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EXISTENCE RESULTS FOR ANISOTROPIC DISCRETE
BOUNDARY VALUE PROBLEMS

MUSTAFA AVCI

Abstract. In this article, we prove the existence of nontrivial weak solutions

for a class of discrete boundary value problems. The main tools used here are
the variational principle and critical point theory.

1. Introduction and Preliminaries

In this article, we are interested in the existence of solutions for the discrete
boundary value problem

−∆(|∆u(k − 1)|p(k−1)−2∆u(k − 1)) = λf(k, u(k)), k ∈ Z[1, T ],

u(0) = u(T + 1) = 0,
(1.1)

where T ≥ 2 is a positive integer; Z[a, b] denotes the discrete interval {a, a+1, . . . , b}
with a and b are integers such that a < b; ∆u(k) = u(k + 1)− u(k) is the forward
difference operator; λ is a positive parameter; f : Z[1, T ]× R → R is a continuous
function with respect to t ∈ R, and k ∈ Z[1, T ]. For the function p : Z[0, T ]→ [2,∞)
denote

p− := min
k∈Z[0,T ]

p(k) ≤ p(k) ≤ max
k∈Z[0,T ]

p(k) =: p+ <∞.

In the previous decades, the nonlinear difference equations have been intensively
used for the mathematical modelling of various problems in different disciplines of
science, such as computer science, mechanical engineering, control systems, artifi-
cial or biological neural networks and economics. This mades nonlinear difference
equations very attractive to many authors, and hence, many paper have been de-
voted to the relative field by using a various methods such as fixed points theorems,
topological methods and variational methods. For the recent progress in discrete
problems, we refer the readers to the interesting book by Agarwal [1] and the papers
[8, 17].

In [2, 3, 5, 6, 8, 9, 15, 19], the authors used different methods to study the
existence and multiplicity of solutions for the discrete boundary value problem of
the type

−∆
(
φp(∆u(k − 1))

)
= f(k, u(k)), k ∈ Z[1, T ],

u(0) = u(T + 1) = 0,
(1.2)

2010 Mathematics Subject Classification. 47A75, 35B38, 35P30, 34L05, 34L30.
Key words and phrases. Anisotropic discrete boundary value problems;

multiple solutions; variational methods; critical point theory.
c©2016 Texas State University.

Submitted March 23, 2016. Published June 16, 2016.

1



2 M. AVCI EJDE-2016/148

where φp(s) = |s|p−2s, 1 < p < +∞. In [17], Mihăilescu et al. studied the
eigenvalue problem for the anisotropic discrete boundary-value problem

−∆
(
φp(k−1)(∆u(k − 1))

)
= λ|∆u(k − 1)|q(k−1)−2∆u(k − 1), k ∈ Z[1, T ],

u(0) = u(T + 1) = 0,
(1.3)

where φp(k−1)(s) = |s|p(k−1)−2s, p : Z[0, T ] → [2,+∞), q : Z[1, T ] → [2,+∞)
and λ is a positive parameter. For the recent papers involving anisotropic discrete
boundary value problems, we refer to recent works [4, 10, 11, 14, 16] and references
therein. Motivated by the papers mentioned above, we study problem (1.1) and
obtain the existence of nontrivial weak solutions by employing variational principle
and critical point theory argued in [7].

Let us define the function space

W = {u : Z[0, T + 1]→ R such that u(0) = u(T + 1) = 0}.

Then, W is a T -dimensional Hilbert space with the inner product

(u, v) =
T+1∑
k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈W,

while the corresponding norm is given by

‖u‖W =
( T+1∑
k=1

|∆u(k − 1)|2
)1/2

.

We can also define the following norm on W since W is finite-dimensional,

|u|m =
( T∑
k=1

|u(k)|m
)1/m

, ∀u ∈W, m ≥ 2.

Now, we recall some auxiliary results which we use through the paper.

Proposition 1.1 ([10, 17]). (i) Let u ∈W and ‖u‖W > 1. Then

T+1∑
k=1

|∆u(k − 1)|p(k−1)

p(k − 1)
≥ 1
p+(
√
T )p−−2

‖u‖p
−

W − T.

(ii) Let u ∈W and ‖u‖W < 1. Then

T+1∑
k=1

|∆u(k − 1)|p(k−1)

p(k − 1)
≥ 1
p+(
√
T )2−p+

‖u‖p
+

W .

(iii) For any m ≥ 2, there exist positive constants cm such that

T∑
k=1

|u(k)|m ≤ cm
T+1∑
k=1

|∆u(k − 1)|m, ∀u ∈W.

(iv) For any m ≥ 2, we have

(T + 1)
2−m

2 ‖u‖mW ≤
T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1)‖u‖mW , ∀u ∈W.
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(v) For any m ≥ 2, we have

2m
T∑
k=1

|u(k)|m ≥
T+1∑
k=1

|∆u(k − 1)|m, ∀u ∈W.

The key arguments in our paper are the following results given in [7].

Proposition 1.2. Let X be a real Banach space, Φ,Ψ : X → R be two continu-
ously Gâteaux differentiable functionals such that infx∈X Φ(x) = Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and x ∈ X, with 0 < Φ(x) < r, such that:

(1) 1
r supΦ(x)≤r Ψ(x) ≤ Ψ(x)

Φ(x) ,

(2) for each λ ∈ Λr :=
(Φ(x)

Ψ(x) ,
r

supΦ(x)≤r Ψ(x)

)
, the functional Iλ := Φ − λΨ

satisfies the (P.S.)[r] condition.
Then, for each λ ∈ Λr, there is x0,λ ∈ Φ−1((0, r)) such that I ′λ(x0,λ) ≡ ϑX∗ and
Iλ(x0,λ) ≤ Iλ(x) for all x ∈ Φ−1((0, r)).

Proposition 1.3. Let X be a real Banach space, Φ,Ψ : X → R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) =
Ψ(0) = 0. Fix r > 0 and assume that for each

λ ∈
(

0,
r

supu∈Φ−1((−∞,r)) Ψ(u)

)
,

the functional Iλ := Φ− λΨ satisfies the (P.S.) condition and it is unbounded from
below. Then for each

λ ∈
(

0,
r

supu∈Φ−1((−∞,r)) Ψ(u)

)
,

the functional Iλ admits two distinct critical points.

Proposition 1.4. Let X be a reflexive real Banach space, Φ : X → R be a coercive,
continuously Gâteaux differentiable and sequentially weakly lower semi-continuous
functional whose Gâteaux derivative admits a continuous inverse on X∗; Ψ : X →
R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact such that infx∈X Φ(x) = Φ(0) = Ψ(0) = 0. Assume that there exists r > 0
and x ∈ X, with r < Φ(x) such that:

(1) 1
r supΦ(x)≤r Ψ(x) ≤ Ψ(x)

Φ(x) ,
(2) for each

λ ∈ Λr :=
(Φ(x)

Ψ(x)
,

r

supΦ(x)≤r Ψ(x)

)
,

the functional Iλ := Φ− λΨ is coercive.
Then, for each λ ∈ Λr, the functional Iλ has at least three distinct critical points.

Let us proceed with setting problem (1.1) in the variational structure. To this
end, let us define the functionals Φ,Ψ : W → R as follows:

Φ(u) =
T+1∑
k=1

|∆u(k − 1)|p(k−1)

p(k − 1)
,

Ψ(u) =
T∑
k=1

F (k, u(k)),
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where F (k, s) =
∫ s

0
f(k, t)dt, (k, s) ∈ Z[1, T ]× R.

The functionals Φ and Ψ are well-defined and continuously Gâteaux differentiable
where their derivatives are

Φ′(u)ϕ =
T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆ϕ(k − 1),

Ψ′(u)ϕ =
T∑
k=1

f(k, u(k))ϕ(k),

for all u, ϕ ∈W .
Then the functional Iλ : W → R corresponding to problem (1.1) is

Iλ(u) := Φ(u)− λΨ(u).

The functional Iλ is also well defined on W and Iλ ∈ C1(W,R) with the derivative

I ′λ(u)ϕ = Φ′(u)ϕ− λΨ′(u)ϕ,

for all u, ϕ ∈W .
We want to remark that since problem (1.1) is defined in a finite-dimensional

Hilbert space W , it is not difficult to verify that the functionals Φ, Ψ and Iλ satisfy
the regularity assumptions mentioned above (see, e.g., [13]).

Definition 1.5. We say that u ∈W is a weak solution of problem (1.1) if

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆ϕ(k − 1)− λ
T∑
k=1

f(k, u(k))ϕ(k) = 0 (1.4)

for all ϕ ∈W , where (1.4) is called the weak form of problem (1.1).

From the above definition it is obvious that the weak solutions of problem (1.1)
are in fact the critical points of Iλ.

We also use the following helpful notation:

βp∗ =

{
βp

+
if β > 1

βp
−

if 0 < β < 1,
η1/p∗ =

{
η1/p− if η > 1
η1/p+

if 0 < η < 1,

δ(q/p)∗ =

{
δq

+/p− if δ > 1
δq
−/p+

if 0 < δ < 1 .

(1.5)

2. Existence of one solution

We sue the following assumptions:

(A1) There exist C > 0 and a function q : Z[1, T ] → [2,+∞) such that for all
(k, t) ∈ Z[1, T ]× R,

|f(k, t)| ≤ C
(
1 + |t|q(k)−1

)
.

(A2) There exist r, a, b, l > 0 with

b < (
p−

2
)1/p+ a

(T + 1)
(p+−2)

2p− (p+)
1

p−
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such that

l

r
(T + (T + 1)(p+−2)q+/2p−(p+)q

+/p−r(q/p)∗) < bp

T∑
k=1

F (k, b),

where

bp =
(bp(0)

p(0)
+
bp(T )

p(T )

)−1

.

Theorem 2.1. Assume (A1) and (A2) are satisfied. Then for each

λ ∈ Λr,b :=
( 1

bp
∑T
k=1 F (k, b)

,
r

l(T + (T + 1)(p+−2)q+/2p−(p+)q+/p−r(q/p)∗)

)
,

problem (1.1) admits at least one nontrivial weak solution.

Proof. We will apply Proposition 1.2. We know that Φ and Ψ are well-defined and
continuously Gâteaux differentiable. Moreover, from the definitions of Φ and Ψ we
have

inf
u∈W

Φ(u) = Φ(0) = Ψ(0) = 0.

Let us define the function u : Z[0, T + 1]→ R belonging to W by the formula

u(k) =

{
b if k ∈ Z[1, T ],
0 if k = 0, k = T + 1.

Then, we deduce that

Φ(u) =
bp(0)

p(0)
+
bp(T )

p(T )

which implies

Φ(u) ≤ 2
p−
bp∗ .

Moreover, we have
Ψ(u)
Φ(u)

=
∑T
k=1 F (k, b)

bp(0)

p(0) + bp(T )

p(T )

.

For each u ∈ Φ−1((−∞, r)), from Proposition 1.1(iv) and 1.5, one has

1
p+

(T + 1)(2−p+)/2‖u‖p∗W ≤
1
p+

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ Φ(u) ≤ r

‖u‖W ≤ ((T + 1)(p+−2)/2p+r)1/p∗ ≤ (T + 1)(p+−2)/2p−(p+)1/p−r1/p∗ := a

Then
r =

ap∗

(T + 1)
(p+−2)p∗

2p− (p+)
p∗
p−

. (2.1)

Since

b <
(p−

2
)1/p+ a

(T + 1)
(p+−2)

2p− (p+)
1

p−

,

we obtain Φ(u) < r. Moreover, from condition (A1), there exists a constant l > 0
such that |F (k, t)| ≤ l(1 + |t|q(k)). Then it follows

Ψ(u) ≤
T∑
k=1

l(1 + |u(k)|q(k)) ≤ l(T + ‖u‖q∗W ),
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‖u‖q∗W ≤ (T + 1)(p+−2)q+/2p−(p+)q
+/p−r(q/p)∗ ,

and hence
1
r

sup
Φ(u)≤r

Ψ(u) ≤ l

r

(
T + (T + 1)(p+−2)q+/2p−(p+)q

+/p−r(q/p)∗
)
. (2.2)

Taking into account the condition (A2), we have

1
r

sup
Φ(u)≤r

Ψ(u) ≤ Ψ(u)
Φ(u)

.

In conclusion, Proposition 1.2(1) is verified.
For Proposition 1.2(2), as mentioned before, Φ and Ψ are well-defined and con-

tinuously Gâteaux differentiable. Further, from (A1), Ψ has a compact derivative.
This ensures that the functional Iλ satisfies the (P.S.)[r] condition for each r > 0.
Hence Proposition 1.2(2) is verified as well.

Consequently, by Proposition 1.2, for each λ ∈ Λr,b, the functional Iλ admits at
least one critical point which corresponds to the nontrivial weak solution of problem
(1.1). �

Example 2.2. As an application of Theorem 2.1, we consider the following: Let
T = 2, p(k − 1) = 2(k + 1), q(k) = k + 1, b = 1, a = 7 and f(k, u) = |u(k)|k.
Then, p− = p(0) = 4, p+ = p(T ) = 6, q− = 2, q+ = 3, F (k, u) = 1

k+1 |u(k)|k+1

and l = 1
k+1 , say l = 1/3. Then, the all the assumptions requested in Theorem 2.1

hold. Finally, by simple computations, it results that for each λ ∈ Λr,b ⊆ (1/2, λa)
problem (1.1) admits at least one nontrivial weak solution, where the real constant
λa depends on a and satisfies λa ≥ 31/50.

3. Existence of two solutions

For the next theorem we use the assumption
(A3) There exist positive real numbers θ and t0 such that θ > p+ and

0 < θF (k, t) ≤ f(k, t)t ∀(k, t) ∈ Z[1, T ]× R, |t| ≥ t0 .

Theorem 3.1. Assume that (A1) and (A3) hold. Then for each

λ ∈ Λr :=
(

0,
r

l(T + (T + 1)(p+−2)q+/2p−(p+)q+/p−r(q/p)∗)

)
,

problem (1.1) admits at least two distinct weak solutions.

Proof. We will apply Proposition 1.3. It is obvious that Φ(0) = Ψ(0) = 0. More-
over, Φ is bounded from below. Indeed, for ‖u‖W < 1 and by Proposition 1.1(ii),
it reads

Φ(u) =
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) ≥ 1
p+(
√
T )2−p+

‖u‖p
+

W .

Let us show that Iλ is unbounded from below and satisfies the (P.S.) condition.
From condition (A3), there exists a constant c > 0 such that F (k, t) ≥ c|t|θ for any
(k, t) ∈ Z[1, T ]×R, |t| ≥ t0. Let ‖u‖W > 1. Then, using Proposition 1.1(iv)-(v), it
reads

Iλ(u) ≤ 1
p−

T+1∑
k=1

|∆u(k − 1)|p(k−1) − λ
T∑
k=1

F (k, u(k))
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≤ (T + 1)
p−

‖u‖p
+

W − λc
T∑
k=1

|u(k)|θ

≤ (T + 1)
p−

‖u‖p
+

W − λc2
−θ

T+1∑
k=1

|∆u(k − 1)|θ

≤ (T + 1)
p−

‖u‖p
+

W − λc2
−θ(T + 1)(2−θ)/2‖u‖θW ,

from which we get
lim

‖u‖W→∞
Iλ(u) = −∞.

Therefore, Iλ is unbounded from below and anti-coercive. Additionally, since the
space W is finite-dimensional, (P.S.) condition follows immediately. Consequently,
all assumptions of Proposition 1.3 are verified. Therefore, for each λ ∈ Λr, the
functional Iλ admits two distinct critical points that are weak solutions of problem
(1.1). �

We want to remark that from condition (A1), there exists a constant C1 > 0 such
that |F (k, t)| ≤ C1(1 + |t|q(k)), and from condition (A3), there exists a constant
C2 > 0 such that F (k, t) ≥ C2|t|θ for any (k, t) ∈ Z[1, T ]×R. So, we conclude that
C2|t|θ ≤ C1(1 + |t|q(k)) which means that q(k) ≥ θ for all k ∈ Z[1, T ]. Therefore,
we have p+ < θ ≤ q− as a natural condition raised from (A1) and (A3).

Example 3.2. As an application of Theorem 3.1, we consider the function

f(k, t) =

{
m+ nq(k)tq(k)−1 t ≥ 0,
m− nq(k)(−t)q(k)−1 t < 0,

for each (k, t) ∈ Z[1, T ]×R where m,n are some positive constants. We also assume
that

t0 > max
{( m(θ − 1)

n(q− − θ)

) 1
q(k)−1

,
(m
n

) 1
q(k)−1

}
such that q− > θ. Then, condition (A1) is easily verified. Let us proceed for
condition (A3). From the above definition of f , we get F (k, t) = mt + n|t|q(k).
Since we have tq(k)−1

0 > m
n , for all k ∈ Z[1, T ] and |t| ≥ t0 there holds

F (k, t) ≥ |t|
(
−m+ n|t|q(k)−1

)
≥ t0(−m+ nt

q(k)−1
0 ) > 0.

Moreover, for all k ∈ Z[1, T ] and t < 0, we have

tf(k, t)− θF (k, t) = m(1− θ)t+ n(q(k)− θ)|t|q(k)

= m(θ − 1)|t|+ n(q(k)− θ)|t|q(k) > 0.

Finally, thanks to the assumption t
q(k)−1
0 > m(θ−1)

n(q−−θ) , for all k ∈ Z[1, T ] and t ≥ t0,
we obtain

tf(k, t)− θF (k, t) = t(n(q(k)− θ)|t|q(k)−1 −m(θ − 1))

≥ t0(n(q− − θ)rq(k)−1 −m(θ − 1)) > 0.

Therefore condition (A3) holds as well.
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4. Existence of three solutions

For the next theorem we use the assumption

(A4) There exist Cd, d > 0 with

d > (
p+

2
)1/p+ a

(T + 1)
(p+−2)

2p− (p+)
1

p−

such that

l

r
(T + (T + 1)(p+−2)q+/2p−(p+)q

+/p−r(q/p)∗) < Cddp

T∑
k=1

F (k, d),

where dp =
(
dp(0)

p(0) + dp(T )

p(T )

)−1.

Theorem 4.1. Assume (A1), (A4) and q+ < p−. Then for each

λ ∈ Λr,d :=
( 1

Cddp
∑T
k=1 F (k, d)

,
r

l(T + (T + 1)(p+−2)q+/2p−(p+)q+/p−r(q/p)∗)

)
,

problem (1.1) admits at least three distinct weak solutions.

Proof. We will apply Proposition 1.4. We know that, Φ and Ψ are well-defined and
continuously Gâteaux differentiable, and infu∈W Φ(u) = Φ(0) = Ψ(0) = 0. The
compactness of derivative of Ψ follows from the growth condition (A1). Since Φ is
of class C1 on the finite-dimensional Hilbert space W , to prove that Φ is weakly
lower semicontinuous, it is sufficient to show the coercivity of Φ (see [12]). Indeed,
let u ∈W such that ‖u‖W → +∞. Then, without loss of generality, we can assume
that ‖u‖W > 1. From the definition of the functional Φ and Proposition 1.1(i), we
deduce that

Φ(u) =
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) ≥ 1
p+(
√
T )p−−2

‖u‖p
−

W − T.

So, Φ(u)→ +∞ as ‖u‖W → +∞ which means that Φ is coercive. We continue to
show the existence of the inverse function (Φ′)−1 : W ∗ →W . At first, we show the
strict monotonicity of Φ′. For the case u1 6= u2 ∈W , we have

(Φ′(u1)− Φ′(u2))(u1 − u2)

≥
T+1∑
k=1

(|∆u1(k − 1)|p(k−1)−2∆u1(k − 1)− |∆u2(k − 1)|p(k−1)−2∆u2(k − 1))

× (∆u1(k − 1)−∆u2(k − 1))

By the well-known inequality, for any ζ, ξ ∈ RN ,

(|ζ|r−2ζ − |ξ|r−2ξ)(ζ − ξ) ≥ Cr|ζ − ξ|r, r ≥ 2, Cr > 0,

we obtain

(Φ′(u1)− Φ′(u2))(u1 − u2) ≥ c3
T+1∑
k=1

|∆u1(k − 1)−∆u2(k − 1)|p(k−1)−2 > 0,
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where c3 is a positive constant depends only on p. Therefore Φ′ is strictly monotone,
which ensures that Φ′ is an injection. Moreover, by Proposition 1.1, we have

Φ′(u)u =
T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ c4 min
{
‖u‖p

−

W , ‖u‖p
+

W

}
− c5,

where c4, c5 are positive constants and u ∈W . So, Φ′(u)→ +∞ as ‖u‖W → +∞.
From the above information, and Minty-Browder theorem (see [20]), we obtain

that Φ′ is a surjection. As a consequence, Φ′ has an inverse mapping (Φ′)−1 :
W ∗ →W . We now show that (Φ′)−1 is continuous. To this end, let (u∗n), u∗ ∈W ∗
with u∗n → u∗, and let (Φ′)−1(u∗n) = (un), (Φ′)−1(u∗) = u. Then, Φ(un) = u∗n and
Φ(u) = u∗, which means that (un) is bounded in W . Hence there exists u0 ∈ W
and a subsequence, again denoted by (un), such that un ⇀ u0 in W , and therefore
un → u0 in W . Since the limit is unique, it follows that un → u in W . Therefore
(Φ′)−1 is continuous.

Next we verify Proposition 1.4(1). To do this, let us define the function v :
Z[0, T + 1]→ R belonging to W by the formula

v(k) =

{
d if k ∈ Z[1, T ],
0 if k = 0, k = T + 1,

Then we deduce that

Φ(v) =
dp(0)

p(0)
+
dp(T )

p(T )

which implies that

Φ(v) ≥ 2
p+
dp∗ .

Since d > (p
+

2 )1/p+ a

(T+1)

(p+−2)

2p− (p+)
1

p−

, we get Φ(v) > r, where r is as in (2.1).

Moreover, we have
Ψ(v)
Φ(v)

=
∑T
k=1 F (k, d)

dp(0)

p(0) + dp(T )

p(T )

.

For each u ∈ Φ−1((−∞, r)), similarly to (2.2), we have

1
r

sup
Φ(u)≤r

Ψ(u) ≤ l

r
(T + (T + 1)(p+−2)q+/2p−(p+)q

+/p−r(q/p)∗).

Therefore, from condition (A4), it holds

1
r

sup
Φ(u)≤r

Ψ(u) ≤ Ψ(v)
Φ(v)

.

Hence, Proposition 1.4(1) is verified. Let us proceed with the coercivity of Iλ. Let
u ∈ W such that ‖u‖W → +∞. Then, without loss of generality, we can assume
that ‖u‖W > 1. Then from Proposition 1.1(i) and condition (A1), it reads

Iλ(u) =
T+1∑
k=1

1
p(k − 1)

|∆u(k − 1)|p(k−1) − λ
T∑
k=1

F (k, u(k))

≥ 1
p+(
√
T )p−−2

‖u‖p
−

W − T − λl(T + ‖u‖q
+

W )
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≥ 1
p+(
√
T )p−−2

‖u‖p
−

W − λl‖u‖
q+

W − T (1 + λl);

that is, Iλ is coercive. So, Proposition 1.4(2) is verified.
Consequently, the assumptions of Proposition 1.4 are verified. Therefore, for

each λ ∈ Λr,d, the functional Iλ admits at least three distinct critical points that
are weak solutions of problem (1.1). �

Example 4.2. As an application of Theorem 4.1, if we consider function f and
the assumptions as given in Example 2.2, take d = 4 and Cd ≥ 42, then the all
the assumptions requested in Theorem 4.1 hold. Moreover, for each λ ∈ Λr,d ⊆
(25/43, λa) problem (1.1) admits at least three nontrivial weak solutions, where the
real constant λa depends on a and satisfies λa ≥ 31/50.
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