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POSITIVE LEAST ENERGY SOLUTIONS OF FRACTIONAL
LAPLACIAN SYSTEMS WITH CRITICAL EXPONENT

QINGFANG WANG

Abstract. We study the fractional Laplacian system with critical exponent

(−∆)su+ λ1u = µ1|u|2
∗
s−2u+ β|u|

2∗s
2 −2u|v|

2∗s
2 , x ∈ Ω,

(−∆)sv + λ2v = µ2|v|2
∗
s−2v + β|v|

2∗s
2 −2v|u|

2∗s
2 , x ∈ Ω,

u = v = 0 , x ∈ ∂Ω,

where Ω ⊂ RN (N > 2s) is a smooth bounded domain, s ∈ (0, 1), (−∆)s

stands for the fractional Laplacian, 2∗s := 2N
N−2s

is the critical Sobolev expo-

nent, −λ1(Ω) < λ1, λ2 < 0, and µ1, µ2 > 0, here λ1(Ω) is the first eigenvalue of

(−∆)s with Dirichlet boundary condition. For each fixed β ≥ 2s
N−2s

max{µ1, µ2},
we show that this system has a positive least energy solution.

1. Introduction

In this article, we consider the coupled system

(−∆)su+ λ1u = µ1|u|2
∗
s−2u+ β|u|

2∗s
2 −2u|v|

2∗s
2 , x ∈ Ω,

(−∆)sv + λ2v = µ2|v|2
∗
s−2v + β|v|

2∗s
2 −2v|u|

2∗s
2 , x ∈ Ω,

u = v = 0 , x ∈ ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N > 2s), 2∗s := 2N
N−2s is the critical

Sobolev exponent, µ1, µ2 > 0, −λ1(Ω) < λ1, λ2 < 0, λ1(Ω) is the first eigenvalue of
(−∆)s with Dirichlet boundary condition, and β 6= 0 is a coupling constant.

In recent years, considerable attention has been given to nonlocal diffusion
problems, in particular to the ones driven by the fractional Laplace operator, see
[2, 9, 16, 23, 29] and the references therein. The fractional power of the Laplacian
(−∆)s is the infinitesimal generator of Lévy stable diffusion processes. It arises in
several areas such as plasmas (see [6]), flames propagation, chemical reactions in
liquids, population dynamics, geophysical fluid in dynamics, crystal dislocation and
so on.

Recently, the solutions of the fractional Laplacian attract more attention of re-
searchers in nonlinear analysis. Chang and González [15] studied this operator in
conformal geometry. Caffarelli et al [11, 12] investigated free boundary problems of
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the fractional Laplacian. Silvestre [27] obtained some regularity results of the ob-
stacle problem of fractional Laplacian. Maximum principle has been researched in
the fractional Laplacian operator in [9, 14]. Caffarelli and Silvestre [13], introduced
the s-harmonic extension to define the fractional Laplacian operator, and gave a
new formulation of the fractional Laplacian through Dirichlet-to-Neumann maps.
This is commonly used in the recent literature since it allows us to write nonlocal
problems in a local way. Also this permits us to use the variational methods to
solve those kinds of problems. Several results of the fractional version of the clas-
sical elliptic problems were obtained, we would like to mention [3, 10, 28] and the
references therein.

In [10], Cabré and Tan combined the spectral decomposition of the Laplacian
operator with zero Dirichlet boundary conditions defined the operator of the square
root of Laplacian. Using classical local techniques, they established existence, reg-
ularity and an L∞-estimate of Brezis-Kato type for weak solutions. In particular,
Tan [28] studied the problem

(−∆)1/2u = u
n+1
n−1 + µu, u > 0 , x ∈ Ω,
u = 0 , x ∈ ∂Ω,

(1.2)

where µ > 0. He employed the Brezis-Nirenberg technique to build an analogue
result to the problem in [8], but with the square root of the Laplacian instead of
the Laplacian. Barrios et al [3] studied the nonlinear problem

(−∆)
α
2 u = λuq + u

N+α
N−α , u > 0 , x ∈ Ω,

u = 0 , x ∈ ∂Ω,
(1.3)

where 0 < q < N+α
N−α , 0 < α < 2 and N > α, they obtain the existence of positive

solutions under certain conditions.
Problem (1.1) can be seen as a counterpart of the system

−∆u+ λ1u = µ1|u|2
∗−2u+ β|u| 2

∗
2 −2u|v| 2

∗
2 , x ∈ Ω,

−∆v + λ2v = µ2|v|2
∗−2v + β|u| 2

∗
2 |v| 2

∗
2 −2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.4)

where Ω ⊂ RN is a bounded domain. In [17, 19], Chen and Zou studied problem
(1.4) for N ≥ 4, by variational arguments, they showed the existence of positive
least energy solutions in some ranges of λ1, λ2, β.

Problem (1.4) is closely related to the following system, which arises in the
Hartree-Fock theory for a double condensate

−∆u+ λ1u = µ1u
3 + βuv2, x ∈ Ω,

−∆v + λ2v = µ2v
3 + βu2v, x ∈ Ω,

u, v ∈ H1
0 (Ω),

(1.5)

here Ω is a domain in RN (N ≤ 3), possibly unbounded, with empty or smooth
boundary. In the past decades, there has been increasing interest in studying
problem (1.5), especially on the existence of positive solutions, multiple solutions,
sign-changing solutions and ground states, see for example [1, 4, 5, 17, 18, 19, 22,
24, 25, 26, 30].
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Motivated by the works just described as above, it is natural and significant to
investigate the solutions of the system (1.1). Since the fractional Laplacian operator
(−∆)s is involved, problem (1.1) is a nonlocal problem, which implies that (1.1)
is not a pointwise identity. This causes some mathematical difficulties which make
the study of (1.1) particularly interesting. In this article, we are mainly study the
existence of positive least energy solutions of equation (1.1).

Before present our main results, we would like to mention that the following
fractional Brezis-Nirenberg problem

(−∆)su+ λu = |u|2
∗
s−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.6)

has a positive least energy solution uλ for −λ1(Ω) < λ < 0 (see [3]).
Our first result deals with the special case λ1 = λ2.

Theorem 1.1. Assume that −λ1(Ω) < λ1 = λ2 = λ < 0 and N ≥ 4s. If β ≥
2s

N−2s max{µ1, µ2}, then (
√
k0uλ,

√
l0uλ) is a positive least energy solution of system

(1.1), where the positive pair (k0, l0) will be given in (3.1).
Moreover, there exists β0 ≥ 2s

N−2s max{µ1, µ2} determined by (µ1, µ2), such that,
if β > β0 and (u, v) is any a positive least energy solution of (1.1), then (u, v) =
(
√
k0uλ,

√
l0uλ) where uλ is a positive least energy solution of the Brezis-Nirenberg

problem (1.6).

Now, we consider the general case −λ1(Ω) < λ1, λ2 < 0. Without loss of
generality, we may assume that λ1 ≤ λ2. Our following result deal with the case
λ1 < λ2.

Theorem 1.2. Assume that −λ1(Ω) < λ1 < λ2 < 0 and N ≥ 4s. Then system
(1.1) has a positive least energy solution (u, v) for β ≥ 2s

N−2s max{µ1, µ2}.

Theorems 1.1 and 1.2 partially generalized the results in [17, 19], which deals
with Schrödinger system (1.4), to the fractional Schrödinger problem. The main
difficulty in proving our main results is the nonlocal operator (−∆)s. We ap-
ply the s-harmonic extension and Dirichlet-to-Neumann maps, which developed by
Caffarelli and Silvestre [13], to transform the nonlocal problem (1.1) into a local
problem (2.9). Thus, the usual variational methods can be used to solve problem
(2.9), and then the problem (1.1).

This paper is organized as follows. In Section 2, we first present some variational
framework of problem (1.1). In Section 3, we give the proof of Theorem 1.1 and
study the limit problem of (1.1). Finally, via energy comparison, we prove Theorem
1.2 in Section 4.

2. preliminaries and functional setting

Denote the upper half space in RN+1 by

RN+1
+ =

{
(x, y) : x ∈ RN , y > 0

}
,

the half cylinder standing on a bounded smooth domain Ω ⊂ RN by C = Ω ×
(0,+∞), the points in C are denoted by (x, y) for x ∈ Ω, y ∈ (0,+∞), and its
lateral boundary by ∂LC = ∂Ω× (0,+∞).

Let {ϕk} be an orthonnormal basis of L2(Ω) with ‖ϕk‖2 = 1 forming a spectral
decomposition of −∆ in Ω with zero Dirichlet boundary conditions and λk be the
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corresponding eigenvalues. Let

Hs
0(Ω) =

{
u =

∞∑
k=0

akϕk ∈ L2(Ω) : ‖u‖Hs0 (Ω) = (
∞∑
k=0

a2
kλ

s
k)1/2 < +∞

}
.

For u ∈ Hs
0(Ω), u =

∑∞
k=0 akϕk with ak =

∫
Ω
uϕkdx, the fractional power of

Dirichlet Laplacian (−∆)s is defined by

(−∆)su =
∞∑
k=0

akλ
s
kϕk ∈ H−s(Ω),

where H−s(Ω) the dual space of Hs
0(Ω). We say that {(ϕk, λsk)} are the eigenfunc-

tions and eigenvalues of (−∆)s in Ω with zero Dirichlet boundary condition.
It is easy to see that Hs

0(Ω) is a Hilbert space equipped with the following inner
product and norm

〈u, v〉Hs0 (Ω) =
∫

Ω

(−∆)
s
2u(−∆)

s
2 vdx, ‖u‖ = 〈u, u〉1/2Hs0 (Ω).

For a given regular function u ∈ Hs
0(Ω), we define its s-harmonic extension w =

Es(u) to C as the solution of the problem

− div y1−2s∇w) = 0, in C,
w = 0, on ∂LC,

w(x, 0) = u, on Ω.

For any regular function u, the fractional Laplacian (−∆)s acting on u is defined
by

(−∆)su(x) = − 1
κs

lim
y→0+

y1−2s ∂w

∂y
(x, y), ∀x ∈ Ω,

where w = Es(u) and κs = 21−2sΓ(1−s)
Γ(s) .

Define Hs
0,L(C) as the closure of C∞0 (C) under the norm

‖w‖Hs0,L(C) =
(
κs

∫
C
y1−2s|∇w|2 dx dy

)1/2

.

We will use the following notation:

H̃ := Hs
0,L(C)×Hs

0,L(C),

Lsw := − div y1−2s∇w),
∂w

∂νs
:= −κs lim

y→0+
y1−2s ∂w

∂y
.

For simplicity, we assume throughout this paper that κs = 1. The following lemma
is due to [7], which reflect the relationship between the spaces Hs

0(Ω) and Hs
0,L(C).

Lemma 2.1. (i)

‖(−∆)su‖H−s(Ω) = ‖u‖Hs0 (Ω) = ‖Es(u)‖Hs0,L(C).

(ii) For any w ∈ Hs
0,L(C), there exist a constant C independent of w such that

‖trΩw‖Lr(Ω) ≤ C‖w‖Hs0,L(C)

holds for every r ∈ [2, 2N
N−2s ], where trΩw(x, y) = w(x, 0). Moreover, Hs

0,L(C) is
compactly embedded into Lr(Ω) for r ∈ [2, 2N

N−2s ).
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Another useful tool is the following trace inequality∫
C
y1−2s|∇w(x, y)|2 dx dy ≥ C

(∫
Ω

|w(x, 0)|rdx
)2/r

, (2.1)

for any 1 ≤ r ≤ 2N
N−2s , N > 2s, w ∈ Hs

0,L(C). In fact, inequality (2.1) is equivalent
to the following inequality for any v ∈ Hs

0(Ω) (see [20, 21]),∫
Ω

|(−∆)
s
2 v|2dx ≥ C

(∫
Ω

|v|rdx
)2/r

, (2.2)

where 1 ≤ r ≤ 2N
N−2s , N > 2s.

When r = 2∗s, the best constant in (2.1) will be denote by S(s,N). So we have∫
C
y1−2s|∇w(x, y)|2 dx dy ≥ S(s,N)

(∫
Ω

|w(x, 0)|
2N
N−2s dx

)N−2s
N

.

However, S(s,N) is indeed achieved for the case Ω = RN when

w(x, y) := wε(x, y) = Es(uε), (2.3)

where uε takes the form

uε(x) =
ε
N−2s

2

(|x|2 + ε2)
N−2s

2

,

with ε > 0 arbitrary. Moreover, the following critical problem

(−∆)su = |u|2
∗
s−2u in RN ,

has positive solutions (see [20, 21])

Uε(x) =
CN,sε

N−2s
2

(ε2 + |x− x0|2)
N−2s

2

, CN,s := 2(N−2s)/2
(Γ(N+2s

2 )
Γ(N−2s

2 )

)N−2s
4s

, (2.4)

for any x0 ∈ RN and ε > 0. Furthermore,∫
RN
|(−∆)

s
2Uε|2dx =

∫
RN
|Uε|2

∗
sdx = S(s,N)

N
2s .

Recall that the equations

(−∆)su+ λiu = µi|u|2
∗
s−2u, u ∈ Hs

0(Ω), i = 1, 2, (2.5)

have positive least energy solutions uµi ∈ Hs
0(Ω) for −λ1(Ω) < λi < 0. We denote

Bµi =
s

N

(∫
C
y1−2s|∇wi|2 dx dy + λ

∫
Ω

u2
µidx

)
=

s

N
µi

∫
Ω

u
2∗s
µidx, (2.6)

where wi = Es(uµi). Moreover,∫
C
y1−2s|∇wi|2 dx dy + λ

∫
Ω

u2
µidx ≥ (

N

s
Bµi)

2s/N
(
µi

∫
Ω

u
2∗s
µidx

) 2
2∗s , (2.7)

Similarly, we denote B1 the energy of uλ, that is

B1 =
s

N

(∫
C
y1−2s|∇Es(uλ)|2 dx dy + λ

∫
Ω

u2
λdx

)
=

s

N

∫
Ω

u
2∗s
λ dx, (2.8)

where uλ is the positive least energy of (1.6).
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Now, by s-harmonic extension, we can transform the nonlocal problem (1.1) into
the local problem

Lsw1 = 0, Lsw2 = 0 in C,
w1 = 0, w2 = 0 on ∂LC,

∂w1

∂νs
= −λ1u+ µ1|u|2

∗
s−2u+ β|u|

2∗s
2 −2u|v|

2∗s
2 on Ω,

∂w2

∂νs
= −λ2v + µ2|v|2

∗
s−2v + β|u|

2∗s
2 |v|

2∗s
2 −2v on Ω.

(2.9)

Definition 2.2. We say that (u, v) ∈ H is a weak solution of (1.1) if (w1, w2) ∈ H̃
is weak solution of (2.9), i.e.,∫

C
y1−2s∇w1∇Es(ϕ) dx dy +

∫
C
y1−2s∇w2∇Es(ψ) dx dy + λ1

∫
Ω

uϕdx

+ λ2

∫
Ω

vψdx−
∫

Ω

(
µ1|u|2

∗
s−2uϕ+ β|u|

2∗s
2 −2u|v|

2∗s
2 ϕ

+ β|u|
2∗s
2 |v|

2∗s
2 −2vψ + µ2|v|2

∗
s−2vψ

)
dx = 0,

(2.10)

for any (ϕ,ψ) ∈ H, where (w1, w2) = (Es(u), Es(v)).

Define the energy functional E : H → R corresponding to problem (1.1) by

E(u, v) =
1
2

(∫
C
y1−2s|∇w1|2 dx dy +

∫
C
y1−2s|∇w2|2 dx dy

)
+

1
2

∫
Ω

(λ1u
2 + λ2v

2)dx− 1
2∗

∫
Ω

(
µ1|u|2

∗
s + µ2|v|2

∗
s

+ 2β|u|
2∗s
2 |v|

2∗s
2
)
dx, ∀(u, v) ∈ H,

(2.11)

where (w1, w2) = (Es(u), Es(v)). As in [19], we also define

M =
{

(u, v) ∈ H, u 6= 0, v 6= 0, (w1, w2) = (Es(u), Es(v)),∫
C
y1−2s|∇w1|2 dx dy + λ1

∫
Ω

u2dx = µ1

∫
Ω

|u|2
∗
sdx+ β

∫
Ω

|u|
2∗s
2 |v|

2∗s
2 dx,∫

C
y1−2s|∇w2|2 dx dy + λ2

∫
Ω

v2dx = µ2

∫
Ω

|v|2
∗
sdx+ β

∫
Ω

|u|
2∗s
2 |v|

2∗s
2 dx

}
.

(2.12)
Then any nontrivial solutions of (1.1) must belong to M. Take ϕ, ψ ∈ C∞0 (Ω)
with ϕ,ψ 6≡ 0 and supp(ϕ)

⋂
supp(ψ) = ∅, then there exist t1, t2 > 0 such that

(t1ϕ, t2ψ) ∈M, thus M 6= ∅. We define

B := inf
(u,v)∈M

E(u, v) = inf
(u,v)∈M

s

N

{(∫
C
y1−2s|∇w1|2 dx dy + λ1

∫
Ω

u2dx
)

+
( ∫
C
y1−2s|∇w2|2 dx dy + λ2

∫
Ω

v2dx
)}
.

(2.13)

Since the nonlinearity and coupling term are both critical in (1.1), the existence
of nontrivial solutions of (2.9) depends heavily on the existence of the least energy



EJDE-2016/150 FRACTIONAL LAPLACIAN SYSTEMS WITH CRITICAL EXPONENT 7

solution of the following limit problem

Lsw1 = 0, Lsw2 = 0, in RN+1
+ ,

∂w1

∂νs
= µ1|u|2

∗
s−2u+ β|u|

2∗s
2 −2u|v|

2∗s
2 , x ∈ RN ,

∂w2

∂νs
= µ2|v|2

∗
s−2v + β|u|

2∗s
2 |v|

2∗s
2 −2v, x ∈ RN ,

w1, w2 ∈ D,

(2.14)

where D := Ds(RN+1
+ ) × Ds(RN+1

+ ), Ds(RN+1
+ ) is defined as the completion of

C∞0 (RN+1
+ ) with respect to the norm ‖U‖RN+1

+
= (
∫

RN+1
+

y1−2s|∇U |2)1/2. And the

C1 function I : D → R given by

I(u, v) =
1
2

∫
RN+1

+

(
y1−2s|∇w1|2 + y1−2s|∇w2|2

)
dx dy

− 1
2∗s

∫
RN

(
µ1|u|2

∗
s + µ2|v|2

∗
s + 2β|u|

2∗s
2 |v|

2∗s
2
)
dx,

Similarly, we consider the set

N =
{

(u, v) ∈ D, u 6≡ 0, v 6≡ 0,∫
RN+1

+

y1−2s|∇w1|2 dx dy =
∫

RN

(
µ1|u|2

∗
s + β|u|

2∗s
2 |v|

2∗s
2
)
dx,∫

RN+1
+

y1−2s|∇w2|2 dx dy =
∫

RN

(
µ2|u|2

∗
s + β|u|

2∗s
2 |v|

2∗s
2
)
dx
}
.

Then any nontrivial solution of (2.14) belongs to N . We can easily prove N 6= ∅
by the same method as we used for M 6= ∅. We set

A := inf
(u,v)∈N

I(u, v) = inf
(u,v)∈N

s

N

∫
RN+1

+

(
y1−2s|∇w1|2 + y1−2s|∇w2|2

)
dx dy.

We have the following theorem, which plays an important role in the proof of
Theorem 1.2.

Theorem 2.3. Suppose that N ≥ 4s and β ≥ 2s
N−2s max{µ1, µ2}. Then I(

√
k0Uε,√

l0Uε) = A, where (k0, l0) is given in (3.1). That is (
√
k0Uε,

√
l0Uε) is a positive

least energy solution of (2.14), where Uε is given in (2.4).

3. Proof of Theorems 1.1 and 2.3

The following system is crucial in proving our main results,

µ1k
2∗s
2 −1 + βk

2∗s
4 −1l

2∗s
4 = 1,

µ2l
2∗s
2 −1 + βl

2∗s
4 −1k

2∗s
4 = 1,

k ≥ 0, l ≥ 0.

(3.1)

We will prove in Lemma 3.2 that there exist (k0, l0), such that (k0, l0) satisfies (3.1)
and k0 = min

{
k : (k, l) is a solution of (3.1)

}
.
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Remark 3.1. For N = 4s, we have 2∗s = 4, then (3.1) becomes
µ1k + βl = 1,
µ2l + βk = 1,
k ≥ 0, l ≥ 0.

(3.2)

Since β ≥ max{µ1, µ2}, it follows that β2 ≥ µ1µ2. Thus, (3.2) has a unique solution
(k0, l0).

In the following, we only consider the case N > 4s. Define

α1(k, l) = µ1k
2∗s
2 −1 + βk

2∗s
4 −1l

2∗s
4 − 1, k > 0, l ≥ 0;

α2(k, l) = µ2l
2∗s
2 −1 + βl

2∗s
4 −1k

2∗s
4 − 1, l > 0, k ≥ 0;

h1(k) = β
− 4

2∗s (k1− 2∗s
4 − µ1k

2∗s
4 )

4
2∗s , 0 < k ≤ µ−

N−2s
2s

1 ;

h2(l) = β
− 4

2∗s (l1−
2∗s
4 − µ2l

2∗s
4 )

4
2∗s , 0 < l ≤ µ−

N−2s
2s

2 .

Then we have α1(k, h1(k)) ≡ 0 and α2(h2(l), l) ≡ 0.

Lemma 3.2. Assume that β > 0, then the equation

α1(k, l) = 0, α2(k, l) = 0, k, l > 0 (3.3)

has a solution (k0, l0), which satisfies

α2(k, h1(k)) < 0, for 0 < k < k0. (3.4)

Similarly, (3.3) has a solution (k1, l1) that satisfies

α1(h2(l), l) < 0, for 0 < l < l1. (3.5)

Proof. First we denote p = 2∗s
2 = N

N−2s . Equation α1(k, l) = 0, k, l > 0 imply that

l = h1(k), 0 < k < µ
− 1
p−1

1 .

While α2(k, l) = 0 implies that µ2l
p
2 + βk

p
2 = l1−

p
2 . Therefore, we turn to prove

that

µ2
1− µ1k

p−1

βk
p
2−1

+ βk
p
2 =

(1− µ1k
p−1

βk
p
2−1

) 2−p
p , (3.6)

has a solution in (0, µ
− 1
p−1

1 ). Note that (3.6) is equivalent to

f(k) = (
1

βkp−1
− µ1

β
)

2−p
p − βkp−1 − µ2

1− µ1k
p−1

β
= 0, 0 < kp−1 <

1
µ1
. (3.7)

Recall that p = 2∗s
2 = N

N−2s , since N > 4s, we have p < 2, and so

lim
k→0+

f(k) = +∞, f(µ
− 1
p−1

1 ) = − β

µ1
< 0.

Therefore, there exists k0 ∈ (0, µ
− 1
p−1

1 ) such that f(k0) = 0 and f(k) > 0 for
k ∈ (0, k0). Let l0 = h1(k0), then (k0, l0) is a solution of (3.3). Moreover (3.4)
follows directly from f(k) > 0 for k ∈ (0, k0). The proof of existence of (k1, l1) that
satisfy (3.5) is similar. Then the proof of Lemma 3.2 is completed. �

Lemma 3.3. Assume that β ≥ ( 2s
N−2s ) max{µ1, µ2}, then h1(k) + k is strictly

increasing for k ∈ [0, µ−
N−2s

2s
1 ], and h2(l)+l is strictly increasing for l ∈ [0, µ−

N−2s
2s

2 ].
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Proof. We also denote p = 2∗s
2 = N

N−2s . Since for k > 0, we have

h′1(k) =
2
p
β−

2
p (k1− p2 − µ1k

p
2 )

2−p
p
(2− p

2
k−

p
2 − p

2
µ1k

p−2
2
)
.

We see that h′1(k) ≥ 0 for 0 < µ1k
p−1 ≤ 2−p

p or µ1k
p−1 = 1, and h′1(k) < 0

for 2−p
p < µ1k

p−1 < 1. By direct computations, we deduce from h′′1(k) = 0,
2−p
p < µ1k

p−1 < 1 that k = (µ1p)−
1
p−1 . Since β ≥ (p− 1) max{µ1, µ2}, we have

min
0<a<µ

− 1
p−1

1

h′1(k) = h′1
(
(µ1p)−

1
p−1
)

= −β−
2
pµ

2/p
1 (p− 1)2/p ≥ −1.

and h′1(k) > −1 for 0 < k ≤ µ−
1
p−1

1 with k 6= (µ1p)−
1
p−1 . This implies that h1(k)+k

is strictly increasing for k ∈ [0, µ
− 1
p−1

1 ]. Similarly, h2(l) + l is strictly increasing for

l ∈ [0, µ
− 1
p−1

2 ]. �

Lemma 3.4. Assume that β ≥ ( 2s
N−2s ) max{µ1, µ2}. Let (k0, l0) be the solution in

Lemma 3.2, then max{µ1(k0 + l0)p−1, µ2(k0 + l0)
2s

N−2s } < 1 and

α2(k, h1(k)) < 0, ∀ 0 < k < k0; α1(h2(l), l) < 0, for 0 < l < l0.

Proof. By Lemma 3.3, we obtain

h1(µ
− 1
p−1

1 ) + µ
− 1
p−1

1 = µ
− 1
p−1

1 > h1(k0) + k0 = k0 + l0,

where p = 2∗s
2 , that is, µ1(k0 + l0)p−1 < 1. Similarly, µ2(k0 + l0)p−1 < 1. By

Lemma 3.2, it suffices to prove that (k0, l0) = (k1, l1). By (3.4)-(3.5), we see
that k1 ≥ k0, l0 ≥ l1. If k1 > k0, we have k1 + h1(k1) > k0 + h1(k0), that is,
h2(l1) + l1 = k1 + l1 > k0 + l0 = h2(l0) + l0, and so l1 > l0, then we obtain
contradiction. Therefore, k1 = k0 and l0 = l1. This completes the proof. �

Lemma 3.5. Assume that β ≥ ( 2s
N−2s ) max{µ1, µ2}. Then

k + l ≤ k0 + l0,

α1(k, l) ≥ 0, α2(k, l) ≥ 0,

k, l ≥ 0, (k, l) 6= (0, 0),
(3.8)

has a unique solution.

Proof. Note that (k0, l0) satisfies (3.8). Let (k̃, l̃) be any a solution of (3.8). Without
loss of generality, we assume that k̃ > 0. If l̃ = 0, then by k̃ ≤ k0 + l0 and
α1(k̃, 0) ≥ 0, we obtain that

1 ≤ µ1k̃
p−1 ≤ µ1(k0 + l0)p−1

which contradicts with Lemma 3.4. Therefore l̃ > 0.
Assume by contradiction that k̃ < k0. Similar as the proof of Lemma 3.3, it

is easy to see that h2(l) is strictly increasing for 0 < µ2l
p−1 ≤ 2−p

p , and strictly

decreasing for 2−p
p ≤ µ2l

p−1 ≤ 1. Moreover, h2(0) = h2(µ
− 1
p−1

2 ) = 0. Since

0 < k̃ < k0 = h2(l0), there exists 0 < l2 < l3 < µ
− 1
p−1

2 such that h2(l2) = h2(l3) = k̃
and

α2(k̃, l) < 0 ⇔ h2(l) > k̃ ⇔ l2 < l < l3. (3.9)
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Because α2(k̃, l̃) ≥ 0, we have l̃ ≤ l2 or l̃ ≥ l3. Since α1(k̃, l̃) ≥ 0, we have l̃ > h1(k̃).
By Lemma 3.4, we have α2(k̃, h1(k̃)) < 0, and so l2 < h1(k̃) < l3. These imply that

l̃ ≥ l3. (3.10)

On the other hand, since l1 := k0 + l0 − k̃ > l0, we obtain

h2(l1) + k0 + l0 − k̃ = h2(l1) + l1 > h2(l0) + l0 = k0 + l0,

that is, h2(l1) > k̃. By (3.9), we obtain l2 < l1 < l3. Since k̃ + l̃ ≤ k0 + l0, we have

l̃ ≤ l1 < l3,

which contradicts with (3.10). Therefore, k̃ ≥ k0. By a similar argument, we also
have l̃ ≥ l0. Therefore, (k̃, l̃) = (k0, l0). This completes the proof. �

Proof of Theorem 1.1. Since −λ1(Ω) < λ1 = λ2 = λ < 0, then, it is obviously that
(
√
k0uλ,

√
l0uλ) is a nontrivial solution of (1.1) and

0 < B ≤ E(
√
k0uλ,

√
l0uλ) = (k0 + l0)B1. (3.11)

We now prove that B = E(
√
k0wλ,

√
l0wλ) when β ≥ 2s

N−2s max{µ1, µ2}. Let
{(un, vn)} ⊂M be a minimizing sequence for B. Define

cn =
(∫

Ω

|un|2pdx
)1/p

, dn =
(∫

Ω

|vn|2pdx
)1/p

.

On the other hand, by (2.7), we have

(
N

s
B1)2s/Ncn ≤

∫
C
y1−2s|∇w1,n|2 dx dy + λ

∫
Ω

u2
ndx

= µ1

∫
Ω

u
2∗s
n dx+ β

∫
Ω

u
2∗s
2
n v

2∗s
2
n dx

≤ µ1c
p
n + βc

p
2
n d

p
2
n ,

(3.12)

and
(
N

s
B1)2s/Ndn ≤

∫
C
y1−2s|∇w2,n|2 dx dy + λ

∫
Ω

v2
ndx

= µ2

∫
Ω

v
2∗s
n dx+ β

∫
Ω

u
2∗s
2
n v

2∗s
2
n dx

≤ µ2d
p
n + βc

p
2
n d

p
2
n ,

(3.13)

where (w1,n, w2,n) =
(
Es(un), Es(vn)

)
. Using the fact that

E(un, vn) =
s

N

{∫
C
y1−2s|∇w1,n|2 dx dy +

∫
C
y1−2s|∇w2,n|2 dx dy

+ λ

∫
Ω

u2
ndx+ λ

∫
Ω

v2
ndx

}
,

and by (3.11), we obtain

(
N

s
B1)2s/N (cn + dn) ≤ N

s
E(un, vn) ≤ N

s
(k0 + l0)B1, (3.14)

µ1c
p−1
n + βc

p
2−1
n d

p
2
n ≥ (

N

s
B1)2s/N , (3.15)

µ2d
p−1
n + βd

p
2−1
n c

p
2
n ≥ (

N

s
B1)2s/N . (3.16)
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First, this means cn, dn are uniformly bounded. Passing to a subsequence, we
assume that cn → c, dn → d. Combining (3.12) and (3.13), we have µ1c

p+2βc
p
2 d

p
2 +

µ2d
p
2 ≥ N

s B > 0. Hence, without loss of generality, we assume that c > 0. If d = 0,
then (3.14) implies c < (Ns B1)1− 2s

N (k0 + l0). Then by (3.15) and Lemma 3.4, we
obtain (N

s
B1

)2s/N ≤ µ1c
p−1 ≤ µ1(k0 + l0)p−1(

N

s
B1)2s/N <

(N
s
B1

)2s/N
,

which is a contradiction. Therefore, c > 0 and d > 0. Let k = c

(Ns B1)1−
2s
N

, l =
d

(Ns B1)1−
2s
N

, since (3.14)-(3.16), we see that (k, l) satisfies (3.8). By Lemma 3.5, we

have (k, l) = (k0, l0). It follows that cn → k0(Ns B1)1− 2s
N and dn → l0(Ns B1)1− 2s

N as
n→ +∞, and

N

s
B = lim

n→+∞

N

s
E(un, vn) ≥ lim

n→+∞
(
N

s
B1)2s/N (cn + dn) =

N

s
(k0 + l0)B1.

Combining this with (3.11), one has that

B = (k0 + l0)B1 = E(
√
k0uλ,

√
l0uλ),

and so (
√
k0uλ,

√
l0uλ) is a positive least energy solution of (1.1).

The proof of the second part of Theorem 1.1 is similar to the proof of [19,
Theorem 1.2], which only need a slight modification. So we omit it here. �

Proof of Theorem 2.3. By lemma 3.2, equation (3.1) has a solution (k0, l0). Then
(
√
k0Uε,

√
l0Uε) is a nontrivial solution of (2.14) and

A ≤ I(
√
k0Uε,

√
l0Uε) =

s

N
(k0 + l0)S(s,N)

N
2s . (3.17)

Since β ≥ (p − 1) max{µ1, µ2}. Let {(un, vn)} ⊂ N be a minimizing sequence
for A, that is I(un, vn) → A as n → ∞. Denote cn =

( ∫
RN |un|

2p
)1/p, dn =( ∫

RN |vn|
2p
)1/p, then we have

S(s,N)cn ≤
∫

RN+1
+

y1−2s|∇w1,n|2 dx dy

= µ1

∫
RN

u
2∗s
n dx+ β

∫
RN

u
2∗s
2
n v

2∗s
2
n dx

≤ µ1c
p
n + βc

p
2
n d

p
2
n ,

and

S(s,N)dn ≤
∫

RN+1
+

y1−2s|∇w2,n|2 dx dy

= µ2

∫
RN

v
2∗s
n dx+ β

∫
RN

u
2∗s
2
n v

2∗s
2
n dx

≤ µ2d
p
n + βc

p
2
n d

p
2
n ,

where Es(un) = (w1,n, w2,n) =
(
Es(un), Es(vn)

)
. This means

S(s,N)(cn + dn) ≤ N

s
I(un, vn) ≤ (k0 + l0)S(s,N)

N
2s + o(1),

µ1c
p−1
n + βc

p
2−1
n d

p
2
n ≥ S(s,N), µ2d

p−1
n + βc

p
2
n d

p
2−1
n ≥ S(s,N).
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Similarly as the proof of Theorem 1.1, we see that cn → k0S(s,N)
N
2s−1, dn →

l0S(s,N)
N
2s−1 as n→ +∞, and

NA

s
= lim
n→+∞

N

s
I(un, vn) ≥ lim

n→+∞
S(s,N)(cn + dn) = (k0 + l0)S(s,N)

N
2s .

This implies

A =
s

N
(k0 + l0)S(s,N)

N
2s = I(

√
k0Uε,

√
l0Uε)

and so (
√
k0Uε,

√
l0Uε) is a positive least energy solution of (2.14). �

4. Proof of Theorem 1.2

In this section, by showing that the mountain pass energy level B is strictly less
than Bµ1 , Bµ2 and A, we then complete the proof of Theorem 1.2.

The mountain pass energy level B is given by

B := inf
h∈Γ

max
t∈[0,1]

E(h(t)), (4.1)

where Γ =
{
h ∈ C([0, 1], H) : h(0) = (0, 0), E(h(1)) < 0

}
. For any (u, v) ∈ H with

(u, v) 6= (0, 0), similarly, set (w1, w2) = (Es(u), Es(v)), we then have

max
t>0

E(tu, tv) = E(t0u, t0v)

=
s

N
t20

(∫
C
y1−2s|∇w1|2 dx dy +

∫
C
y1−2s|∇w2|2 dx dy

+ λ1

∫
Ω

u2dx+ λ2

∫
Ω

v2dx
)

=
s

N
t
2∗s
0

∫
Ω

(
µ1|u|2

∗
s + 2β|u|

2∗s
2 |v|

2∗s
2 + µ2|v|2

∗
s
)
dx,

(4.2)

where t0 > 0 satisfies

t
2∗s−2
0 =

∫
C y

1−2s|∇w1|2 dx dy +
∫
C y

1−2s|∇w2|2 dx dy + λ1

∫
Ω
u2dx+ λ2

∫
Ω
v2dx∫

Ω

(
µ1|u|2∗s + 2β|u|

2∗s
2 |v|

2∗s
2 + µ2|v|2∗s

)
dx

.

(4.3)
It is obvious that (t0u, t0v) ∈M′, where

M′ :=
{

(u, v) ∈ H \ {(0, 0)}, G(u, v) :=
∫
C
y1−2s|∇w1|2 dx dy

+
∫
C
y1−2s|∇w2|2 dx dy + λ1

∫
Ω

u2dx+ λ2

∫
Ω

v2dx

−
∫

Ω

(
µ1|u|2

∗
s + 2β|u|

2∗s
2 |v|

2∗s
2 + µ2|v|2

∗
s
)
dx = 0

}
.

(4.4)

It is easy to check that

B = inf
(u,v)6=(0,0)

max
t>0

E(tu, tv) = inf
(u,v)∈M′

E(u, v). (4.5)

Lemma 4.1. Let β ≥ ( 2s
N−2s ) max{µ1, µ2} and N ≥ 4s, then

B < min{Bµ1 , Bµ2 , A}
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Proof. We first prove B < A. Define

uε(x) =
√
k0uε(x) =

√
k0η(x)Uε(x), vε(x) =

√
l0uε(x) =

√
k0η(x)Uε(x),

where η ∈ C∞0
(
B2δ(x0)

)
, δ > 0 is a constant and B2δ(x0) ⊂ Ω. Set

wε(x, y) = Es(uε), w1,ε(x, y) =
√
k0wε(x, y), w2,ε(x, y) =

√
l0wε(x, y).

Then, we have the following estimations (see [3]):

‖wε‖2Hs0,L(C) = ‖Es(Uε)‖2Hs0,L(RN+1
+ )

+O(εN−2s) = S(s,N)
N
2s +O(εN−2s), (4.6)∫

Ω

|uε(x)|2
∗
sdx =

∫
RN

U
2∗s
ε (x)dx+O(εN−2s) = S(s,N)

N
2s +O(εN−2s), (4.7)

∫
Ω

|uε(x)|2dx ≥


Csε

2s +O(εN−2s), if N > 4s,
Csε

2s log 1
ε +O(ε2s), if N = 4s,

Csε
N−2s +O(ε2s), if N < 4s.

(4.8)

Thus, we deduce that

E(tuε, tvε)

=
t2

2

{∫
C
y1−2s

(
|∇w1,ε|2 + |∇w2,ε|2

)
dx dy + λ1

∫
Ω

u2
εdx+ λ2

∫
Ω

v2
εdx
}

− t2
∗
s

2∗s

∫
Ω

(
µ1u

2∗s
ε + 2βu

2∗s
2
ε v

2∗s
2
ε + µ2v

2∗s
ε

)
dx

≤ t2

2

{∫
RN+1

+

y1−2s
(
k0|∇Uε|2 + l0|∇Uε|2

)
dx dy +O(εN−2s)− Cε2s

}
− t2

∗
s

2∗s

{∫
RN

(
µ1k

2∗s
2

0 U
2∗s
ε + 2βk

2∗s
4

0 l
2∗s
4

0 U
2∗s
ε + µ2l

2∗s
2

0 U
2∗s
ε

)
dx+O(εN−2s)

}
=
t2

2
(N
s
A+O(εN−2s)− Cε2s

)
− t2

∗
s

2∗s

(N
s
A+O(εN−2s)

)
≤ s

N

(N
s
A+O(εN−2s)− Cε2s

)( N
s A+O(εN−2s)− Cε2s

N
s A+O(εN−2s)

)N−2s
2s

< A for ε small enough and N ≥ 4s.

(4.9)

Hence, for ε > 0 small enough, it holds

B ≤ max
t>0

E(tuε, tvε) < A. (4.10)

We now prove that B < Bµ1 . Define

t(a)2∗s−2 :=
N
s Bµ1 + a2N

s Bµ2

N
s Bµ1 + N

s |a|2
∗
sBµ2 + |a|

2∗s
2
∫

Ω
2β|uµ1 |p|uµ2 |pdx

.

Note that t(0) = 1 and recall that 1 < p = N
N−2s < 2, by direct computation, we

obtain

lim
a→0

t′(a)
|a|p−2a

= −
p
∫

Ω
2β|uµ1 |p|uµ2 |pdx

(2p− 2)NBµ1
s

;
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that is,

t′(a) = −
p
∫

Ω
2β|uµ1 |p|uµ2 |pdx

(2p− 2)NBµ1
s

|a|p−2a
(
1 + o(1)

)
, as a→ 0,

and so

t(a) = 1−
∫

Ω
2β|uµ1 |p|uµ2 |pdx
(2p− 2)NBµ1

s

|a|p
(
1 + o(1)

)
, as a→ 0.

This implies

t(a)2p = 1−
2p
∫

Ω
2β|uµ1 |p|uµ2 |pdx

(2p− 2)NBµ1
s

|a|p(1 + o(1)), as a→ 0.

Therefore, from (4.2) and 2p
2p−2 = N

2s we deduce that

B ≤ E
(
t(a)uµ1 , t(a)auµ2

)
=

s

N
t(a)2p

(NBµ1

s
+ |a|2pNBµ2

s
+ |a|p

∫
Ω

2β|uµ1 |p|uµ2 |pdx
)

= Bµ1 −
s

N
(

1
p− 1

)|a|p
∫

Ω

2β|uµ1 |p||uµ2 |pdx+ o(|a|p)

< Bµ1 for |a| > 0 small enough.

(4.11)

Similarly, we can proof B < Bµ2 . The proof is complete. �

Proof of Theorem 1.2. Since the functional E has a mountain pass structure, by
the Mountain Pass Theorem, there exists {(un, vn)} ⊂ H such that

lim
n→+∞

E(un, vn) = B, lim
n→+∞

E′(un, vn) = 0.

It is standard to see that {(un, vn)} is bounded in H, and so we may assume that
(un, vn) ⇀ (u, v) weakly in H. Set τn = un − u, σn = vn − v. Thus, by Brezis-Lieb
Lemma and [19, Lemma 3.3], we obtain∫

C
y1−2s|∇ρ1,n|2 dx dy −

∫
Ω

(µ1τ
2∗s
n + βτ

2∗s
2
n σ

2∗s
2
n )dx = on(1), (4.12)∫

C
y1−2s|∇ρ2,n|2 dx dy −

∫
Ω

(µ2σ
2∗s
n + βτ

2∗s
2
n σ

2∗s
2
n )dx = on(1), (4.13)

where ρ1,n = Es(τn), ρ2,n = Es(σn). Then

E(un, vn) = E(u, v) + I(τn, σn) + on(1). (4.14)

Suppose

lim
n→+∞

∫
C
y1−2s|∇ρ1n|2 dx dy = b1, lim

n→+∞

∫
C
y1−2s|∇ρ2n|2 dx dy = b2, (4.15)

then, for n large enough, we obtain

I(τn, σn) =
s

N
(b1 + b2) + on(1). (4.16)

Moreover,

0 ≤ E(u, v) ≤ E(u, v) +
s

N
(b1 + b2) = lim

n→+∞
E(un, vn) = B. (4.17)
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Case 1. u ≡ 0, v ≡ 0. By (4.17), we have b1 + b2 > 0, then we may assume that
(τn, σn) 6= (0, 0) for n large enough. It is easy to check that there exists tn > 0 such
that (tnτn, tnσn) ∈ N and tn → 1 as n→∞. Then, we have

B =
s

N
(b1 + b2) = lim

n→+∞
I(τn, σn) = lim

n→+∞
I(tnτn, tnσn) ≥ A. (4.18)

This is a contradiction with Lemma 4.1. Therefore, Case 1 is impossible.
Case 2. u 6≡ 0, v ≡ 0 or u ≡ 0, v 6≡ 0. Without loss of generality, we may assume
that u 6≡ 0, v ≡ 0. Then u is a nontrivial solution of (−∆)su + λ1u = µ1|u|2

∗
s−2u,

by (4.17) again, B ≥ E(u, 0) ≥ Bµ1 , a contradiction with Lemma 4.1. Therefore,
Case 2 is also impossible.

Since Cases 1 and 2 are both impossible, we have that u 6≡ 0, v 6≡ 0. Since
E′(u, v) = 0, we have (u, v) ∈M. By B ≤ B and (4.17), we have E(u, v) = B = B.
This means (|u|, |v|) ∈M ⊂M′ and E(|u|, |v|) = B = B. By (4.4) and (4.5), there
exists a Lagrange multiplier γ ∈ R such that

E′(|u|, |v|)− γG′(|u|, |v|) = 0,

where G is given in (4.4). Since E′(|u|, |v|)(|u|, |v|) = G(|u|, |v|) = 0 and

G′(|u|, |v|)(|u|, |v|) = −(2p− 2)
∫

Ω

(
µ1|u|2p + 2β|u|p|v|p + µ2|v|2p

)
dx 6= 0,

we obtain that γ = 0 and so E′(|u|, |v|) = 0. This means that (|u|, |v|) is a least
energy solution of (1.1). By the maximum principle [14], we see that |u|, |v| > 0 in
Ω. Therefore, (|u|, |v|) is a positive least energy solution of (1.1). �
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