ−1f (n)(s)ds
)
,

(2.3)

respectively, where t ∈ [a, b].

Definition 2.4 ([6]). Define 0 < α ≤ 1 and 1 < p <∞. The fractional derivative
space Eα,p0 is defined by the closure of C∞0 ([0, T ],RN ) with respect to the norm

‖u‖α,p =
(∫ T

0

|u(t)|pdt+
∫ T

0

|c0Dα
t u(t)|pdt

)1/p

, ∀u ∈ Eα,p0 , (2.4)

where C∞0 ([0, T ],RN ) denotes the set of all functions u ∈ C∞([0, T ],RN ) with
u(0) = u(T ) = 0. It is obvious that the fractional derivative space Eα,p0 is the space
of functions u ∈ Lp([0, T ],RN ) having an α-order Caputo fractional derivative
c
0D

α
t u ∈ Lp([0, T ],RN ) and u(0) = u(T ) = 0.

Proposition 2.5 ([6]). Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative
space Eα,p0 is a reflexive and separable space.

Proposition 2.6 ([6]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , we have

‖u‖Lp ≤
Tα

Γ(α+ 1)
‖c0Dα

t u‖Lp . (2.5)

Moreover, if α > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤
T
α−1
p

Γ(α)((α− 1)q + 1)1/q
‖c0Dα

t u‖Lp . (2.6)

According to [6], we can consider Eα,p0 with respect to the norm

‖u‖α,p = ‖c0Dα
t u‖Lp =

(∫ T

0

|c0Dα
t u|pdt

) 1
p

. (2.7)
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Proposition 2.7 ([6]). Define 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p

and the sequence uk converges weakly to u ∈ Eα,p0 , i.e. uk ⇀ u. Then uk → u in
C([0, T ],RN ), i.e. ‖uk − u‖∞ → 0, as k →∞.

Using Definition 2.3, for any u ∈ AC([0, T ],RN ), problem (1.1) is equivalent to
the problem

d

dt

(1
2 0D

α−1
t (c0D

α
t u(t))− 1

2 tD
α−1
T (ctD

α
Tu(t))

)
∈ ∂F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(2.8)

where α = 1−β ∈ ( 1
2 , 1]. In the following, we will treat problem (1.2) in the Hilbert

space Eα = Eα,20 with the corresponding norm ‖u‖α = ‖u‖α,2.

Definition 2.8 ([6]). A function u ∈ AC([0, T ],RN ) is called a solution of (1.1) if
(i) Dα(u(t)) is derivative for almost every t ∈ [0, T ], and
(ii) u satisfies (1.1),

where Dα(u(t)) := 1
2 0
Dα−1
t (c0D

α
t u(t))− 1

2 t
Dα−1
T (ctD

α
Tu(t)).

Proposition 2.9 ([6]). If 1
2 < α ≤ 1, then for any u ∈ Eα, we have

| cos(πα)|‖u‖2α ≤ −
∫ T

0

(
c
0D

α
t u(t), ctD

α
Tu(t)

)
dt ≤ 1

| cos(πα)|
‖u‖2α. (2.9)

Proposition 2.10 ([6]). Let 1/2 < α ≤ 1 be satisfied. If u ∈ Eα, then the
functional J : Eα → R defined by

J(u) = −1
2

∫ T

0

( c0D
α
t u(t), ctD

α
Tu(t))dt

is convex and continuous on Eα.

Let X be a Banach space and X∗ be its topological dual space and we denote
〈·, ·〉 as the duality bracket for pair (X∗, X). A function ϕ : X 7→ R is said to be
locally Lipschitz, if for every x ∈ X, we can find a neighbourhood U of x and a
constant k > 0(depending on U), such that |ϕ(y)− ϕ(z)| ≤ k‖y − z‖,∀y, z ∈ U .

For a locally Lipschitz function ϕ : X 7→ R we define

ϕ0(x;h) = lim sup
x′→x;λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is obvious that the function h 7→ ϕ0(x;h) is sublinear, continuous and so is the
support function of a nonempty, convex and w∗−compact set ∂ϕ(x) ⊆ X∗, defined
by

∂ϕ(x) = {x∗ ∈ X∗; 〈x∗, h〉 ≤ ϕ0(x;h), ∀h ∈ X}.
The multifunction ∂ϕ : X 7→ 2X

∗
is called the generalized subdifferential of ϕ.

If ϕ is also convex, then ∂ϕ(x) coincides with subdifferential in the sense of
convex analysis, defined by

∂Cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x+ h)− ϕ(x) for h ∈ X}.

If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}.
A point x ∈ X is a critical point of ϕ, if 0 ∈ ∂ϕ(x). It is easily seen that, if

x ∈ X is a local minimum of ϕ, then 0 ∈ ∂ϕ(x).
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Lemma 2.11. The functional

ϕ(u) =
∫ T

0

[
− 1

2
( c0D

α
t u(t), ctD

α
Tu(t))

]
dt−

∫ T

0

F (t, u(t))dt (2.10)

is locally Lipschitz on Eα. Moreover, for u, v ∈ Eα, we have

〈ζ, v〉 = −
∫ T

0

1
2
[
( c0D

α
t u(t), ctD

α
T v(t)) + ( ctD

α
Tu(t), c0D

α
t v(t))

]
dt

−
∫ T

0

(q(t), v(t))dt,

(2.11)

where ζ ∈ ∂ϕ(u) and q(t) ∈ ∂(F (t, u(t))).

Proof. Let I(u) =
∫ T
0
F (t, u(t))dt, then ϕ(u) = J(u) − I(u). Obviously, J(u) is

locally Lipschitz. For ε is smaller enough, there existent Bε(0) ⊂ N. For any
u1(t), u2(t) ∈ Bε(0) we have

F (t, u1(t))− F (t, u2(t)) = 〈∂F (t, ū(t)), u1(t)− u2(t)〉,

where ū(t) = λu1(t) + (1− λ)u2(t), for λ ∈ (0, 1). Furthermore,

‖ū‖Eα = ‖λu1 + (1− λ)u2‖Eα ≤ ‖λu1‖α + ‖(1− λ)u2‖α ≤ ‖u1‖α + ‖u2‖α ≤ 2ε.

Thus, we obtain

|I(u1)− I(u2)| ≤
∫ T

0

c(1 + |ū(t)|α(t)−1)|u1(t)− u2(t)|dt

≤ c
∫ T

0

|u1(t)− u2(t)|dt+ c

∫ T

0

||ū(t)|α1−1|u1(t)− u2(t)|dt

≤ c1‖u1 − u2‖Eα + c2‖ū‖α1−1
Eα ‖u1 − u2‖Eα

≤ c1‖u1 − u2‖Eα + c2(2ε)α1−1‖u1 − u2‖Eα
≤ L‖u1 − u2‖Eα ,

where α1 = mint∈[0,T ] α(t), and c1, c2 are positive contents. �

Proposition 2.12 ([4]). Let x and y be point in Banach space X, and suppose that
f is Lipschitz on an open set containing the line segment [x, y]. Then there exists
a point u in (x, y) such that

f(y)− f(x) ∈ 〈∂f(u), y − x〉.

3. Main results and their proofs

Now we are in a position to state our first main result which deals with the case
when the nonlinearity F (x, t) exhibits an oscillation at the origin. Our hypotheses
on nonsmooth potential F (x, t) are listed as follows.

(H1) F : [0, T ] × RN → R is a function, F (t, 0) = 0 for almost all t ∈ [0, T ] and
satisfies the following facts:

(1) For all x ∈ RN , t 7→ F (t, x) is measurable;
(2) For almost all t ∈ [0, T ], x 7→ F (t, x) is locally Lipschitz;
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(3) There exist a positive constant c such that for almost all x ∈ RN , all
t ∈ [0, T ] and ω ∈ ∂F (t, x)

|ω| ≤ c(1 + |x|α(t)−1)

where 1 < α(t) < +∞;
(4) −∞ < lim inf |x|→0+

F (t,x)
|x|2 ≤ lim sup|x|→0+

F (t,x)
|x|2 = +∞ uniformly for a.e.

t ∈ [0, T ];
(5) For every k ∈ N, there exists ek ∈ RN with |ek| = 1 and there are two

sequences {ak} and {bk} in (0,+∞) with ak < bk, limk→+∞ bk = 0 such
that

sup{ω · ek : ω ∈ ∂F (t, x), a.e. t ∈ [0, T ], x ∈ [ak, bk]ek} ≥ 0.

Remark 3.1. Hypotheses (H1)(4) and (H1)(5) imply an oscillatory behaviour of
F near the origin.

Remark 3.2. A simple example of a nonsmooth potential function satisfying

F (t, x) =


0, if |x| = 0 or |x| ∈ [ 1

2π ,+∞),
|x|β(t) sin 1

|x| , if |x| ∈ [ 1
(2k+1)π ,

1
2kπ ),

|x|α(t) sin 1
|x| , if |x| ∈ [ 1

(2k+2)π ,
1

(2k+1)π ],

where k ∈ N with k ≥ 1, 1 < β(t) < 2 < α(t).

Proof. Obviously, (H)(1) and (H1)(2) are satisfied. It is also obvious that x 7→
F (t, x) is locally Lipschitz. Then

∂F (t, x) =



0, if |x| = 0 or |x| > 1
2π ,

α(t)|x|β(t)−2x sin 1
|x| − |x|

β(t)−3x cos 1
|x| , if |x| ∈

(
1

(2k+1)π ,
1

2kπ

)
,

β(t)|x|α(t)−2x sin 1
|x| − |x|

α(t)−3x cos 1
|x| , if |x| ∈

(
1

(2k+2)π ,
1

(2k+1)π

)
,

[|x|β(t)−3x, |x|α(t)−3x], if |x| = 1
(2k+1)π ,

[−|x|β(t)−3x,−|x|α(t)−3x], if |x| = 1
(2k+2)π ,

[−|x|β(t)−3x, 0], if |x| = 1
2π ,

Hence, there exists a constant c > 0 such that

|w| ≤ c(1 + |x|α(t)−1) for all w ∈ ∂F (t, x).

So condition (H1)(3) holds. Then, for any 1 ≤ k ∈ N , we can choose

ak :=
1

(2k + 2)π
, bk :=

1
(2k + 3

2 )π
,

which means ak < bk, limk→+∞ bk = 0 and

sup{w · ek : w ∈ ∂F (t, x), a.e. t ∈ [0, T ] and x ∈ [ak, bk]ek} ≤ 0.

So condition (H1)(5) is satisfied.
On the other hand, for any 1 ≤ k ∈ N , we can choose ck := 1

(2k+ 1
2 )π

, which
implies limk→+∞ ck = 0,

lim sup
k→+∞

F (t, ckek)
|ckek|2

= lim sup
k→+∞

|ckek|β(t) sin 1
|ckek|

|ckek|2
= lim sup

k→+∞

1
|ckek|2−β(t)

= +∞,

−∞ < −1 ≤ lim inf
|x|→0+

F (t, x)
|x|2

= lim inf
|x|→0+

|x|α(t) sin 1
|x|

|x|2
= lim inf
|x|→0+

|x|α(t)−2 sin
1
|x|
≤ 0
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uniformly for a.e. t ∈ [0, T ]. So condition (H1)(4) holds. �

Theorem 3.3. Suppose that (H1) holds. Then there exists a sequence {un} ⊂ Eα
of distinct positive solution of problem (1.1) such that

lim
n→+∞

‖un‖α = lim
n→+∞

|un|∞ = 0.

Proof. For every fixed k ∈ N, consider the set

Sk = {u ∈ Eα : u(t) 6= 0 and u(t) ∈ [0, bk]ek a.e. t ∈ [0, T ]},

where bk is from (H1)(5). The proof is divided into four steps as follows.

Step 1. We claim that ϕ is bounded from below on Sk and its infimum mk on Sk
is attained at uk ∈ Sk.

On account of (H1)(3) and Proposition 2.12, for every u ∈ Sk, we have

F (t, x)− F (t, 0) ∈ 〈∂F (t, ξ), x〉,

where ξ = λx, and λ ∈ (0, 1). Furthermore, we have

|ω| ≤ c(1 + |ξ|α(t)−1) = c(1 + |λ|α(t)−1|x|α(t)−1) ≤ c(1 + |x|α(t)−1). (3.1)

Applying the Mean Value Theorem and (2.3), for any ω ∈ ∂F (t, ξ), we have

|F (t, x)− F (t, 0)| = |〈ω, x〉| ≤ |ω| · |x| ≤ c(|x|+ |x|α(t)),

That is,

|F (t, x)| ≤ c(|x|+ |x|α(t)) ≤ c(1 + |x|α(t)). (3.2)

Thus,

ϕ(u) =
∫ T

0

[
− 1

2
( c0D

α
t u(t), ctD

α
Tu(t))

]
dt−

∫ T

0

F (t, u(t))dt

≥ | cos(πα)|
2

‖u‖2α −
∫ T

0

c(1 + |u(t)|α(t))dt

≥ | cos(πα)|
2

‖u‖2α −
∫ T

0

c(1 + |u(t)|α0)dt

≥ | cos(πα)|
2

‖u‖2α − cT − c
∫ T

0

|u(t)|α0dt

≥ | cos(πα)|
2

‖u‖2α − cT − cT |bk|α0

≥ −cT − cT |bk|α0 ,

(3.3)

where α0 = inft∈[0,T ] α(t). It is clear that Sk is convex and closed, thus weakly
closed in Eα. Let mk = infSk ϕ, and {unk}∞n=1 be a sequence in Sk such that
mk ≤ ϕ(unk ) ≤ mk + 1

n for all n ∈ N. Then

mk +
1
n
≥ ϕ(unk )

=
∫ T

o

[
− 1

2
( c0D

α
t u

n
k (t), ctD

α
Tu

n
k (t))

]
dt−

∫ T

0

F (t, unk (t))dt,
(3.4)
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which implies

| cos(πα)|
2

‖unk‖2α ≤
∫ T

0

[
− 1

2
(c0D

α
t u

n
k (t),ct D

α
Tu

n
k (t))

]
dt

≤ mk +
1
n

+
∫ T

0

F (t, unk (t))dt

≤ mk +
1
n

+
∫ T

0

c(1 + |unk (t)|α0)dt

≤ mk +
1
n

+ cT + cT |bk|α0 ,

(3.5)

for all n ∈ N, thus {unk (t)}∞n=1 is bounded in Eα.
By Proposition 2.5, one can easily see that there exists {unk}∞n=1 ∈ Eα such that

unk ⇀ uk in Eα. We will show that ϕ is weak lower semicontinuous. Let unk ⇀ uk
weakly in Eα, and by Proposition 2.7, we obtain the following results:

Eα ↪→ Lp(RN ),

unk (t)→ uk(t) a.e. t ∈ [0, T ],

F (t, unk (t))→ F (t, uk(t)) a.e. t ∈ [0, T ].

By Fatou’s lemma,

lim sup
n→∞

∫ T

0

F (t, unk (t))dt ≤
∫ T

0

F (t, uk(t))dt.

On the other hand, by Proposition 2.10, we have limn→∞ J(unk ) = J(uk); that is,

lim
n→∞

∫ T

0

[−1
2

( c0D
α
t u

n
k (t), ctD

α
Tu

n
k (t))]dt =

∫ T

0

[−1
2

(c0D
α
t uk(t), ctD

α
Tuk(t))]dt.

Thus,

lim inf
n→∞

ϕ(unk ) = lim inf
n→∞

∫ T

0

[−1
2

( c0D
α
t u

n
k (t), ctD

α
Tu

n
k (t))]dt

− lim sup
n→∞

λ

∫ T

0

F (t, unk (t))dt

≥
∫ T

0

[−1
2

(c0D
α
t uk(t), ctD

α
Tuk(t))]dt− λ

∫ T

0

F (t, unk (t))dt

= ϕ(uk).

(3.6)

Then ϕ is weak lower semicontinuous, and

mk ≤ ϕ(uk) ≤ lim
n→+∞

ϕ(unk ) ≤ mk +
1
n
,

which implies ϕ(uk) = mk. Hence, uk is a minimum point of ϕ over Sk.
Step 2. We show that uk(t) ∈ [0, ak]ek a.e. t ∈ [0, T ]. Let A = {t ∈ [0, T ] : uk(t) 6∈
[0, ak]ek} = {t ∈ [0, T ] : uk(t) ∈ [ak, bk]ek}. We will prove that meas(A) = 0.
Define the function h : [0,+∞)ek → [0,+∞)ek by

h(s) =

{
akek, if s ∈ [ak,+∞]ek,
s, if s ∈ [0, ak]ek.
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Now, we set vk = h ◦ uk. Since h is a Lipschitz function and h(0) = 0, the theorem
of Marcus-Mizel [11] shows that vk ∈ Eα. Moreover, vk(t) ∈ [0, ak]ek for a.e.
t ∈ [0, T ]. Consequently, vk ∈ Sk and

vk(t) =

{
uk(t), if t ∈ [0, T ]\A,
akek, if t ∈ A.

By straightforward computations, we obtain
ϕ(vk)− ϕ(uk)

=
∫

[0,T ]

[
− 1

2
(c0D

α
t vk(t), ctD

α
T vk(t))

]
dt−

∫
[0,T ]

F (t, vk(t))dt

−
∫

[0,T ]

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt+

∫
[0,T ]

F (t, uk(t))dt

=
∫

[0,T ]\A

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt

+
∫
A

[
− 1

2
(c0D

α
t akek,

c
tD

α
Takek)

]
dt−

∫
[0,T ]\A

F (t, uk(t))dt

−
∫
A

F (t, akek)dt−
∫

[0,T ]\A

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt

−
∫
A

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt+

∫
[0,T ]\A

F (t, uk(t))

+
∫
A

F (t, uk(t))dt

= −
∫
A

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt−

∫
A

[F (t, akek)− F (t, uk(t))]dt.

(3.7)

For every t ∈ A, uk(t) ∈ [ak, bk]ek, there exists a map λ : A → [0, 1] such that
uk(t) = akek + λ(t)(bk − ak)ek.

By the Mean Value Theorem, it holds∫
A

[F (t, akek)− F (t, uk(t))]dt

=
∫
A

ξk(t) · (akek − uk(t))dt

=
∫
A

ξk(t) · [akek − akek − λ(t)(bk − ak)ek]dt

=
∫
A

ξk(t) · λ(t)(ak − bk)ekdt,

(3.8)

where ξk(t) ∈ ∂F (t, τk(t)) for some τk(t) ∈ [akek, uk(t)] ⊆ [ak, bk]ek for a.e. t ∈ A.
By (H1)(5), we have ξk(t) · ek ≤ 0 for a.e. t ∈ A. Consequently,∫

A

[F (t, akek)− F (t, uk(t))]dt ≥ 0. (3.9)

In conclusion, every term of the expression ϕ(vk)−ϕ(uk) ≤ 0. On the other hand,
since vk ∈ Sk, then ϕ(vk) ≥ ϕ(uk) = infSk ϕ. So, ϕ(vk)− ϕ(uk) = 0. Namely,

−
∫
A

[
− 1

2
(c0D

α
t uk(t),ct D

α
Tuk(t))

]
dt−

∫
A

[F (t, akek)− F (t, uk(t))]dt = 0, (3.10)
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which implies that meas(A) = 0.

Step 3. We show that uk is a local minimum point in Eα for every k ∈ N. Let
A′ = {t ∈ [0, T ] : u(t) 6∈ [0, ak]ek} = {t ∈ [0, T ] : u(t) ∈ (ak, bk]ek}. Set v = h ◦ u,
then we have

ϕ(u)− ϕ(v)

=
∫

[0,T ]

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt−

∫
[0,T ]

F (t, u(t))dt

−
∫

[0,T ]

[−1
2

(c0D
α
t v(t), ctD

α
T v(t))]dt+

∫
[0,T ]

F (t, v(t))dt

=
∫

[0,T ]\A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

+
∫
A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

−
∫

[0,T ]\A′
F (t, u(t))dt−

∫
A′
F (t, u(t))dt

−
∫

[0,T ]\A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

−
∫
A′

[
− 1

2
(c0D

α
t akek,

c
tD

α
Takek)

]
dt

+
∫

[0,T ]\A′
F (t, u(t)) +

∫
A′
F (t, akek)dt

=
∫
A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt+

∫
A′

[F (t, akek)− F (t, u(t))]dt.

(3.11)

From assumption (H1)(5), we have

∫
A′

[F (t, akek)− F (t, u(t))]dt =
∫
A′
ξk(t) · (akek − u(t))dt ≥ 0, (3.12)

for a.e. t ∈ A′, where ξk(t) ∈ ∂F (t, τ(t)), τ(t) ∈ [akek, u(t)] ⊆ [ak, bk]ek, a.e. t ∈ A′.
Consequently,

ϕ(u)− ϕ(v) ≥ 0. (3.13)

On the other hand, by v ∈ Sk, we have

ϕ(v) ≥ ϕ(uk). (3.14)

In view of (3.11), we derive

ϕ(u)− ϕ(v) ≥
∫
A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt. (3.15)
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Moreover, we have

ϕ(u) ≥ ϕ(v) +
∫
A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

≥ ϕ(uk) +
∫
A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

≥ ϕ(uk) +
∫

[0,T ]

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

−
∫

[0,T ]\A′

[
− 1

2
(c0D

α
t u(t), ctD

α
Tu(t))

]
dt

≥ ϕ(uk) +
∫

[0,T ]

[
− 1

2
(c0D

α
t (u(t)− v(t)), ctD

α
T (u(t)− v(t))

]
dt

≥ ϕ(uk) +
| cos(πα)|

2
‖u− v‖2α.

(3.16)

Since h is continuous, there exists δ > 0 such that, for every u ∈ Eα with
‖u− v‖α < δ, which implies that uk is a local minimum of ϕ.

Step 4. We prove that mk = infSk ϕ < 0 and limk→+∞mk = 0. Let Br0(t0) ⊂
[0, T ] be the ball with radius r0 ∈ (0, 1) and center t0 ∈ [0, T ]. For ξ ∈ RN , define

ηξ(t) =


0, if t ∈ [0, T ]\Br0(t0),
ξ, if t ∈ B r0

2
(t0),

2ξ
r0

(r0 − |t− t0|), if t ∈ Br0(t0)\B r0
2

(t0).
(3.17)

It is clear that ηξ ∈ Eα and

|ηξ(t)| ≤
2|ξ|
r0

, (3.18)

|c0Dα
t ηξ(t)| =

∣∣ 1
Γ(1− α)

∫ t

0

(t− s)−αη′ξds
∣∣

≤ 1
Γ(1− α)

(∫ t

0

(t− s)−α|η′ξ|ds
)

≤ 1
Γ(1− α)

2|ξ|
r0

t1−α

1− α
ds,

(3.19)

‖ηξ‖2α =
∫ T

0

|c0Dα
t ηξ(t)|2dt

≤
∫ T

0

1
Γ2(1− α)

4|ξ|2

r20

t2−2α

(1− α)2
dt

≤ 1
Γ2(1− α)

4ξ2

r20

1
(1− α)2

∫ T

0

t2−2αdt

≤ 4|ξ|2

Γ2(1− α)r20(1− α)2(3− 2α)
T 3−2α.

(3.20)

From the left part of (H1)(4) we deduce that the existence of some l0 > 0 and
λ0 ∈ [0, ak]ek, such that

ess inft∈[0,T ] F (t, x) ≥ −l0|x|2 for all x ∈ [0, λ0]ek. (3.21)
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There exist L0 > 0 large enough to enable

C(r0, α, T ) + l0T <
1
3
L0r0, C(r0, α, T ) =

1
2| cos(πα)|

4T 3−2α

Γ2(1− α)r20(3− 2α)
.

(3.22)
Taking into account the right part of (H1)(4), there is a sequence {ξk} ∈ [0, λ0]
such that {ξk} ∈ [0, ak]ek and

ess supt∈[0,T ] F (t, ξk) > L0|ξk|2 for all k ∈ N. (3.23)

Note that 2ξk
r0

(r0 − |t − t0|) ∈ [0, ξk] ⊂ [0, λ0]ek, for every t ∈ Br0(t0)\B r0
2

(t0),
because of |t− t0| ∈ ( r02 , r0) and r0 − |t− t0| ∈ (0, r02 ), ∀t ∈ Br0(t0)\B r0

2
(t0).

In view of proposition 2.9 and (3.20), we deduce

∫ T

0

[
− 1

2
(c0D

α
t ηξk(t), ctD

α
T ηξk(t))

]
dt

≤ 1
2| cos(πα)|

‖ηξk(t)‖2α

≤ 1
2| cos(πα)|

4T 3−2α

Γ2(1− α)r20(3− 2α)
|ξk|2

= C(r0, α, T )|ξk|2,

(3.24)

And combining (3.21) with (3.23), we obtain

∫ T

0

F (t, ηξ(t))dt

=
∫
B r0

2
(t0)

F (t, ηξk(t))dt+
∫
Br0 (t0)\B r0

2
(t0)

F (t, ηξk(t))dt

≥
∫
B r0

2
(t0)

F (t, ξk(t))dt+
∫
Br0 (t0)\B r0

2
(t0)

F (t,
2ξk
r0

(r0 − |t− t0|))dt

≥
∫
B r0

2
(t0)

−l0|ξk|2dt+
∫
Br0 (t0)\B r0

2
(t0)

L0|
2ξk
r0

(r0 − |t− t0|)|2dt

= L0
4|ξk|2

r20
[
∫ t0− r02

t0−r0
(r0 − |t− t0|)2dt+

∫ t0+r0

t0+
r0
2

(r0 − |t− t0|)2]− l0r0|ξk|2

= L0
4|ξk|2

r20
[
∫ t0− r02

t0−r0
(r0 + t− t0)2dt+

∫ t0+r0

t0+
r0
2

(r0 − t+ t0)2]− l0r0|ξk|2

≥ 1
3
L0r0|ξk|2 − l0T |ξk|2.

(3.25)

Let k ∈ N be a fixed number and let ηξk ∈ Eα be the function from (3.17)
corresponding to the value |ξk| > 0. Then ηξk ∈ Sk, and on account of (3.22),
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(3.24) and (3.25), one has

ϕ(ηξk) =
∫ T

0

[
− 1

2
(c0D

α
t ηξk(t), ctD

α
T ηξk(t))

]
dt−

∫ T

0

F (t, ηξ(t))dt

≤ C(r0, α, T )|ξk|2 −
1
3
L0r0|ξk|2 + l0T |ξk|2

≤ (C(r0, α, T ) + l0T −
1
3
L0r0)|ξk|2 < 0.

(3.26)

From Step 3 and (3.26), we deduce

mk = ϕ(uk) = inf
Sk
ϕ ≤ ϕ(ηξk) < 0. (3.27)

Now we prove that limk→+∞mk = 0. Observe that by assumption (H1)(3), one
can find a positive constant c and ω ∈ ∂F (t, x) such that

|ω| ≤ c(1 + |x|α0), ∀t ∈ [0, T ], x ∈ RN . (3.28)

where α1 = maxt∈[0,T ] α(t).
Applying the Mean Value Theorem and Step 1, for every x ∈ [0, ak]ek and all

t ∈ [0, T ], there exists a constant c > 0 such that

|F (t, x)| = |F (t, x)− F (t, 0)| ≤ c(1 + |x|α1). (3.29)

Therefore
mk = ϕ(uk)

=
∫ T

0

[
− 1

2
(c0D

α
t uk(t),ct D

α
Tuk(t))

]
dt−

∫ T

0

F (t, uk(t))dt

≥ | cos(πα)|
2

‖uk‖2α −
∫ T

0

F (t, uk(t))dt

≥ −
∫ T

0

F (t, uk(t))dt

≥ −
∫ T

0

[
c|uk(t)|+ c|uk(t)|α1

]
dt

≥ −cT (|bk|+ |bk|α1).

(3.30)

Since limk→+∞ bk = 0, we have limk→+∞mk ≥ 0. Note that mk < 0, hence
limk→+∞mk = 0.

Finally, since uk are local minima of ϕ, they are critical points of ϕ, thus
weak solutions of (1.1). Due to Step 2, there are infinitely many distinct uk with
limk→+∞ |uk|∞ = 0. Moreover, we have

| cos(πα)|
2

‖uk‖2α ≤
∫ T

0

[
− 1

2
(c0D

α
t uk(t), ctD

α
Tuk(t))

]
dt

= mk +
∫ T

0

F (t, uk(t))dt

≤ mk + cT (|bk|+ |bk|α1),

(3.31)

which means that limk→+∞ ‖uk‖α = 0. �

Next, we will state the counterpart of Theorem 3.3 when the nonlinearity os-
cillates at infinity. The hypotheses on the nonsmooth potential F (x, t) are the
following:
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Our hypotheses on nonsmooth potential F (x, t) are as follows.
(H2) F : [0, T ] × RN → R is a function, F (t, 0) = 0 for almost all t ∈ [0, T ] and
satisfies the following facts:

(1) For all x ∈ RN , t 7→ F (t, x) is measurable;
(2) For almost all t ∈ [0, T ], x 7→ F (t, x) is locally Lipschitz;
(3) There exist a positive constant c such that for almost all x ∈ RN , all

t ∈ [0, T ] and ω ∈ ∂F (t, x)

|ω| ≤ c(1 + |x|α(t)−1)

where 1 < α(t) < +∞;
(4)

−∞ < lim inf
|x|→+∞

F (t, x)
|x|2

≤ lim sup
|x|→+∞

F (t, x)
|x|2

= +∞

uniformly for a.e. x ∈ RN ;
(5) For every k ∈ N, there exists ek ∈ RN with |ek| = 1 and there are two

sequences {ak} and {bk} in (0,+∞) with ak < bk, limk→+∞ bk = 0 such
that

sup{ω · ek : ω ∈ ∂F (t, x), a.e. t ∈ [0, T ], x ∈ [ak, bk]ek} ≤ 0.

Remark 3.4. Hypotheses (H2)(4) and (H2)(5) imply an oscillatory behaviour of
F near the infinity.

Remark 3.5. A simple example of a nonsmooth potential function satisfying (H2)
is

F (t, x) =

{
|x|α(t) sin |x|, if |x| ∈

[
2kπ, (2k + 1)π

)
,

|x|β(t) sin |x|, if |x| ∈
[
(2k + 1)π, (2k + 2)π

]
,

where k ∈ N with k ≥ 1, 1 < β(t) < 2 < α(t) <∞.

Proof. Obviously, Hypothesis (H2)(1) and (H2)(2) are satisfied. Clearly, x 7→
F (t, x) is locally Lipschitz. Then for any 1 ≤ k ∈ N ,

∂F (t, x)

=


α(t)|x|α(t)−2x sin |x|+ |x|α(t)−1x cos |x|, if |x| ∈

(
2kπ, (2k + 1)π

)
,

β(t)|x|β(t)−2x sin |x|+ |x|β(t)−1x cos |x|, if |x| ∈
(
(2k + 1)π, (2k + 2)π

)
,

[−x|x|α(t)−1,−x|x|β(t)−1}, if |x| = (2k + 1)π,
[x|x|α(t)−1, x|x|β(t)−1}, if |x| = 2kπ,

where {γ, δ} = {ξ : ξ = λγ + (1 − λ)δ, λ ∈ [0, 1]}. Then, there exists a constant
c > 0 and θ(t) = α(t) + 1 such that

|w| ≤ c(1 + |x|θ(t)−1) for all w ∈ ∂F (t, x).

So condition (H2)(3) holds. Then, for any 1 ≤ k ∈ N , we can choose

ak := (2k + 1)π, bk := (2k +
3
2

)π,

which implies ak < bk, limk→+∞ ak = +∞ and

sup{w · ek : w ∈ ∂F (x, t), a.e. t ∈ [0, T ] and x ∈ [ak, bk]ek} ≤ 0.

So condition (H2)(5) is satisfied.
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On the other hand, for any 1 ≤ k ∈ N , we can choose ck := (2k + 1
2 )π, which

means limk→+∞ ck = +∞,

lim sup
k→+∞

F (t, ckek)
|ck|2

= lim sup
k→+∞

|ck|α(t)−2 sin |ck| = lim sup
k→+∞

|ck|α(t)−2 = +∞,

−∞ < 1 ≤ lim inf
|x|→+∞

F (t, x)
|x|2

= lim inf
|x|→+∞

|x|β(t) sin |x|
|x|2

= lim inf
|x|→+∞

|x|β(t)−2 sin |x| ≤ 0

uniformly for a.e. t ∈ [0, T ]. So condition (H2)(4) holds. �

Theorem 3.6. Suppose that (H2) holds. Then there exists a sequence {un} ⊂ Eα
of distinct positive solution of problem (1.1) such that

lim
n→+∞

‖un‖α = lim
n→+∞

|un|∞ = +∞.

Proof. For every fixed k ∈ N, consider the set

Tk = {u ∈ Eα : u(x) 6= 0 and u(x) ∈ [0, bk]ek a.e. x ∈ RN},

where bk is from (H2)(5). The first part of the proof is similar to that of Theorem
3.3. Indeed, we can prove that the functional ϕ is bounded from below on Tk and
its infimum on Tk is attained (see Step 1 of Theorem 3.3). Moreover, if uk ∈ Tk is
chosen such that ϕ(uk) = infTk , then uk(t) ∈ [0, ak]ek a.e. t ∈ [0, T ] (see Step 2 of
Theorem 3.3), and uk is a local minimum point of ϕ in Eα (see Step 3 of Theorem
3.3). Instead of Step 4, we prove

Step 4. Let ϑk = infTk ϕ = ϕ(uk), then limk→+∞ ϑk = −∞. From (H2)(4), we
deduce that there exist l∞ > 0 and λ∞ > 0 such that

ess inft∈[0,T ] F (t, x) ≥ −l∞|x|2 for all |x| > λ∞. (3.32)

There exist L∞ > 0 be large enough to enable

C(r0, α, T ) + l∞T < L∞r0. (3.33)

From the right hand side of (H2)(4), we deduce that there is a sequence {ξk} ⊂ RN
such that limk→+∞ |ξk| = +∞, and

ess inft∈[0,T ] F (t, ξk) > L∞|ξk|2 for all k ∈ N. (3.34)

It is easy to see that

|ηξk(t)| ≤ |ξk|, ∀t ∈ Br0(t0)\B r0
2

(t0), (3.35)

since

ηξk(t) =
2ξk
r0

(r0 − |t− t0|), ∀ t ∈ Br0(t0)\B r0
2

(t0).

Let k ∈ N be fixed and let ηξk ∈ Eα be the function from (3.17) corresponding
to the value ξk ∈ RN . Then ηξk ∈ Tbk , and on account of (3.32) and (3.34), we
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have

ϕ(ηξk) =
∫ T

0

[
− 1

2
(c0D

α
t ηξk(t), ctD

α
T ηξk(t))

]
dt−

∫ T

0

F (t, ηξ(t))dt

≤ 1
2| cos(πα)|

‖ηξk‖2α −
∫
B r0

2
(t0)

F (t, ηξk(t))dt

−
∫

(Br0 (t0)\B r0
2

(t0))
T
{t:|ηξk (t)|>λ∞}

F (t, ηξk(t))dt

−
∫

(Br0 (t0)\B r0
2

(t0))
T
{t:|ηξk (t)|≤λ∞}

F (t, ηξk(t))dt

≤ 1
2| cos(πα)|

4T (3− 2α)
Γ2(1− α)r20(3− 2α)

|ξk|2 −
1
3
L∞r0|ξk|2

+ l∞T |ξk|2 − cT (1 + λα0
∞ )

= (C(r0, α, T )− L∞r0 + l∞T )|ξk|2 + cTλα1
∞ .

(3.36)

From (3.33), (3.36) and limk→+∞ |ξk| = +∞, we conclude that

lim
k→+∞

ϕ(ηξk) = −∞. (3.37)

On the other hand, from ϕ(umk) = minTbmk ϕ, we have

ϕ(umk) ≤ ϕ(ηξk(t)).

On account of (3.37), we have

lim
k→+∞

ϕ(umk) = −∞. (3.38)

Since the sequence {ϕ(uk)} is non-increasing, so, we have

lim
k→+∞

ϑk = lim
k→+∞

ϕ(uk) = −∞.

Step 5. We prove that

lim
k→+∞

|uk|∞ = lim
k→+∞

‖uk‖α = +∞ .

Arguing by contradiction, assume that there exists a subsequence {unk} of {uk}
such that |unk |∞ ≤M for some M > 0. In particular, {unk} ⊂ Tbl for some l ∈ N.
Thus, for every nk > l, we have

ϑl ≥ ϑnk = inf
Tnk

ϕ = ϕ(unk) ≥ inf
Tl
ϕ = ϑl. (3.39)

So, ϑnk = ϑl for every nk > l. This fact contradicts with (3.38) which completes
the first part of the proof.

Next, we prove that limk→+∞ ‖uk‖α = +∞. Note that 1 < α1 < +∞, then by
Proposition 2.7, we have Eα ↪→ C([0, T ],RN ) (compact embedding). Furthermore,
there exists c1 > 0 such that |uk|∞ ≤ c1‖uk‖α. Hence, there exists a constant
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c2 > 0, such that ∫ T

0

F (t, uk(t))dt ≤
∫ T

0

c(1 + |uk(t)|α1)dt

≤ cT + c|uk(t)|α1
∞T

≤ cT + ccα1
1 ‖uk‖α1

α T

≤ cT + c2‖uk‖α1
α T.

(3.40)

Let us assume that there exists a subsequence {unk} of {uk} such that for some
M > 0, we have ‖unk‖α ≤M . In particular, by the above inequality,

|ϕ(unk)| =
∣∣∣ ∫ T

0

[
− 1

2
(c0D

α
t unk(t), ctD

α
Tunk(t))

]
dt−

∫ T

0

F (t, unk(t))dt
∣∣∣

≤
∫ T

0

[
− 1

2
(c0D

α
t unk(t), ctD

α
Tunk(t))

]
dt+

∣∣ ∫ T

0

F (t, unk(t))dt
∣∣

≤ 1
2| cos(πα)|

‖unk‖2α + cT + c2‖uk‖αT

(3.41)

is bounded. Hence ϑnk = ϕ(unk) is also bounded. This fact contradicts with
limk→+∞ ϑk = −∞. �
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